1
|
Haimson B, Mizrahi A. Integrating innate and learned behavior through brain circuits. Trends Neurosci 2025; 48:319-329. [PMID: 40169295 DOI: 10.1016/j.tins.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
Understanding how innate predispositions and learned experiences interact to shape behavior is a central question in systems neuroscience. Traditionally, innate behaviors, that is, those present without prior learning and governed by evolutionarily conserved neural circuits, have been studied separately from learned behaviors, which depend on experience and neural plasticity. This division has led to a compartmentalized view of behavior and neural circuit organization. Increasing evidence suggests that innate and learned behaviors are not independent, but rather deeply intertwined, with plasticity evident even in circuits classically considered 'innate'. In this opinion, we highlight examples across species that illustrate the dynamic interaction between these behavioral domains and discuss the implications for unifying theoretical and empirical frameworks. We argue that a more integrative approach, namely one that acknowledges the reciprocal influences of innate and learned processes, is essential for advancing our understanding of how neuronal activity drives complex behaviors.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Hillerer KM, Gimsa U. Adult neurogenesis and the microbiota-gut-brain axis in farm animals: underestimated and understudied parameters for improving welfare in livestock farming. Front Neurosci 2024; 18:1493605. [PMID: 39664450 PMCID: PMC11631930 DOI: 10.3389/fnins.2024.1493605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Welfare in commercial livestock farming is becoming increasingly important in current agriculture research. Unfortunately, there is a lack of understanding about the neuronal mechanisms that underlie well-being on an individual level. Neuroplasticity in the hippocampus, the subventricular zone (SVZ), the olfactory bulb (OB) and the hypothalamus may be essential regulatory components in the context of farm animal behaviour and welfare that may be altered by providing environmental enrichment (EE). The importance of pre-and probiotics as a form of EE and the microbiota-gut-brain axis (MGBA) has come under the spotlight in the last 20 years, particularly in the contexts of research into stress and of stress resilience. However, it could also be an important regulatory system for animal welfare in livestock farming. This review aims to present a brief overview of the effects of EE on physiology and behaviour in farm animals and briefly discusses literature on behavioural flexibility, as well as inter-individual stress-coping styles and their relationship to animal welfare. Most importantly, we will summarise the literature on different forms of neural plasticity in farm animals, focusing on neurogenesis in various relevant brain regions. Furthermore, we will provide a brief outlook connecting these forms of neuroplasticity, stress, EE, the MGBA and welfare measures in modern livestock farming, concentrating on pigs.
Collapse
Affiliation(s)
- Katharina M. Hillerer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Mecklenburg-Vorpommern, Germany
| | | |
Collapse
|
3
|
Wilson KM, Arquilla AM, Hussein M, Rosales-Torres KM, Chan MG, Saltzman W. Effects of reproductive status on behavioral and neural responses to isolated pup stimuli in female California mice. Behav Brain Res 2024; 457:114727. [PMID: 37871656 DOI: 10.1016/j.bbr.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
The transition to motherhood in mammals is marked by changes in females' perception of and responsiveness to sensory stimuli from infants. Our understanding of maternally induced sensory plasticity relies most heavily on studies in uniparental, promiscuous house mice and rats, which may not be representative of rodent species with different life histories. We exposed biparental, monogamous California mouse (Peromyscus californicus) mothers and ovariectomized virgin females to one of four acoustic and olfactory stimulus combinations (Control: clean cotton and white noise; Call: clean cotton and pup vocalizations; Odor: pup-scented cotton and white noise; Call + Odor: pup-scented cotton and pup vocalizations) and quantified females' behavior and Fos expression in select brain regions. Behavior did not differ between mothers and ovariectomized virgins. Among mothers, however, those exposed to the Control condition took the longest to sniff the odor stimulus, and mothers exposed to the Odor condition were quicker to sniff the odor ball compared to those in the Call condition. Behavior did not differ among ovariectomized virgins exposed to the different conditions. Fos expression differed across conditions only in the anterior hypothalamic nucleus (AHN), which responds to aversive stimuli: among mothers, the Control condition elicited the highest AHN Fos and Call + Odor elicited the lowest. Among ovariectomized virgin females, Call elicited the lowest Fos in the AHN. Thus, reproductive status in California mice alters females' behavioral responses to stimuli from pups, especially odors, and results in the inhibition of defense circuitry in response to pup stimuli.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Biology, Pomona College, Claremont, CA, USA; Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
4
|
Chaker Z, Segalada C, Kretz JA, Acar IE, Delgado AC, Crotet V, Moor AE, Doetsch F. Pregnancy-responsive pools of adult neural stem cells for transient neurogenesis in mothers. Science 2023; 382:958-963. [PMID: 37995223 DOI: 10.1126/science.abo5199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/05/2023] [Indexed: 11/25/2023]
Abstract
Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Valerie Crotet
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
6
|
Pekarek BT, Kochukov M, Lozzi B, Wu T, Hunt PJ, Tepe B, Hanson Moss E, Tantry EK, Swanson JL, Dooling SW, Patel M, Belfort BDW, Romero JM, Bao S, Hill MC, Arenkiel BR. Oxytocin signaling is necessary for synaptic maturation of adult-born neurons. Genes Dev 2022; 36:1100-1118. [PMID: 36617877 PMCID: PMC9851403 DOI: 10.1101/gad.349930.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.
Collapse
Affiliation(s)
- Brandon T Pekarek
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Mikhail Kochukov
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Brittney Lozzi
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Timothy Wu
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick J Hunt
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Elizabeth Hanson Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Jessica L Swanson
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sean W Dooling
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mayuri Patel
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Benjamin D W Belfort
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Juan M Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew C Hill
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev 2022; 133:104475. [PMID: 34864004 PMCID: PMC8807930 DOI: 10.1016/j.neubiorev.2021.11.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
PAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence.
Collapse
Affiliation(s)
- Jodi L. Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.,Corresponding author: Jodi L. Pawluski, University of Rennes 1, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Hoekzema Lab, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology & Department of Neuroscience Columbus, OH, USA
| | - Joseph S. Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Lévy F. The Onset of Maternal Behavior in Sheep and Goats: Endocrine, Sensory, Neural, and Experiential Mechanisms. ADVANCES IN NEUROBIOLOGY 2022; 27:79-117. [PMID: 36169813 DOI: 10.1007/978-3-030-97762-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In sheep and goats, the onset of maternal behavior at parturition is characterized by a first phase called maternal responsiveness during which the mother is attracted to any newborn. In a second phase, called maternal selectivity, the mother establishes a selective bond with her young so that she only accepts it at suckling. After a description of the behavioral expression of both phases, this chapter reviews the physiological, sensory, and neural mechanisms involved. These two behavioral processes are synchronized with parturition by the vaginocervical stimulation induced by the expulsion of the newborn. Olfactory cues provided by the neonate are involved in maternal responsiveness and selectivity. Oxytocin supported by estrogens is the key factor for maternal responsiveness. The neural network involved in maternal responsiveness is mainly hypothalamic and is different from the circuitry involved in selectivity, which mainly concerns olfactory processing regions. Visual and auditory cues are necessary for offspring recognition at a distance. This multisensory recognition suggests that mothers form a mental image of their young. Maternal experience renders mothers more responsive to maternally relevant physiology and to young-related sensory inputs.
Collapse
Affiliation(s)
- Frédéric Lévy
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
9
|
Pregnancy Promotes Maternal Hippocampal Neurogenesis in Guinea Pigs. Neural Plast 2019; 2019:5765284. [PMID: 31097956 PMCID: PMC6487096 DOI: 10.1155/2019/5765284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) modulates cognition and behavior in mammals, while motherhood is associated with cognitive and behavioral changes essential for the care of the young. In mice and rats, hippocampal neurogenesis is reported to be reduced or unchanged during pregnancy, with few data available from other species. In guinea pigs, pregnancy lasts ~9 weeks; we set to explore if hippocampal neurogenesis is altered in these animals, relative to gestational stages. Time-pregnant primigravidas (3-5 months old) and age-matched nonpregnant females were examined, with neurogenic potential evaluated via immunolabeling of Ki67, Sp8, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN) combined with bromodeoxyuridine (BrdU) birth-dating. Relative to control, subgranular Ki67, Sp8, and DCX-immunoreactive (+) cells tended to increase from early gestation to postpartum and peaked at the late gestational stage. In BrdU pulse-chasing experiments in nonpregnant females surviving for different time points (2-120 days), BrdU+ cells in the DG colocalized with DCX partially from 2 to 42 days (most frequently at 14-30 days) and with NeuN increasingly from 14 to 120 days. In pregnant females that received BrdU at early, middle, and late gestational stages and survived for 42 days, the density of BrdU+ cells in the DG was mostly high in the late gestational group. The rates of BrdU/DCX and BrdU/NeuN colocalization were similar among these groups and comparable to those among the corresponding control group. Together, the findings suggest that pregnancy promotes maternal hippocampal neurogenesis in guinea pigs, at least among primigravidas.
Collapse
|
10
|
Kim P, Dufford AJ, Tribble RC. Cortical thickness variation of the maternal brain in the first 6 months postpartum: associations with parental self-efficacy. Brain Struct Funct 2018; 223:3267-3277. [PMID: 29855765 PMCID: PMC6358213 DOI: 10.1007/s00429-018-1688-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/24/2018] [Indexed: 12/17/2022]
Abstract
The postpartum period is associated with structural and functional plasticity in brain regions involved in parenting. While one study identified an increase in gray matter volume during the first 4 months among new mothers, little is known regarding the relationship between cortical thickness across postpartum months and perceived adjustment to parenthood. In this study of 39 socioeconomically diverse first-time new mothers, we examined the relations among postpartum months, cortical thickness, and parental self-efficacy. We identified a positive association between postpartum months and cortical thickness in the prefrontal cortex including the superior frontal gyrus extending into the medial frontal and orbitofrontal gyri, in the lateral occipital gyrus extending into the inferior parietal and fusiform gyri, as well as in the caudal middle frontal and precentral gyri. The relationship between cortical thickness and parental self-efficacy was specific to the prefrontal regions. These findings contribute to our understanding of the maternal brain in the first 6 months postpartum and provide evidence of a relationship between brain structure and perceived adjustment to parenthood.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208-3500, USA.
| | - Alexander J Dufford
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208-3500, USA
| | - Rebekah C Tribble
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208-3500, USA
| |
Collapse
|
11
|
Vinograd A, Fuchs-Shlomai Y, Stern M, Mukherjee D, Gao Y, Citri A, Davison I, Mizrahi A. Functional Plasticity of Odor Representations during Motherhood. Cell Rep 2018; 21:351-365. [PMID: 29020623 PMCID: PMC5643523 DOI: 10.1016/j.celrep.2017.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Motherhood is accompanied by new behaviors aimed at ensuring the wellbeing of the offspring. Olfaction plays a key role in guiding maternal behaviors during this transition. We studied functional changes in the main olfactory bulb (OB) of mothers in mice. Using in vivo two-photon calcium imaging, we studied the sensory representation of odors by mitral cells (MCs). We show that MC responses to monomolecular odors become sparser and weaker in mothers. In contrast, responses to biologically relevant odors are spared from sparsening or strengthen. MC responses to mixtures and to a range of concentrations suggest that these differences between odor responses cannot be accounted for by mixture suppressive effects or gain control mechanisms. In vitro whole-cell recordings show an increase in inhibitory synaptic drive onto MCs. The increase of inhibitory tone may contribute to the general decrease in responsiveness and concomitant enhanced representation of specific odors. MCs of mothers show sparser responses for pure odors MCs of mothers have stronger inhibitory drive onto MCs MCs of mothers show stronger responses to natural odors MC ensemble coding is improved for natural but not pure odors
Collapse
Affiliation(s)
- Amit Vinograd
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yael Fuchs-Shlomai
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Merav Stern
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Diptendu Mukherjee
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, USA
| | - Ami Citri
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ian Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
13
|
Tasaka GI, Guenthner CJ, Shalev A, Gilday O, Luo L, Mizrahi A. Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. Nat Commun 2018; 9:871. [PMID: 29491360 PMCID: PMC5830453 DOI: 10.1038/s41467-018-03183-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent Fos-CreERT2 driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.
Collapse
Affiliation(s)
- Gen-Ichi Tasaka
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.,Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Amos Shalev
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Omri Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. .,Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
14
|
Reshef R, Kudryavitskaya E, Shani-Narkiss H, Isaacson B, Rimmerman N, Mizrahi A, Yirmiya R. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. eLife 2017; 6. [PMID: 29251592 PMCID: PMC5734876 DOI: 10.7554/elife.30809] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Microglia play important roles in perinatal neuro- and synapto-genesis. To test the role of microglia in these processes during adulthood, we examined the effects of microglia depletion, via treatment of mice with the CSF-1 receptor antagonist PLX5622, and abrogated neuronal-microglial communication in CX3C receptor-1 deficient (Cx3cr1−/−) mice. Microglia depletion significantly lowered spine density in young (developing) but not mature adult-born-granule-cells (abGCs) in the olfactory bulb. Two-photon time-lapse imaging indicated that microglia depletion reduced spine formation and elimination. Functionally, odor-evoked responses of mitral cells, which are normally inhibited by abGCs, were increased in microglia-depleted mice. In Cx3cr1−/− mice, abGCs exhibited reduced spine density, dynamics and size, concomitantly with reduced contacts between Cx3cr1-deficient microglia and abGCs' dendritic shafts, along with increased proportion of microglia-contacted spines. Thus, during adult neurogenesis, microglia regulate the elimination (pruning), formation, and maintenance of synapses on newborn neurons, contributing to the functional integrity of the olfactory bulb circuitry.
Collapse
Affiliation(s)
- Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elena Kudryavitskaya
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haran Shani-Narkiss
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batya Isaacson
- Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
16
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Hardy D, Saghatelyan A. Different forms of structural plasticity in the adult olfactory bulb. NEUROGENESIS 2017; 4:e1301850. [PMID: 28596977 DOI: 10.1080/23262133.2017.1301850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/26/2022]
Abstract
The adult olfactory bulb (OB) continuously receives new interneurons that integrate into the functional neuronal network and that play an important role in odor information processing and olfactory behavior. Adult neuronal progenitors are derived from neural stem cells in the subventricular zone (SVZ) bordering the lateral ventricle. They migrate long distances along the rostral migratory stream (RMS) toward the OB where they differentiate into interneurons, mature, and establish synapses with tufted or mitral cells (MC), the principal neurons in the OB. The plasticity provided by both adult-born and pre-existing early-born neurons depends on the formation and pruning of new synaptic contacts that adapt the functioning of the bulbar network to changing environmental conditions. However, the formation of new synapses occurs over a long time scale (hours-days), whereas some changes in environmental conditions can occur more rapidly, requiring a much faster adjustment of neuronal networks. A new form of structural remodeling of adult-born, but not early-born, neurons was recently brought to light. This plasticity, which is based on the activity-dependent relocation of mature spines of GCs toward the dendrites of active principal cells, may allow a more rapid adjustment of the neuronal network in response to quick and persistent changes in sensory inputs. In this mini-review we discuss the different forms of structural plasticity displayed by adult-born and early-born neurons and the possibility that these different forms of structural remodeling may fulfill distinct roles in odor information processing.
Collapse
Affiliation(s)
- Delphine Hardy
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Armen Saghatelyan
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
18
|
Pereira M. Structural and Functional Plasticity in the Maternal Brain Circuitry. New Dir Child Adolesc Dev 2017; 2016:23-46. [PMID: 27589496 DOI: 10.1002/cad.20163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young.
Collapse
|
19
|
Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, Gerstner W, Haydon PG, Hübener M, Lee HK, Lisman JE, Rose T, Sengpiel F, Stellwagen D, Stryker MP, Turrigiano GG, van Rossum MC. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160158. [PMID: 28093552 PMCID: PMC5247590 DOI: 10.1098/rstb.2016.0158] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next provide a synopsis of the outstanding questions that emerged from the discussion at the end of the meeting and finally suggest potential directions of research that we believe are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Lu Chen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kevin Fox
- Division of Neuroscience, University of Cardiff, Cardiff, Wales, UK
| | - Wulfram Gerstner
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Mark Hübener
- Department of Cellular and Systems Neuroscience, Max Planck Institute of Neurobiology, Martinsried, Bayern, Germany
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - John E Lisman
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tobias Rose
- Department of Cellular and Systems Neuroscience, Max Planck Institute of Neurobiology, Martinsried, Bayern, Germany
| | - Frank Sengpiel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Division of Neuroscience, University of Cardiff, Cardiff, Wales, UK
| | - David Stellwagen
- Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Michael P Stryker
- Sandler Neurosciences Center, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
20
|
Belnoue L, Malvaut S, Ladevèze E, Abrous DN, Koehl M. Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress. Sci Rep 2016; 6:37615. [PMID: 27886228 PMCID: PMC5122868 DOI: 10.1038/srep37615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023] Open
Abstract
Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers' ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers.
Collapse
Affiliation(s)
- Laure Belnoue
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Sarah Malvaut
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Elodie Ladevèze
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Djoher Nora Abrous
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Muriel Koehl
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| |
Collapse
|
21
|
Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb. Nat Commun 2016; 7:12659. [PMID: 27578235 PMCID: PMC5013674 DOI: 10.1038/ncomms12659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023] Open
Abstract
Adult-born neurons adjust olfactory bulb (OB) network functioning in response to changing environmental conditions by the formation, retraction and/or stabilization of new synaptic contacts. While some changes in the odour environment are rapid, the synaptogenesis of adult-born neurons occurs over a longer time scale. It remains unknown how the bulbar network functions when rapid and persistent changes in environmental conditions occur but when new synapses have not been formed. Here we reveal a new form of structural remodelling where mature spines of adult-born but not early-born neurons relocate in an activity-dependent manner. Principal cell activity induces directional growth of spine head filopodia (SHF) followed by spine relocation. Principal cell-derived glutamate and BDNF regulate SHF motility and directional spine relocation, respectively; and spines with SHF are selectively preserved following sensory deprivation. Our three-dimensional model suggests that spine relocation allows fast reorganization of OB network with functional consequences for odour information processing. The mechanism by which adult-born neurons quickly adjust olfactory bulb network functioning is not understood. Here the authors describe a novel form of structural plasticity in which mature spines relocate toward active mitral cell dendrite along spine head filopodia via AMPA and BDNF mediated signalling.
Collapse
|
22
|
Abstract
Most organisms use their olfactory system to detect and analyze chemical cues from the external world to guide essential behaviors. From worms to vertebrates, chemicals are detected by odorant receptors expressed by olfactory sensory neurons, which in vertebrates send an axon to the primary processing center called the olfactory bulb (OB). Within the OB, sensory neurons form excitatory synapses with projection neurons and with inhibitory interneurons. Thus, because of complex synaptic interactions, the output of a given projection neuron is determined not only by the sensory input, but also by the activity of local inhibitory interneurons that are regenerated throughout life in the process of adult neurogenesis. Herein, we discuss how it is optimized and why.
Collapse
Affiliation(s)
- Pierre-Marie Lledo
- Pasteur Institute, the Laboratory for Perception and Memory, CNRS Unit Genes, Synapses & Cognition, UMR 3571, 75724 Paris Cedex 15, France
| | - Matt Valley
- Pasteur Institute, the Laboratory for Perception and Memory, CNRS Unit Genes, Synapses & Cognition, UMR 3571, 75724 Paris Cedex 15, France
| |
Collapse
|
23
|
Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb. Neuron 2016; 91:384-96. [PMID: 27373833 DOI: 10.1016/j.neuron.2016.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 11/23/2022]
Abstract
In the mammalian brain, the anatomical structure of neural circuits changes little during adulthood. As a result, adult learning and memory are thought to result from specific changes in synaptic strength. A possible exception is the olfactory bulb (OB), where activity guides interneuron turnover throughout adulthood. These adult-born granule cell (GC) interneurons form new GABAergic synapses that have little synaptic strength plasticity. In the face of persistent neuronal and synaptic turnover, how does the OB balance flexibility, as is required for adapting to changing sensory environments, with perceptual stability? Here we show that high dendritic spine turnover is a universal feature of GCs, regardless of their developmental origin and age. We find matching dynamics among postsynaptic sites on the principal neurons receiving the new synaptic inputs. We further demonstrate in silico that this coordinated structural plasticity is consistent with stable, yet flexible, decorrelated sensory representations. Together, our study reveals that persistent, coordinated synaptic structural plasticity between interneurons and principal neurons is a major mode of functional plasticity in the OB.
Collapse
|
24
|
Slattery DA, Hillerer KM. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications. Front Neuroendocrinol 2016; 41:114-28. [PMID: 26828151 DOI: 10.1016/j.yfrne.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring.
Collapse
Affiliation(s)
- David A Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
25
|
Leuner B, Sabihi S. The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Front Neuroendocrinol 2016; 41:99-113. [PMID: 26969795 PMCID: PMC4942360 DOI: 10.1016/j.yfrne.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
Abstract
The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed.
Collapse
Affiliation(s)
- Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA; The Ohio State University, Department of Neuroscience, Columbus, OH, USA; The Ohio State University, Behavioral Neuroendocrinology Group, Columbus, OH, USA.
| | - Sara Sabihi
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| |
Collapse
|
26
|
In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nat Commun 2015; 6:6349. [PMID: 25695931 DOI: 10.1038/ncomms7349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
Juxtaglomerular neurons (JGNs) of the mammalian olfactory bulb are generated throughout life. Their integration into the preexisting neural network, their differentiation and survival therein depend on sensory activity, but when and how these adult-born cells acquire responsiveness to sensory stimuli remains unknown. In vivo two-photon imaging of retrovirally labelled adult-born JGNs reveals that ~90% of the cells arrive at the glomerular layer after day post injection (DPI) 7. After arrival, adult-born JGNs are still migrating, but at DPI 9, 52% of them have odour-evoked Ca(2+) signals. Their odourant sensitivity closely resembles that of the parent glomerulus and surrounding JGNs, and their spontaneous and odour-evoked spiking is similar to that of their resident neighbours. Our data reveal a remarkably rapid functional integration of adult-born cells into the preexisting neural network. The mature pattern of odour-evoked responses of these cells strongly contrasts with their molecular phenotype, which is typical of immature, migrating neuroblasts.
Collapse
|
27
|
Corona R, Lévy F. Chemical olfactory signals and parenthood in mammals. Horm Behav 2015; 68:77-90. [PMID: 25038290 DOI: 10.1016/j.yhbeh.2014.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". In mammalian species, odor cues emitted by the newborn are essential to establish maternal behavior at parturition and coordinate early mother-infant interactions. Offspring odors become potent attractive stimuli at parturition promoting the contact with the young to ensure that normal maternal care develops. In some species odors provide a basis for individual recognition of the offspring and highly specialized neural mechanisms for learning the infant signals have evolved. Both the main and the accessory olfactory systems are involved in the onset of maternal care, but only the former contributes to individual odor discrimination of the young. Electrophysiological and neurochemical changes occur in the main olfactory bulb leading to a coding of the olfactory signature of the familiar young. Olfactory neurogenesis could also contribute to motherhood and associated learning. Parturition and interactions with the young influence neurogenesis and some evidence indicates a functional link between olfactory neurogenesis and maternal behavior. Although a simple compound has been found which regulates anogenital licking in the rat, studies identifying the chemical nature of these odors are lacking. Neonatal body odors seem to be particularly salient to human mothers who are able to identify their infant's odors. Recent studies have revealed some neural processing of these cues confirming the importance of mother-young chemical communication in our own species.
Collapse
Affiliation(s)
- Rebeca Corona
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| | - Frédéric Lévy
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France.
| |
Collapse
|
28
|
Brennan P, Keverne EB. Biological complexity and adaptability of simple mammalian olfactory memory systems. Neurosci Biobehav Rev 2014; 50:29-40. [PMID: 25451762 DOI: 10.1016/j.neubiorev.2014.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/20/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Chemosensory systems play vital roles in the lives of most mammals, including the detection and identification of predators, as well as sex and reproductive status and the identification of individual conspecifics. All of these capabilities require a process of recognition involving a combination of innate (kairomonal/pheromonal) and learned responses. Across very different phylogenies, the mechanisms for pheromonal and odour learning have much in common. They are frequently associated with plasticity of GABA-ergic feedback at the initial level of processing the chemosensory information, which enhances its pattern separation capability. Association of odourant features into an odour object primarily involves anterior piriform cortex for non-social odours. However, the medial amygdala appears to be involved in both the recognition of social odours and their association with chemosensory information sensed by the vomeronasal system. Unusually not only the sensory neurons themselves, but also the GABA-ergic interneurons in the olfactory bulb are continually being replaced, with implications for the induction and maintenance of learned chemosensory responses.
Collapse
Affiliation(s)
- P Brennan
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Abstract
Parental care, including feeding and protection of young, is essential for the survival as well as mental and physical well-being of the offspring. A large variety of parental behaviors has been described across species and sexes, raising fascinating questions about how animals identify the young and how brain circuits drive and modulate parental displays in males and females. Recent studies have begun to uncover a striking antagonistic interplay between brain systems underlying parental care and infant-directed aggression in both males and females, as well as a large range of intrinsic and environmentally driven neural modulation and plasticity. Improved understanding of the neural control of parental interactions in animals should provide novel insights into the complex issue of human parental care in both health and disease.
Collapse
Affiliation(s)
- Catherine Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Lauren A O'Connell
- FAS Center for System Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zheng Wu
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Sakamoto M, Kageyama R, Imayoshi I. The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci 2014; 8:121. [PMID: 24904263 PMCID: PMC4033306 DOI: 10.3389/fnins.2014.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/06/2014] [Indexed: 12/27/2022] Open
Abstract
The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.
Collapse
Affiliation(s)
- Masayuki Sakamoto
- Institute for Virus Research, Kyoto University Kyoto, Japan ; Kyoto University Graduate School of Biostudies Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University Kyoto, Japan ; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Kyoto, Japan
| | - Itaru Imayoshi
- Institute for Virus Research, Kyoto University Kyoto, Japan ; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan ; The Hakubi Center, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology Kyoto, Japan
| |
Collapse
|
31
|
The maternal brain: an organ with peripartal plasticity. Neural Plast 2014; 2014:574159. [PMID: 24883213 PMCID: PMC4026981 DOI: 10.1155/2014/574159] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 12/30/2022] Open
Abstract
The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation.
This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.
Collapse
|
32
|
Activity of the principal cells of the olfactory bulb promotes a structural dynamic on the distal dendrites of immature adult-born granule cells via activation of NMDA receptors. J Neurosci 2014; 34:1748-59. [PMID: 24478357 DOI: 10.1523/jneurosci.3013-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The adult olfactory bulb is continuously supplied with neuronal precursors that differentiate into granule and periglomerular cells. Little is known about the structural dynamic of adult-born granule cells (GCs) at their different maturational stages, the mechanisms controlling the integration of new neurons into the pre-existing neuronal circuitry, or the role of principal cell activity in these processes. We used two-photon time-lapse imaging to reveal a high level of filopodia formation and retraction on the distal dendrites of adult-born GCs at their early maturational stages. This dynamic decreased as the adult-born interneurons matured. Filopodia formation/retraction on the dendrites of adult-born GCs at the early maturational stages depended on the activation of NMDA receptors (NMDARs). The stimulation of mitral cells using a pattern that mimics activity of these principal neurons to odor presentation promotes the NMDAR-dependent filopodia dynamic of adult-born GCs during their early but not late maturational stages. Moreover, NMDA iontophoresis was sufficient to induce the formation of new filopodia on the distal dendrites of immature adult-born GCs. The maturation of adult-born interneurons was accompanied by a progressive hyperpolarization of the membrane potential and an increased Mg(2+) block of NMDARs. Decreasing the extracellular Mg(2+) concentration led to filopodia formation on the dendrites of mature adult-born GCs following NMDA iontophoresis. Our findings reveal an increased structural dynamic of adult-born GCs during the early stages of their integration into the mouse bulbar circuitry and highlight a critical period during which the principal cells' activity influences filopodia formation/retraction on the dendrites of interneurons.
Collapse
|
33
|
Brus M, Meurisse M, Keller M, Lévy F. Interactions with the young down-regulate adult olfactory neurogenesis and enhance the maturation of olfactory neuroblasts in sheep mothers. Front Behav Neurosci 2014; 8:53. [PMID: 24600367 PMCID: PMC3927075 DOI: 10.3389/fnbeh.2014.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/03/2014] [Indexed: 01/11/2023] Open
Abstract
New neurons are continuously added in the dentate gyrus (DG) and the olfactory bulb of mammalian brain. While numerous environmental factors controlling survival of newborn neurons have been extensively studied, regulation by social interactions is less documented. We addressed this question by investigating the influence of parturition and interactions with the young on neurogenesis in sheep mothers. Using Bromodeoxyuridine, a marker of cell division, in combination with markers of neuronal maturation, the percentage of neuroblasts and new mature neurons in the olfactory bulb and the DG was compared between groups of parturient ewes which could interact or not with their lamb, and virgins. In addition, a morphological analysis was performed by measuring the dendritic arbor of neuroblasts in both structures. We showed that the postpartum period was associated with a decrease in olfactory and hippocampal adult neurogenesis. In the olfactory bulb, the suppressive effect on neuroblasts was dependent on interactions with the young whereas in the DG the decrease in new mature neurons was associated with parturition. In addition, dendritic length and number of nodes of neuroblasts were significantly enhanced by interactions with the lamb in the olfactory bulb but not in the DG. Because interactions with the young involved learning of the olfactory signature of the lamb, we hypothesize that this learning is associated with a down-regulation in olfactory neurogenesis and an enhancement of olfactory neuroblast maturation. Our assumption is that fewer new neurons decrease cell competition in the olfactory bulb and enhance maturation of those new neurons selected to participate in the learning of the young odor.
Collapse
Affiliation(s)
- Maïna Brus
- INRA, UMR 85, Physiologie de la Reproduction et des Comportements Nouzilly, France ; CNRS, UMR 7247 Nouzilly, France ; Université François Rabelais Tours, France ; IFCE Nouzilly, France
| | - Maryse Meurisse
- INRA, UMR 85, Physiologie de la Reproduction et des Comportements Nouzilly, France ; CNRS, UMR 7247 Nouzilly, France ; Université François Rabelais Tours, France ; IFCE Nouzilly, France
| | - Matthieu Keller
- INRA, UMR 85, Physiologie de la Reproduction et des Comportements Nouzilly, France ; CNRS, UMR 7247 Nouzilly, France ; Université François Rabelais Tours, France ; IFCE Nouzilly, France
| | - Frédéric Lévy
- INRA, UMR 85, Physiologie de la Reproduction et des Comportements Nouzilly, France ; CNRS, UMR 7247 Nouzilly, France ; Université François Rabelais Tours, France ; IFCE Nouzilly, France
| |
Collapse
|
34
|
Abstract
The adult mammalian brain is continuously supplied with adult-born neurons in the olfactory bulb (OB) and hippocampus, where they are thought to be important for circuit coding and plasticity. However, direct evidence for the actual involvement of these neurons in neural processing is still lacking. We recorded the spiking activity of adult-born periglomerular neurons in the mouse OB in vivo using two-photon-targeted patch recordings. We show that odor responsiveness reaches a peak during neuronal development and then recedes at maturity. Sensory enrichment during development enhances the selectivity of adult-born neurons after maturation, without affecting neighboring resident neurons. Thus, in the OB circuit, adult-born neurons functionally integrate into the circuit, where they acquire distinct response profiles in an experience-dependent manner. The constant flow of these sensitive neurons into the circuit provides it with a mechanism of long-term plasticity, wherein new neurons mature to process odor information based on past demands.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Yoav Adam
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel.
| |
Collapse
|
35
|
Abstract
Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.
Collapse
Affiliation(s)
- Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
36
|
Konefal S, Elliot M, Crespi B. The adaptive significance of adult neurogenesis: an integrative approach. Front Neuroanat 2013; 7:21. [PMID: 23882188 PMCID: PMC3712125 DOI: 10.3389/fnana.2013.00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts.
Collapse
Affiliation(s)
- Sarah Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General HospitalMontreal, QC, Canada
| | - Mick Elliot
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|