1
|
Lin Y, Zhang Q, Tong W, Wang Y, Wu L, Xiao H, Tang X, Dai M, Ye Z, Chai R, Zhang S. Conditional Overexpression of Net1 Enhances the Trans-Differentiation of Lgr5 + Progenitors into Hair Cells in the Neonatal Mouse Cochlea. Cell Prolif 2025; 58:e13787. [PMID: 39675772 PMCID: PMC11969244 DOI: 10.1111/cpr.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Sensorineural hearing loss is mainly caused by damage to hair cells (HC), which cannot be regenerated spontaneously in adult mammals once damaged. Cochlear Lgr5+ progenitors are characterised by HC regeneration capacity in neonatal mice, and we previously screened several new genes that might induce HC regeneration from Lgr5+ progenitors. Net1, a guanine nucleotide exchange factor, is one of the screened new genes and is particularly active in cancer cells and is involved in cell proliferation and differentiation. Here, to explore in vivo roles of Net1 in HC regeneration, Net1 loxp/loxp mice were constructed and crossed with Lgr5 CreER/+ mice to conditionally overexpress (cOE) Net1 in cochlear Lgr5+ progenitors. We observed a large number of ectopic HCs in Lgr5 CreER/+ Net1 loxp/loxp mouse cochlea, which showed a dose-dependent effect. Moreover, the EdU assay was unable to detect any EdU+/Sox2+ supporting cells, while lineage tracing showed significantly more regenerated tdTomato+ HCs in Lgr5 CreER/+ Net1 loxp/loxp tdTomato mice, which indicated that Net1 cOE enhanced HC regeneration by inducing the direct trans-differentiation of Lgr5+ progenitors rather than mitotic HC regeneration. Additionally, qPCR results showed that the transcription factors related to HC regeneration, including Atoh1, Gfi1 and Pou4f3, were significantly upregulated and are probably the mechanism behind the HC regeneration induced by Net1. In conclusion, our study provides new evidence for the role of Net1 in enhancing HC regeneration in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Qiuyue Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Leilei Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijingChina
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
2
|
Cheng YF, Kempfle JS, Chiang H, Tani K, Wang Q, Chen SH, Lenz D, Chen WY, Wu W, Petrillo M, Edge ASB. Sox2 interacts with Atoh1 and Huwe1 loci to regulate Atoh1 transcription and stability during hair cell differentiation. PLoS Genet 2025; 21:e1011573. [PMID: 39883720 PMCID: PMC11813075 DOI: 10.1371/journal.pgen.1011573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 02/11/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Stem cell pluripotency gene Sox2 stimulates expression of proneural basic-helix-loop-helix transcription factor Atoh1. Sox2 is necessary for the development of cochlear hair cells and binds to the Atoh1 3' enhancer to stimulate Atoh1 expression. We show here that Sox2 deletion in late embryogenesis results in the formation of extra hair cells, in contrast to the absence of hair cell development obtained after Sox2 knockout early in gestation. Sox2 overexpression decreased the level of Atoh1 protein despite an increase in Atoh1 mRNA. Sox2 upregulated E3 ubiquitin ligase, Huwe1, by direct binding to the Huwe1 gene. By upregulating its cognate E3 ligase, Sox2 disrupts the positive feedback loop through which Atoh1 protein increases the expression of Atoh1. We conclude that Sox2 initiates expression, while also limiting continued activity of bHLH transcription factor, Atoh1, and this inhibition represents a new mechanism for regulating the activity of this powerful initiator of hair cell development.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Judith S. Kempfle
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Hao Chiang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Kohsuke Tani
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Quan Wang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Sheng-Hong Chen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- National Center for Theoretical Sciences, Physics Division, Taipei, Taiwan
| | - Danielle Lenz
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wenjin Wu
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Marco Petrillo
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Chen Y, Lee JH, Li J, Park S, Perez Flores MC, Peguero B, Kersigo J, Kang M, Choi J, Levine L, Gratton MA, Fritzsch B, Yamoah EN. Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.08.561387. [PMID: 37873357 PMCID: PMC10592694 DOI: 10.1101/2023.10.08.561387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hearing loss is the most common form of sensory deficit. It occurs predominantly due to hair cell (HC) loss. Mammalian HCs are terminally differentiated by birth, making HC loss challenging to replace. Here, we show the pharmacogenetic downregulation of Cldn9, a tight junction protein, generates robust supernumerary inner HCs (IHCs) in mice. The ectopic IHC shared functional and synaptic features akin to typical IHCs and were surprisingly and remarkably preserved for at least fifteen months >50% of the mouse's life cycle. In vivo, Cldn9 knockdown using shRNA on postnatal days (P) P2-7 yielded analogous functional ectopic IHCs that were equally durably conserved. The findings suggest that Cldn9 levels coordinate embryonic and postnatal HC differentiation, making it a viable target for altering IHC development pre- and post-terminal differentiation.
Collapse
Affiliation(s)
- Yingying Chen
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, IN, 46202, USA
| | - Jeong Han Lee
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Jin Li
- Department of Otolaryngology, University of Washington Seattle, WA, USA
| | - Seojin Park
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Maria C. Perez Flores
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Braulio Peguero
- Otolaryngology-Head, Neck Surgery, St. Louis University, St. Louis, Missouri 63108
| | | | - Mincheol Kang
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Jinsil Choi
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | | | | | | | - Ebenezer N. Yamoah
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| |
Collapse
|
4
|
Greenberg D, Rosenblum ND, Tonelli M. The multifaceted links between hearing loss and chronic kidney disease. Nat Rev Nephrol 2024; 20:295-312. [PMID: 38287134 DOI: 10.1038/s41581-024-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Hearing loss affects nearly 1.6 billion people and is the third-leading cause of disability worldwide. Chronic kidney disease (CKD) is also a common condition that is associated with adverse clinical outcomes and high health-care costs. From a developmental perspective, the structures responsible for hearing have a common morphogenetic origin with the kidney, and genetic abnormalities that cause familial forms of hearing loss can also lead to kidney disease. On a cellular level, normal kidney and cochlea function both depend on cilial activities at the apical surface, and kidney tubular cells and sensory epithelial cells of the inner ear use similar transport mechanisms to modify luminal fluid. The two organs also share the same collagen IV basement membrane network. Thus, strong developmental and physiological links exist between hearing and kidney function. These theoretical considerations are supported by epidemiological data demonstrating that CKD is associated with a graded and independent excess risk of sensorineural hearing loss. In addition to developmental and physiological links between kidney and cochlear function, hearing loss in patients with CKD may be driven by specific medications or treatments, including haemodialysis. The associations between these two common conditions are not commonly appreciated, yet have important implications for research and clinical practice.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Schilder AGM, Wolpert S, Saeed S, Middelink LM, Edge ASB, Blackshaw H, Pastiadis K, Bibas AG. A phase I/IIa safety and efficacy trial of intratympanic gamma-secretase inhibitor as a regenerative drug treatment for sensorineural hearing loss. Nat Commun 2024; 15:1896. [PMID: 38429256 PMCID: PMC10907343 DOI: 10.1038/s41467-024-45784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Inhibition of Notch signalling with a gamma-secretase inhibitor (GSI) induces mammalian hair cell regeneration and partial hearing restoration. In this proof-of-concept Phase I/IIa multiple-ascending dose open-label trial (ISRCTN59733689), adults with mild-moderate sensorineural hearing loss received 3 intratympanic injections of GSI LY3056480, in 1 ear over 2 weeks. Phase I primary outcome was safety and tolerability. Phase lla primary outcome was change from baseline to 12 weeks in average pure-tone air conduction threshold across 2,4,8 kHz. Secondary outcomes included this outcome at 6 weeks and change from baseline to 6 and 12 weeks in pure-tone thresholds at individual frequencies, speech reception thresholds (SRTs), Distortion Product Otoacoustic Emissions (DPOAE) amplitudes, Signal to Noise Ratios (SNRs) and distribution of categories normal, present-abnormal, absent and Hearing Handicap Inventory for Adults/Elderly (HHIA/E). In Phase I (N = 15, 1 site) there were no severe nor serious adverse events. In Phase IIa (N = 44, 3 sites) the average pure-tone threshold across 2,4,8 kHz did not change from baseline to 6 and 12 weeks (estimated change -0.87 dB; 95% CI -2.37 to 0.63; P = 0.252 and -0.46 dB; 95% CI -1.94 to 1.03; P = 0.545, respectively), nor did the means of secondary measures. DPOAE amplitudes, SNRs and distribution of categories did not change from baseline to 6 and 12 weeks, nor did SRTs and HHIA/E scores. Intratympanic delivery of LY3056480 is safe and well-tolerated; the trial's primary endpoint was not met.
Collapse
Affiliation(s)
- Anne G M Schilder
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
- Ear Institute, University College London, London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, London, UK
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Shakeel Saeed
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
- Ear Institute, University College London, London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, London, UK
| | | | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, USA
| | - Helen Blackshaw
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
- Ear Institute, University College London, London, UK
| | - Kostas Pastiadis
- 1st Department of Otolaryngology, Hippocration Hospital Athens, National & Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Bibas
- 1st Department of Otolaryngology, Hippocration Hospital Athens, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Qi J, Zhang L, Wang X, Chen X, Li Y, Wang T, Wu P, Chai R. Modeling, applications and challenges of inner ear organoid. SMART MEDICINE 2024; 3:e20230028. [PMID: 39188517 PMCID: PMC11235738 DOI: 10.1002/smmd.20230028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 08/28/2024]
Abstract
More than 6% of the world's population is suffering from hearing loss and balance disorders. The inner ear is the organ that senses sound and balance. Although inner ear disorders are common, there are limited ways to intervene and restore its sensory and balance functions. The development and establishment of biologically therapeutic interventions for auditory disorders require clarification of the basics of signaling pathways that control inner ear development and the establishment of endogenous or exogenous cell-based therapeutic methods. In vitro models of the inner ear, such as organoid systems, can help identify new protective or regenerative drugs, develop new gene therapies, and be considered as potential tools for future clinical applications. Advances in stem cell technology and organoid culture offer unique opportunities for modeling inner ear diseases and developing personalized therapies for hearing loss. Here, we review and discuss the mechanisms for the establishment and the potential applications of inner ear organoids.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xin Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yiyuan Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Peina Wu
- School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
7
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Huang J, Sun X, Wang H, Chen R, Yang Y, Hu J, Zhang Y, Gui F, Huang J, Yang L, Hong Y. Conditional overexpression of neuritin in supporting cells (SCs) mitigates hair cell (HC) damage and induces HC regeneration in the adult mouse cochlea after drug-induced ototoxicity. Hear Res 2022; 420:108515. [DOI: 10.1016/j.heares.2022.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
9
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Wang M, Xu L, Han Y, Wang X, Chen F, Lu J, Wang H, Liu W. Regulation of Spiral Ganglion Neuron Regeneration as a Therapeutic Strategy in Sensorineural Hearing Loss. Front Mol Neurosci 2022; 14:829564. [PMID: 35126054 PMCID: PMC8811300 DOI: 10.3389/fnmol.2021.829564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) are the primary neurons on the auditory conduction pathway that relay sound signals from the inner ear to the brainstem. However, because the SGNs lack the regeneration ability, degeneration and loss of SGNs cause irreversible sensorineural hearing loss (SNHL). Besides, the effectiveness of cochlear implant therapy, which is the major treatment of SNHL currently, relies on healthy and adequate numbers of intact SGNs. Therefore, it is of great clinical significance to explore how to regenerate the SGNs. In recent years, a number of researches have been performed to improve the SGNs regeneration strategy, and some of them have shown promising results, including the progress of SGN regeneration from exogenous stem cells transplantation and endogenous glial cells’ reprogramming. Yet, there are challenges faced in the effectiveness of SGNs regeneration, the maturation and function of newly generated neurons as well as auditory function recovery. In this review, we describe recent advances in researches in SGNs regeneration. In the coming years, regenerating SGNs in the cochleae should become one of the leading biological strategies to recover hearing loss.
Collapse
|
11
|
The crosstalk between the Notch, Wnt, and SHH signaling pathways in regulating the proliferation and regeneration of sensory progenitor cells in the mouse cochlea. Cell Tissue Res 2021; 386:281-296. [PMID: 34223978 PMCID: PMC8557196 DOI: 10.1007/s00441-021-03493-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/21/2021] [Indexed: 12/04/2022]
Abstract
Sensory hair cells (HCs) are highly susceptible to damage by noise, ototoxic drugs, and aging. Although HCs cannot be spontaneously regenerated in adult mammals, previous studies have shown that signaling pathways are involved in HC regeneration in the damaged mouse cochlea. Here, we used a Notch antagonist (DAPT), a Wnt agonist (QS11), and recombinant Sonic hedgehog (SHH) protein to investigate their concerted actions underlying HC regeneration in the mouse cochlea after neomycin-induced damage both in vivo and in vitro. With DAPT, the numbers of HCs increased, and supporting cell (SC) proliferation was seen in both the intact and damaged cochlear sensory epithelia, while these numbers were unchanged in the presence of QS11. When simultaneously treated with DAPT and QS11, the number of HCs increased dramatically, and much greater SC proliferation was seen in the cochlear epithelium. In transgenic mice with both Notch1 conditional knockout and β-catenin over-expression, cochlear SC proliferation and HC regeneration were more obvious than in either Notch1 knockout or β-catenin over-expressing mice separately. When cochleae were treated with DAPT, QS11, and SHH together, SC proliferation was even greater, and this proliferation was seen in both the HC region and the greater epithelial ridge. High-throughput RNA sequencing was used to identify the differentially expressed genes between all groups, and the results showed that the SHH and Wnt signaling pathways are involved in SC proliferation. Our study suggests that co-regulation of the Notch, Wnt, and SHH signaling pathways promotes extensive cell proliferation and regeneration in the mouse cochlea.
Collapse
|
12
|
Abdul-Aziz D, Hathiramani N, Phung L, Sykopetrites V, Edge ASB. HIC1 Represses Atoh1 Transcription and Hair Cell Differentiation in the Cochlea. Stem Cell Reports 2021; 16:797-809. [PMID: 33770497 PMCID: PMC8072069 DOI: 10.1016/j.stemcr.2021.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/23/2022] Open
Abstract
Across species, expression of the basic helix-loop-helix transcription factor ATOH1 promotes differentiation of cochlear supporting cells to sensory hair cells required for hearing. In mammals, this process is limited to development, whereas nonmammalian vertebrates can also regenerate hair cells after injury. The mechanistic basis for this difference is not fully understood. Hypermethylated in cancer 1 (HIC1) is a transcriptional repressor known to inhibit Atoh1 in the cerebellum. We therefore investigated its potential role in cochlear hair cell differentiation. We find that Hic1 is expressed throughout the postnatal murine cochlear sensory epithelium. In cochlear organoids, Hic1 knockdown induces Atoh1 expression and promotes hair cell differentiation, while Hic1 overexpression hinders differentiation. Wild-type HIC1, but not the DNA-binding mutant C521S, suppresses activity of the Atoh1 autoregulatory enhancer and blocks its responsiveness to β-catenin activation. Our findings reveal the importance of HIC1 repression of Atoh1 in the cochlea, which may be targeted to promote hair cell regeneration.
Collapse
Affiliation(s)
- Dunia Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | | | - Lauren Phung
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | - Vittoria Sykopetrites
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA; Università degli Studi di Milano, Milan, Italy
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
13
|
Toxic Effects of 3,3'-Iminodipropionitrile on Vestibular System in Adult C57BL/6J Mice In Vivo. Neural Plast 2020; 2020:1823454. [PMID: 32714382 PMCID: PMC7354661 DOI: 10.1155/2020/1823454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022] Open
Abstract
The utricle is one of the five sensory organs in the mammalian vestibular system, and while the utricle has a limited ability to repair itself, this is not sufficient for the recovery of vestibular function after hair cell (HC) loss induced by ototoxic drugs. In order to further explore the possible self-recovery mechanism of the adult mouse vestibular system, we established a reliable utricle epithelium injury model for studying the regeneration of HCs and examined the toxic effects of 3,3'-iminodiproprionitrile (IDPN) on the utricle in vivo in C57BL/6J mice, which is one of the most commonly used strains in inner ear research. This work focused on the epithelial cell loss, vestibular dysfunction, and spontaneous cell regeneration after IDPN administration. HC loss and supporting cell (SC) loss after IDPN treatment was dose-dependent and resulted in dysfunction of the vestibular system, as indicated by the swim test and the rotating vestibular ocular reflex (VOR) test. EdU-positive SCs were observed only in severely injured utricles wherein above 47% SCs were dead. No EdU-positive HCs were observed in either control or injured utricles. RT-qPCR showed transient upregulation of Hes5 and Hey1 and fluctuating upregulation of Axin2 and β-catenin after IDPN administration. We conclude that a single intraperitoneal injection of IDPN is a practical way to establish an injured utricle model in adult C57BL/6J mice in vivo. We observed activation of Notch and Wnt signaling during the limited spontaneous HC regeneration after vestibular sensory epithelium damage, and such signaling might act as the promoting factors for tissue self-repair in the inner ear.
Collapse
|
14
|
Wu X, Zou S, Wu F, He Z, Kong W. Role of microRNA in inner ear stem cells and related research progress. AMERICAN JOURNAL OF STEM CELLS 2020; 9:16-24. [PMID: 32419976 PMCID: PMC7218733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Deafness is one of the major global health problems that seriously affects the quality of human life. At present, there are no successful treatments for deafness caused by cochlear hair cell (HC) damage. The irreversibility of mammalian hearing impairment is that the inner ear's sensory epithelium cannot repair lost hair cells and neurons through spontaneous regeneration. The goal of stem cell therapy for sensorineural hearing loss is to reconstruct the damaged inner ear structure and achieve functional repair. microRNA (miRNA), as a class of highly conserved endogenous non-coding small RNAs, plays an important role in the development of cochlea and HCs. miRNA also participates in the regulation of stem cell proliferation and differentiation, and plays an important role in the process of regeneration of inner ear HCs, miRNA has a broad application prospect of clinical treatment of hearing loss, which is conducive to solving the medical problem of inner ear HC regeneration.
Collapse
Affiliation(s)
- Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Shengyu Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Fan Wu
- Otorhinolaryngology Department, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University107 West Yan Jiang Road, Guangzhou 510120, P. R. China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| |
Collapse
|
15
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
16
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Xia M, Ma J, Sun S, Li W, Li H. The biological strategies for hearing re-establishment based on the stem/progenitor cells. Neurosci Lett 2019; 711:134406. [PMID: 31377244 DOI: 10.1016/j.neulet.2019.134406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/18/2019] [Accepted: 07/27/2019] [Indexed: 01/04/2023]
Abstract
The cochlea is the essential organ for hearing and includes both auditory sensory hair cells and spiral ganglion neurons. The discovery of inner ear stem cell brings hope to the regeneration of hair cell and spiral ganglion neuron as well as the followed hearing re-establishment. Thus the investigation on characteristics of inner ear stem/progenitor cells and related regulating clue is important to make such regeneration a reality. In addition, attempts have also been made to transplant exogenous stem cells into the inner ear to restore hearing function. In this review, we describe recent advances in the characterization of mammalian inner ear progenitor/stem cells and the mechanisms of regulating their proliferation and differentiation, and summarize studies that have used exogenous stem cells to repair damaged hair cells and neurons in the inner ear.
Collapse
Affiliation(s)
- Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaoyao Ma
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China; Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Ocak E, Duman D, Tekin M. Genetic Causes of Inner Ear Anomalies: a Review from the Turkish Study Group for Inner Ear Anomalies. Balkan Med J 2019; 36:206-211. [PMID: 31131597 PMCID: PMC6636654 DOI: 10.4274/balkanmedj.galenos.2019.2019.4.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inner ear anomalies diagnosed using a radiological study are detected in almost 30% of cases with congenital or prelingual-onset sensorineural hearing loss. Inner ear anomalies can be isolated or occur along with a part of a syndrome involving other systems. Although astonishing progress has been made in research aimed at revealing the genetic causes of hearing loss in the past few decades, only a few genes have been linked to inner ear anomalies. The aim of this review is to discuss the known genetic causes of inner ear anomalies. Identifying the genetic causes of inner ear anomalies is important for guiding clinical care that includes empowered reproductive decisions provided to the affected individuals. Furthermore, understanding the molecular underpinnings of the development of the inner ear in humans is important to develop novel treatment strategies for people with hearing loss.
Collapse
Affiliation(s)
- Emre Ocak
- Department of Otolaryngology, Ankara University School of Medicine, Ankara, Turkey
| | - Duygu Duman
- Division of Genetics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey,Department of Audiology, Ankara University Faculty of Health Sciences, Ankara, Turkey
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
19
|
Zeng X, Kirkpatrick R, Hofmann G, Grillot D, Linhart V, Viviani F, Marino J, Boyer J, Graham TL, Lu Q, Wu Z, Benowitz A, Cousins R. Screen for modulators of atonal homolog 1 gene expression using notch pathway-relevant gene transcription based cellular assays. PLoS One 2018; 13:e0207140. [PMID: 30540745 PMCID: PMC6291236 DOI: 10.1371/journal.pone.0207140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Atonal homolog 1 (Atoh1) is a basic helix-loop-helix 9 (bHLH) transcription factor acting downstream of Notch and is required for the differentiation of sensory hair cells in the inner ear and the specification of secretory cells during the intestinal crypt cell regeneration. Motivated by the observations that the upregulation of Atoh1 gene expression, through genetic manipulation or pharmacological inhibition of Notch signaling (e.g. γ-secretase inhibitors, GSIs), induces ectopic hair cell growth in the cochlea of the inner ear and partially restores hearing after injuries in experimental models, we decided to identify small molecule modulators of the Notch-Atoh1 pathway, which could potentially regenerate hair cells. However, the lack of cellular models of the inner ear has precluded the screening and characterization of such modulators. Here we report using a colon cancer cell line LS-174T, which displays Notch inhibition-dependent Atoh1 expression as a surrogate cellular model to screen for inducers of Atoh1 expression. We designed an Atoh1 promoter-driven luciferase assay to screen a target-annotated library of ~6000 compounds. We further developed a medium throughput, real-time quantitative RT-PCR assay measuring the endogenous Atoh1 gene expression to confirm the hits and eliminate false positives from the reporter-based screen. This strategy allowed us to successfully recover GSIs of known chemotypes. This LS-174T cell-based assay directly measures Atoh1 gene expression induced through Notch-Hes1 inhibition, and therefore offers an opportunity to identify novel cellular modulators along the Notch-Atoh1 pathway.
Collapse
Affiliation(s)
- Xin Zeng
- R&D Target Sciences, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
- * E-mail: (XZ); (RC)
| | - Robert Kirkpatrick
- R&D Alternative Discovery and Development, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Glenn Hofmann
- R&D Platform Technology Sciences, Drug Design and Selection, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Didier Grillot
- R&D Flexible Discovery Unit, Villebon-sur-Yvette, Paris, France
| | - Valerie Linhart
- R&D Flexible Discovery Unit, Villebon-sur-Yvette, Paris, France
| | - Fabrice Viviani
- R&D Flexible Discovery Unit, Villebon-sur-Yvette, Paris, France
| | - Joseph Marino
- R&D Alternative Discovery and Development, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Joseph Boyer
- R&D Statistical sciences, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Taylor L. Graham
- R&D Target Sciences, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Quinn Lu
- R&D Target Sciences, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Zining Wu
- R&D Platform Technology Sciences, Drug Design and Selection, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Andrew Benowitz
- R&D Alternative Discovery and Development, GlaxoSmithKline, Upper Providence, Collegeville, United States of America
| | - Rick Cousins
- R&D Alternative Discovery and Development, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
- * E-mail: (XZ); (RC)
| |
Collapse
|
20
|
Samarajeewa A, Lenz DR, Xie L, Chiang H, Kirchner R, Mulvaney JF, Edge ASB, Dabdoub A. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development 2018; 145:dev.166579. [PMID: 30389848 PMCID: PMC6288390 DOI: 10.1242/dev.166579] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023]
Abstract
Lack of sensory hair cell (HC) regeneration in mammalian adults is a major contributor to hearing loss. In contrast, the neonatal mouse cochlea retains a transient capacity for regeneration, and forced Wnt activation in neonatal stages promotes supporting cell (SC) proliferation and induction of ectopic HCs. We currently know little about the temporal pattern and underlying mechanism of this age-dependent regenerative response. Using an in vitro model, we show that Wnt activation promotes SC proliferation following birth, but prior to postnatal day (P) 5. This age-dependent decline in proliferation occurs despite evidence that the Wnt pathway is postnatally active and can be further enhanced by Wnt stimulators. Using an in vivo mouse model and RNA sequencing, we show that proliferation in the early neonatal cochlea is correlated with a unique transcriptional response that diminishes with age. Furthermore, we find that augmenting Wnt signaling through the neonatal stages extends the window for HC induction in response to Notch signaling inhibition. Our results suggest that the downstream transcriptional response to Wnt activation, in part, underlies the regenerative capacity of the mammalian cochlea. Summary: Canonical Wnt activation in the mammalian cochlea elicits a unique, age-dependent transcriptional response, which in part regulates the regenerative capacity of supporting cells during cochlear maturation.
Collapse
Affiliation(s)
- Anshula Samarajeewa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A8, Canada
| | - Danielle R Lenz
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Lihong Xie
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto ON, M4N 3M5, Canada.,Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, China
| | - Hao Chiang
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joanna F Mulvaney
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto ON, M4N 3M5, Canada
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A8, Canada .,Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto ON, M4N 3M5, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto ON, M5G 2C4, Canada
| |
Collapse
|
21
|
Durruthy-Durruthy R, Sperry ED, Bowen ME, Attardi LD, Heller S, Martin DM. Single Cell Transcriptomics Reveal Abnormalities in Neurosensory Patterning of the Chd7 Mutant Mouse Ear. Front Genet 2018; 9:473. [PMID: 30459807 PMCID: PMC6232929 DOI: 10.3389/fgene.2018.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeling protein CHD7 is critical for proper formation of the mammalian inner ear. Humans with heterozygous pathogenic variants in CHD7 exhibit CHARGE syndrome, characterized by hearing loss and inner ear dysplasia, including abnormalities of the semicircular canals and Mondini malformations. Chd7Gt/+ heterozygous null mutant mice also exhibit dysplastic semicircular canals and hearing loss. Prior studies have demonstrated that reduced Chd7 dosage in the ear disrupts expression of genes involved in morphogenesis and neurogenesis, yet the relationships between these changes in gene expression and otic patterning are not well understood. Here, we sought to define roles for CHD7 in global regulation of gene expression and patterning in the developing mouse ear. Using single-cell multiplex qRT-PCR, we analyzed expression of 192 genes in FAC sorted cells from Pax2Cre;mT/mGFP wild type and Chd7Gt/+ mutant microdissected mouse otocysts. We found that Chd7 haploinsufficient otocysts exhibit a relative enrichment of cells adopting a neuroblast (vs. otic) transcriptional identity compared with wild type. Additionally, we uncovered disruptions in pro-sensory and pro-neurogenic gene expression with Chd7 loss, including genes encoding proteins that function in Notch signaling. Our results suggest that Chd7 is required for early cell fate decisions in the developing ear that involve highly specific aspects of otic patterning and differentiation.
Collapse
Affiliation(s)
- Robert Durruthy-Durruthy
- Departments of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Ethan D Sperry
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Stefan Heller
- Departments of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Donna M Martin
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nat Commun 2018; 9:4027. [PMID: 30279445 PMCID: PMC6168603 DOI: 10.1038/s41467-018-06334-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory hair cells located in the organ of Corti are essential for cochlear mechanosensation. Their loss is irreversible in humans resulting in permanent hearing loss. The development of therapeutic interventions for hearing loss requires fundamental knowledge about similarities and potential differences between animal models and human development as well as the establishment of human cell based-assays. Here we analyze gene and protein expression of the developing human inner ear in a temporal window spanning from week 8 to 12 post conception, when cochlear hair cells become specified. Utilizing surface markers for the cochlear prosensory domain, namely EPCAM and CD271, we purify postmitotic hair cell progenitors that, when placed in culture in three-dimensional organoids, regain proliferative potential and eventually differentiate to hair cell-like cells in vitro. These results provide a foundation for comparative studies with otic cells generated from human pluripotent stem cells and for establishing novel platforms for drug validation. Hearing requires mechanosensitive hair cells in the organ of Corti, which derive from progenitors of the cochlear duct. Here the authors examine human inner ear development by studying key developmental markers and describe organoid cultures from human cochlear duct progenitors for in vitro hair cell differentiation.
Collapse
|
23
|
Influence of 24-diamino-5-phenylthiazole on neomycin ototoxicity in cultured organ of Corti explants. Neuroreport 2018; 29:1011-1016. [PMID: 29889716 DOI: 10.1097/wnr.0000000000001064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hair cells do not undergo spontaneous regeneration when they are damaged in the mammalian organ of Corti, leading to irreversible hearing loss. Previous studies have shown that 24-diamino-5-phenylthiazole (DAPT), an inhibitor of Notch signaling, plays a major role in inner ear development. However, whether DAPT influences antibiotic-induced hair cell damage remains uncertain. The present study aimed to investigate whether DAPT exerts protective or regenerative effects on neomycin-damaged hair cells. A histological analysis was carried out to assess the number and morphological changes of hair cells in cultured organ of Corti explants. Our results showed that in-vitro treatment with DAPT induced extra hair cells, whereas no newly generated supporting cells were found. We also found that DAPT was effective for preventing hair cell loss when cotreatment with neomycin was performed, suggesting that DAPT exerted protective effects on neomycin ototoxicity. In addition, DAPT treatment for 2-4 days following neomycin damage induced supernumerary hair cells. These findings indicate that inhibition of Notch signaling is a possible strategy for the treatment of hair cell loss caused by aminoglycoside antibiotics.
Collapse
|
24
|
Lahlou H, Lopez-Juarez A, Fontbonne A, Nivet E, Zine A. Modeling human early otic sensory cell development with induced pluripotent stem cells. PLoS One 2018; 13:e0198954. [PMID: 29902227 PMCID: PMC6002076 DOI: 10.1371/journal.pone.0198954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
The inner ear represents a promising system to develop cell-based therapies from human induced pluripotent stem cells (hiPSCs). In the developing ear, Notch signaling plays multiple roles in otic region specification and for cell fate determination. Optimizing hiPSC induction for the generation of appropriate numbers of otic progenitors and derivatives, such as hair cells, may provide an unlimited supply of cells for research and cell-based therapy. In this study, we used monolayer cultures, otic-inducing agents, Notch modulation, and marker expression to track early and otic sensory lineages during hiPSC differentiation. Otic/placodal progenitors were derived from hiPSC cultures in medium supplemented with FGF3/FGF10 for 13 days. These progenitor cells were then treated for 7 days with retinoic acid (RA) and epidermal growth factor (EGF) or a Notch inhibitor. The differentiated cultures were analyzed in parallel by qPCR and immunocytochemistry. After the 13 day induction, hiPSC-derived cells displayed an upregulated expression of a panel of otic/placodal markers. Strikingly, a subset of these induced progenitor cells displayed key-otic sensory markers, the percentage of which was increased in cultures under Notch inhibition as compared to RA/EGF-treated cultures. Our results show that modulating Notch pathway during in vitro differentiation of hiPSC-derived otic/placodal progenitors is a valuable strategy to promote the expression of human otic sensory lineage genes.
Collapse
Affiliation(s)
- Hanae Lahlou
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | | | - Arnaud Fontbonne
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | - Emmanuel Nivet
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - Azel Zine
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
- Université de Montpellier, Faculté de Pharmacie, Montpellier, France
- * E-mail: ,
| |
Collapse
|
25
|
Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8137614. [PMID: 30009175 PMCID: PMC6020521 DOI: 10.1155/2018/8137614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells (HCs) or a damaged afferent nerve pathway to the auditory cortex. The most common option for the treatment of sensorineural hearing loss is hearing rehabilitation using hearing devices. Various kinds of hearing devices are available but, despite recent advancements, their perceived sound quality does not mimic that of the "naïve" cochlea. Damage to crucial cochlear structures is mostly irreversible and results in permanent hearing loss. Cochlear HC regeneration has long been an important goal in the field of hearing research. However, it remains challenging because, thus far, no medical treatment has successfully regenerated cochlear HCs. Recent advances in genetic modulation and developmental techniques have led to novel approaches to generating HCs or protecting against HC loss, to preserve hearing. In this review, we present and review the current status of two different approaches to restoring or protecting hearing, gene therapy, including the newly introduced CRISPR/Cas9 genome editing, and stem cell therapy, and suggest the future direction.
Collapse
Affiliation(s)
- Min Yong Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Chungnam, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Ni W, Zeng S, Li W, Chen Y, Zhang S, Tang M, Sun S, Chai R, Li H. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 2018; 7:66754-66768. [PMID: 27564256 PMCID: PMC5341835 DOI: 10.18632/oncotarget.11479] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022] Open
Abstract
Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells.
Collapse
Affiliation(s)
- Wenli Ni
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Shan Zeng
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Yan Chen
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shan Sun
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
27
|
Huang YB, Ma R, Yang JM, Han Z, Cong N, Gao Z, Ren D, Wang J, Chi FL. Cell proliferation during hair cell regeneration induced by Math 1 in vestibular epithelia in vitro. Neural Regen Res 2018; 13:497-501. [PMID: 29623936 PMCID: PMC5900514 DOI: 10.4103/1673-5374.228734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation. 5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation.
Collapse
Affiliation(s)
- Yi-Bo Huang
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Rui Ma
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Juan-Mei Yang
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Zhao Han
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Ning Cong
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Zhen Gao
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Dongdong Ren
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| | - Fang-Lu Chi
- Department of Otology and Skull Base Surgery, EYE & ENT Hospital of Fudan University; Shanghai Clinical Medical Center of Hearing Medicine; Key Laboratory of Hearing Medicine, Ministry of Health, Shanghai, China
| |
Collapse
|
28
|
McLean WJ, Yin X, Lu L, Lenz DR, McLean D, Langer R, Karp JM, Edge ASB. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep 2017; 18:1917-1929. [PMID: 28228258 DOI: 10.1016/j.celrep.2017.01.066] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Death of cochlear hair cells, which do not regenerate, is a cause of hearing loss in a high percentage of the population. Currently, no approach exists to obtain large numbers of cochlear hair cells. Here, using a small-molecule approach, we show significant expansion (>2,000-fold) of cochlear supporting cells expressing and maintaining Lgr5, an epithelial stem cell marker, in response to stimulation of Wnt signaling by a GSK3β inhibitor and transcriptional activation by a histone deacetylase inhibitor. The Lgr5-expressing cells differentiate into hair cells in high yield. From a single mouse cochlea, we obtained over 11,500 hair cells, compared to less than 200 in the absence of induction. The newly generated hair cells have bundles and molecular machinery for transduction, synapse formation, and specialized hair cell activity. Targeting supporting cells capable of proliferation and cochlear hair cell replacement could lead to the discovery of hearing loss treatments.
Collapse
Affiliation(s)
- Will J McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Xiaolei Yin
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Lin Lu
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Danielle R Lenz
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Dalton McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA.
| | - Jeffrey M Karp
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
30
|
Abstract
More than 80% of all cases of deafness are related to the death or degeneration of cochlear hair cells and the associated spiral ganglion neurons, and a lack of regeneration of these cells leads to permanent hearing loss. Therefore, the regeneration of lost hair cells is an important goal for the treatment of deafness. Atoh1 is a basic helix-loop-helix (bHLH) transcription factor that is critical in both the development and regeneration of cochlear hair cells. Atoh1 is transcriptionally regulated by several signaling pathways, including Notch and Wnt signalings. At the post-translational level, it is regulated through the ubiquitin-proteasome pathway. In vitro and in vivo studies have revealed that manipulation of these signaling pathways not only controls development, but also leads to the regeneration of cochlear hair cells after damage. Recent progress toward understanding the signaling networks involved in hair cell development and regeneration has led to the development of new strategies to replace lost hair cells. This review focuses on our current understanding of the signaling pathways that regulate Atoh1 in the cochlea.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan, China.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, China.,School of Medicine, Yang-Ming University, Taipei 112, Taiwan, China.,Department of Speech Language Pathology and Audiology, Taipei University of Nursing and Health Science, Taipei 112, Taiwan, China
| |
Collapse
|
31
|
Zhang S, Zhang Y, Yu P, Hu Y, Zhou H, Guo L, Xu X, Zhu X, Waqas M, Qi J, Zhang X, Liu Y, Chen F, Tang M, Qian X, Shi H, Gao X, Chai R. Characterization of Lgr5+ Progenitor Cell Transcriptomes after Neomycin Injury in the Neonatal Mouse Cochlea. Front Mol Neurosci 2017; 10:213. [PMID: 28725177 PMCID: PMC5496572 DOI: 10.3389/fnmol.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022] Open
Abstract
Lgr5+ supporting cells (SCs) are enriched hair cell (HC) progenitors in the cochlea. Both in vitro and in vivo studies have shown that HC injury can spontaneously activate Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC regeneration requires the understanding of the mechanism of HC regeneration, and this requires knowledge of the key genes involved in HC injury-induced self-repair responses that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected, we found that neomycin-treated Lgr5+ progenitors (NLPs) had significantly greater HC regeneration ability, and greater but not significant proliferation ability compared to untreated Lgr5+ progenitors (ULPs) in response to neomycin exposure. Next, we used RNA-seq analysis to determine the differences in the gene-expression profiles between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea. We first analyzed the genes that were enriched and differentially expressed in NLPs and ULPs and then analyzed the cell cycle genes, the transcription factors, and the signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+ progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16 cell-signaling pathway genes that were significantly upregulated or downregulated after neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to show the interaction and connections of genes that are differentially expressed in NLPs and ULPs. This study has identified the genes that might regulate the proliferation and HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the roles and mechanisms of these genes in the cochlea should be performed in the future to identify potential therapeutic targets for HC regeneration.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Pengfei Yu
- Bioinformatics Department, Admera Health LLCSouth Plainfield, NJ, United States
| | - Yao Hu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaochen Xu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaocheng Zhu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and TechnologyKarachi, Pakistan
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Yan Liu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong UniversityShanghai, China
| | - Xia Gao
- Research Institute of OtolaryngologyNanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|
32
|
Revuelta M, Santaolalla F, Arteaga O, Alvarez A, Sánchez-del-Rey A, Hilario E. Recent advances in cochlear hair cell regeneration-A promising opportunity for the treatment of age-related hearing loss. Ageing Res Rev 2017; 36:149-155. [PMID: 28414155 DOI: 10.1016/j.arr.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023]
Abstract
The objective of this paper is to review current information regarding the treatment of age-related hearing loss by using cochlear hair cell regeneration. Recent advances in the regeneration of the inner ear, including the usefulness of stem cells, are also presented. Based on the current literature, cochlear cell regeneration may well be possible in the short term and cochlear gene therapy may also be useful for the treatment of hearing loss associated with ageing. The present review provide further insight into the pathogenesis of Inner Ear senescence and aged-related hearing loss and facilitate the development of therapeutic strategies to repair hair cells damaged by ageing. More research will be needed in order to translate them into an effective treatment for deafness linked to cochlear senescence in humans.
Collapse
|
33
|
Roese-Koerner B, Stappert L, Brüstle O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. NEUROGENESIS 2017; 4:e1313647. [PMID: 28573150 PMCID: PMC5443189 DOI: 10.1080/23262133.2017.1313647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/27/2016] [Accepted: 01/18/2017] [Indexed: 02/04/2023]
Abstract
Canonical Notch signaling has diverse functions during nervous system development and is critical for neural progenitor self-renewal, timing of differentiation and specification of various cell fates. A key feature of Notch-mediated self-renewal is its fluctuating activity within the neural progenitor cell population and the oscillatory expression pattern of the Notch effector Hes1 and its target genes. A negative feedback loop between Hes1 and neurogenic microRNA miR-9 was found to be part of this oscillatory clock. In a recent study we discovered that miR-9 expression is further modulated by direct binding of the Notch intracellular domain/RBPj transcriptional complex to the miR-9_2 promoter. In turn, miR-9 not only targets Hes1 but also Notch2 to attenuate Notch signaling and promote neuronal differentiation. Here, we discuss how the two interwoven feedback loops may provide an additional fail-save mechanism to control proliferation and differentiation within the neural progenitor cell population. Furthermore, we explore potential implications of miR-9-mediated regulation of Notch/Hes1 signaling with regard to neural progenitor homeostasis, patterning, timing of differentiation and tumor formation.
Collapse
Affiliation(s)
- Beate Roese-Koerner
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Laura Stappert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| |
Collapse
|
34
|
Mittal R, Debs LH, Nguyen D, Patel AP, Grati M, Mittal J, Yan D, Eshraghi AA, Liu XZ. Signaling in the Auditory System: Implications in Hair Cell Regeneration and Hearing Function. J Cell Physiol 2017; 232:2710-2721. [DOI: 10.1002/jcp.25695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Adrien A. Eshraghi
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|
35
|
Gálvez H, Abelló G, Giraldez F. Signaling and Transcription Factors during Inner Ear Development: The Generation of Hair Cells and Otic Neurons. Front Cell Dev Biol 2017; 5:21. [PMID: 28393066 PMCID: PMC5364141 DOI: 10.3389/fcell.2017.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Integration between cell signals and bHLH transcription factors plays a prominent role during the development of hair cells of the inner ear. Hair cells are the sensory receptors of the inner ear, responsible for the mechano-transduction of sound waves into electrical signals. They derive from multipotent progenitors that reside in the otic placode. Progenitor commitment is the result of cell signaling from the surrounding tissues that result in the restricted expression of SoxB1 transcription factors, Sox2 and Sox3. In turn, they induce the expression of Neurog1 and Atoh1, two bHLH factors that specify neuronal and hair cell fates, respectively. Neuronal and hair cell development, however, do not occur simultaneously. Hair cell development is prevented during neurogenesis and prosensory stages, resulting in the delay of hair cell development with respect to neuron production. Negative interactions between Neurog1 and Atoh1, and of Atoh1 with other bHLH factors driven by Notch signaling, like Hey1 and Hes5, account for this delay. In summary, the regulation of Atoh1 and hair cell development relies on interactions between cell signaling and bHLH transcription factors that dictate cell fate and timing decisions during development. Interestingly, these mechanisms operate as well during hair cell regeneration after damage and during stem cell directed differentiation, making developmental studies instrumental for improving therapies for hearing impairment.
Collapse
Affiliation(s)
- Héctor Gálvez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Gina Abelló
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
36
|
Cheng YF, Tong M, Edge ASB. Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development. J Biol Chem 2016; 291:21096-21109. [PMID: 27542412 DOI: 10.1074/jbc.m116.722124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/22/2022] Open
Abstract
Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- From the Program in Speech and Hearing Bioscience and Technology, Harvard University/Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, the Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and the Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| | - Mingjie Tong
- the Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and the Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| | - Albert S B Edge
- From the Program in Speech and Hearing Bioscience and Technology, Harvard University/Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, the Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and the Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
37
|
Żak M, van Oort T, Hendriksen FG, Garcia MI, Vassart G, Grolman W. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Front Cell Neurosci 2016; 10:186. [PMID: 27559308 PMCID: PMC4988241 DOI: 10.3389/fncel.2016.00186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
In the developing cochlea, Wnt/β-catenin signaling positively regulates the proliferation of precursors and promotes the formation of hair cells by up-regulating Atoh1 expression. Not much, however, is known about the regulation of Wnt/β-catenin activity in the cochlea. In multiple tissues, the activity of Wnt/β-catenin signaling is modulated by an interaction between LGR receptors and their ligands from the R-spondin family. The deficiency in Lgr4 and Lgr5 genes leads to developmental malformations and lethality. Using the Lgr5 knock-in mouse line we show that loss of LGR5 function increases Wnt/β-catenin activity in the embryonic cochlea, resulting in a mild overproduction of inner and outer hair cells (OHC). Supernumerary hair cells are likely formed due to an up-regulation of the “pro-hair cell” transcription factors Atoh1, Nhlh1, and Pou4f3. Using a hypomorphic Lgr4 mouse model we showed a mild overproduction of OHCs in the heterozygous and homozygous Lgr4 mice. The loss of LGR4 function prolonged the proliferation in the mid-basal turn of E13 cochleae, causing an increase in the number of SOX2-positive precursor cells within the pro-sensory domain. The premature differentiation of hair cells progressed in a medial to lateral gradient in Lgr4 deficient embryos. No significant up-regulation of Atoh1 was observed following Lgr4 deletion. Altogether, our findings suggest that LGR4 and LGR5 play an important role in the regulation of hair cell differentiation in the embryonic cochlea.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head and Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Thijs van Oort
- Department of Otorhinolaryngology and Head and Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Ferry G Hendriksen
- Department of Otorhinolaryngology and Head and Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles Brussels, Belgium
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head and Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
38
|
Wu J, Li W, Lin C, Chen Y, Cheng C, Sun S, Tang M, Chai R, Li H. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 2016; 6:29418. [PMID: 27435629 PMCID: PMC4951696 DOI: 10.1038/srep29418] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Chen Lin
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Cheng Cheng
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Shan Sun
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Mingliang Tang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| |
Collapse
|
39
|
Teixeira FG, Panchalingam KM, Assunção-Silva R, Serra SC, Mendes-Pinheiro B, Patrício P, Jung S, Anjo SI, Manadas B, Pinto L, Sousa N, Behie LA, Salgado AJ. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation. Sci Rep 2016; 6:27791. [PMID: 27301770 PMCID: PMC4908397 DOI: 10.1038/srep27791] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.
Collapse
Affiliation(s)
- Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Krishna M Panchalingam
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Rita Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Sunghoon Jung
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Sandra I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,Biocant - Biotechnology Innovation Center, Cantanhede, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Leo A Behie
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| |
Collapse
|
40
|
Kempfle JS, Turban JL, Edge ASB. Sox2 in the differentiation of cochlear progenitor cells. Sci Rep 2016; 6:23293. [PMID: 26988140 PMCID: PMC4796895 DOI: 10.1038/srep23293] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3′ enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jack L Turban
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard &MIT, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Ren H, Guo W, Liu W, Gao W, Xie D, Yin T, Yang S, Ren J. DAPT mediates atoh1 expression to induce hair cell-like cells. Am J Transl Res 2016; 8:634-643. [PMID: 27158355 PMCID: PMC4846912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.
Collapse
Affiliation(s)
- Hongmiao Ren
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong, P.R. China
| | - Weiwei Guo
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General HospitalBeijing, China
| | - Wei Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, P.R. China
| | - Weiqiang Gao
- Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dinghua Xie
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, P.R. China
| | - Tuanfang Yin
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, P.R. China
| | - Shiming Yang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General HospitalBeijing, China
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, P.R. China
| |
Collapse
|
42
|
Żak M, Klis SFL, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47:247-58. [PMID: 26471908 DOI: 10.1016/j.ijdevneu.2015.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/21/2022] Open
Abstract
The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and Notch signalling pathways specify otic cells and refine the ventral boundary of the otic placode. Since both signalling pathways control events essential for the formation of sensory cells, such as proliferation and hair cell differentiation, these pathways could hold promise for the regeneration of hair cells in adult mammalian cochlea. Indeed, modulating either the Wnt or Notch pathways can trigger the regenerative potential of supporting cells. In the neonatal mouse cochlea, Notch-mediated regeneration of hair cells partially depends on Wnt signalling, which implies an interaction between the pathways. This review presents how the Wnt and Notch signalling pathways regulate the formation of sensory hair cells and how modulating their activity induces regenerative potential in the mammalian cochlea.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
43
|
Xia Y, Cao X, Xue X, Feng Z, Fan Q, Zheng Y, Feng C, Xu H, Xia C, Cheng Y. Development of hair cells in inner ear is associated with expression and promoter methylation of Notch-1 in postnatal mice. Int J Clin Exp Med 2015; 8:15542-15548. [PMID: 26629046 PMCID: PMC4658935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
The present study was designed to investigate the correlation among the number of hair cells in inner ear, Notch-1 gene expression levels and its methylation status of the promoter region in the postnatal mice. The hair cells in inner ear were collected from postnatal mice at day 0, 4, 8 and 16 and counted by immunofluorescence. Notch-1 mRNA expression were measured by real-time quantitative polymerize chain reaction (PCR). Methylation levels of CpG islands in Notch-1 promoters were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The results showed that the number of hair cells in the inner ear increased gradually after birth, which were positively correlated to Notch-1 mRNA expression. However, analysis on methylation of CpG sites in Notch-1 promoter showed that the methylation rates increased gradually after births, which were correlated with the decreased expression of Notch-1. Drug lesion induced the loss of hair cells, and stimulated the expression of Notch-1 mRNA expression, but didn't influence the methylation rates of Notch-1 promoter. We concluded that the Notch-1 mRNA expression level in inner ear tissues is correlated with the development of hair cells. CpG islands in Notch-1 promoter region manifest hypermethylation status when hair cells in inner ear are mature.
Collapse
Affiliation(s)
- Yanghui Xia
- Kunming Sanatorium of Chengdu Military RegionFengshan Door, Wenquan, Anning 650300, Yunnan, China
| | - Xianbao Cao
- Department of Head-Neck Otolaryngology of General Hospital of Chengdu Military Region212 Grand View Road, Kunming 650000, Yunnan, China
| | - Xijun Xue
- Department of Head-Neck Otolaryngology of General Hospital of Chengdu Military Region212 Grand View Road, Kunming 650000, Yunnan, China
| | - Ziliang Feng
- Disease prevention and Control Center of Chengdu Military Region168 Grand View Road, Kunming 650000, Yunnan, China
| | - Quanshui Fan
- Disease prevention and Control Center of Chengdu Military Region168 Grand View Road, Kunming 650000, Yunnan, China
| | - Ying Zheng
- Disease prevention and Control Center of Chengdu Military Region168 Grand View Road, Kunming 650000, Yunnan, China
| | - Chun Feng
- Department of Head-Neck Otolaryngology of General Hospital of Chengdu Military Region212 Grand View Road, Kunming 650000, Yunnan, China
| | - Hongmei Xu
- Department of Head-Neck Otolaryngology of General Hospital of Chengdu Military Region212 Grand View Road, Kunming 650000, Yunnan, China
| | - Chengqiong Xia
- Department of Head-Neck Otolaryngology of General Hospital of Chengdu Military Region212 Grand View Road, Kunming 650000, Yunnan, China
| | - Yingkun Cheng
- Department of Head-Neck Otolaryngology of General Hospital of Chengdu Military Region212 Grand View Road, Kunming 650000, Yunnan, China
| |
Collapse
|
44
|
Wang J, Zeng H, Li H, Zhang J, Wang S. Roles of sex-determining region Y-box 2 in cell pluripotency and tumor-related signaling pathways. Mol Clin Oncol 2015; 3:1203-1207. [PMID: 26807221 DOI: 10.3892/mco.2015.639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023] Open
Abstract
The sex-determining region Y-box 2 (SOX2) gene, a member of the Sry-like high-mobility group box (SOX) gene family, encodes the transcription factor Sox2, which significantly contributes to the regulation of cell pluripotency. Sox2 is closely associated with early embryonic development, neural differentiation and other biological processes. An inreasing number of recent studies suggest that Sox2 exerts a positive effect on malignant tumors. According to these results, Sox2 is expected to become a novel target for cancer therapy by unveiling the mechanism through which it affects the biological behavior of tumors. Therefore, it is crucial to elucidate the detailed association of Sox2 with malignant tumors. The aim of this study was to review the role of Sox2 in pluripotency maintenance, early embryonic development and neural differentiation, as well as investigate the detailed mechanism through which Sox2 regulates cancer stem cells and tumorigenesis.
Collapse
Affiliation(s)
- Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Huijuan Zeng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Juanjuan Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
45
|
Gu LT, Yang J, Su SZ, Liu WW, Shi ZG, Wang QR. Green Tea Polyphenols Protects Cochlear Hair Cells from Ototoxicity by Inhibiting Notch Signalling. Neurochem Res 2015; 40:1211-9. [PMID: 25896296 DOI: 10.1007/s11064-015-1584-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023]
Abstract
Notch signalling pathway plays an essential role in the development of cochlea, which inhibits the proliferation of hair cells. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea, which presents strong antioxidant activation and has been applied for anti-cancer and anti-inflammatory. In this study, we treated the cochlear explant cultures with EGCG and found that EGCG can protect cochlear hair cells from ototoxic drug gentamicin. We demonstrated that EGCG could down-regulate the expression of Notch signalling pathway target genes, such as Hes1, Hes5, Hey1 and Hey5. However, the Notch pathway ligands such as Delta1, Jag1 and Jag2 were not affected by EGCG. To further illustrate the mechanism of recover cochlear hair cells, we demonstrated that EGCG inhibited the activity of γ-secrectase to suppress Notch signalling pathway and promoted the proliferation and regeneration of hair cells in the damaged cochlea. Our results suggest for the first time the role of EGCG as an inhibitor of the Notch signalling pathway, and support its potential value in hearing-impaired recovery in clinical therapy.
Collapse
Affiliation(s)
- Lin-Tao Gu
- Department of Otolaryngology-Head and Neck Surgery, Qianfo Shan Hospital Affiliated to Shandong University, Jinan, 250014, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Lin J, Zhang X, Wu F, Lin W. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle. Front Cell Neurosci 2015; 9:113. [PMID: 25883551 PMCID: PMC4381628 DOI: 10.3389/fncel.2015.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 h neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals.
Collapse
Affiliation(s)
- Jinchao Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Xiaodong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Fengfang Wu
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Weinian Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| |
Collapse
|
47
|
Nakajima Y. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects. Congenit Anom (Kyoto) 2015; 55:17-25. [PMID: 25040109 DOI: 10.1111/cga.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/07/2014] [Indexed: 12/28/2022]
Abstract
The membranous labyrinth of the inner ear is a highly complex organ that detects sound and balance. Developmental defects in the inner ear cause congenital hearing loss and balance disorders. The membranous labyrinth consists of three semicircular ducts, the utricle, saccule, and endolymphatic ducts, and the cochlear duct. These complex structures develop from the simple otic placode, which is established in the cranial ectoderm adjacent to the neural crest at the level of the hindbrain at the early neurula stage. During development, the otic placode invaginates to form the otic vesicle, which subsequently gives rise to neurons for the vestibulocochlear ganglion, the non-sensory and sensory epithelia of the membranous labyrinth that includes three ampullary crests, two maculae, and the organ of Corti. Combined paracrine and autocrine signals including fibroblast growth factor, Wnt, retinoic acid, hedgehog, and bone morphogenetic protein regulate fate determination, axis formation, and morphogenesis in the developing inner ear. Juxtacrine signals mediated by Notch pathways play a role in establishing the sensory epithelium, which consists of mechanosensory hair cells and supporting cells. The highly differentiated organ of Corti, which consists of uniformly oriented inner/outer hair cells and specific supporting cells, develops during fetal development. Developmental alterations/arrest causes congenital malformations in the inner ear in a spatiotemporal-restricted manner. A clearer understanding of the mechanisms underlying inner ear development is important not only for the management of patients with congenital inner ear malformations, but also for the development of regenerative therapy for impaired function.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
48
|
Fujioka M, Okano H, Edge ASB. Manipulating cell fate in the cochlea: a feasible therapy for hearing loss. Trends Neurosci 2015; 38:139-44. [PMID: 25593106 DOI: 10.1016/j.tins.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
Abstract
Mammalian auditory hair cells do not spontaneously regenerate, unlike hair cells in lower vertebrates, including fish and birds. In mammals, hearing loss due to the loss of hair cells is permanent and intractable. Recent studies in the mouse have demonstrated spontaneous hair cell regeneration during a short postnatal period, but this regenerative capacity is lost in the adult cochlea. Reduced regeneration coincides with a transition that results in a decreased pool of progenitor cells in the cochlear sensory epithelium. Here, we review the signaling cascades involved in hair cell formation and morphogenesis of the organ of Corti in developing mammals, the changing status of progenitor cells in the cochlea, and the regeneration of auditory hair cells in adult mammals.
Collapse
Affiliation(s)
- Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Albert S B Edge
- Eaton-Peabody Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci U S A 2014; 112:166-71. [PMID: 25535395 DOI: 10.1073/pnas.1415901112] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activation of cochlear progenitor cells is a promising approach for hair cell (HC) regeneration and hearing recovery. The mechanisms underlying the initiation of proliferation of postnatal cochlear progenitor cells and their transdifferentiation to HCs remain to be determined. We show that Notch inhibition initiates proliferation of supporting cells (SCs) and mitotic regeneration of HCs in neonatal mouse cochlea in vivo and in vitro. Through lineage tracing, we identify that a majority of the proliferating SCs and mitotic-generated HCs induced by Notch inhibition are derived from the Wnt-responsive leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5(+)) progenitor cells. We demonstrate that Notch inhibition removes the brakes on the canonical Wnt signaling and promotes Lgr5(+) progenitor cells to mitotically generate new HCs. Our study reveals a new function of Notch signaling in limiting proliferation and regeneration potential of postnatal cochlear progenitor cells, and provides a new route to regenerate HCs from progenitor cells by interrupting the interaction between the Notch and Wnt pathways.
Collapse
|