1
|
Matsui S, Matsubayashi Y. An Activity-Based Proteomics with Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE) for Identifying Target Proteases in Arabidopsis Apoplastic Fluid. Bio Protoc 2025; 15:e5226. [PMID: 40084074 PMCID: PMC11896777 DOI: 10.21769/bioprotoc.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025] Open
Abstract
Plant proteases participate in a wide variety of biological processes, including development, growth, and defense. To date, numerous proteases have been functionally identified through genetic studies. However, redundancy among certain proteases can obscure their roles, as single-gene loss-of-function mutants often exhibit no discernible phenotype, limiting identification through genetic approaches. Here, we describe an efficient system for the identification of target proteases that cleave specific substrates in the Arabidopsis apoplastic fluid. The method involves using Arabidopsis-submerged culture medium, which contains apoplastic proteases, followed by native two-dimensional electrophoresis. Gel fractionation and an in-gel peptide cleavage assay with a fluorescence-quenching peptide substrate are then used to detect specific proteolytic activity. The active fraction is then subjected to mass spectrometry-based proteomics to identify the protease of interest. This method allows for the efficient and comprehensive identification of proteases with specific substrate cleavage activities in the apoplast. Key features • Targets Arabidopsis thaliana secreted protease but may be applicable to other plant species and intracellular proteases if protease-enriched samples are available. • The protocol involves an in-gel peptide cleavage assay of native two-dimensional gels diced with SAINOME plates, using a fluorescence-quenching substrate. • Facilitates the efficient identification of proteases with the desired activity from the entire sample, without restricting the analysis to a specific class of proteases.
Collapse
Affiliation(s)
- Sayaka Matsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Huang H, Liu J, Wu W, Lu J. VvprePIP, the Precursor of a PAMP-Induced Secreted Peptide, Stimulates Defence Responses and Improves Resistance to Plasmopora viticola in Grapevine. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39981652 DOI: 10.1111/pce.15439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
PRRs (Pattern-Recognition Receptors) distributed on plant cell membranes recognize not only PAMPs (Pathogen-Associated Molecular Patterns) released from the pathogens but also ligand peptides secreted from the plants, followed by eliciting defence responses. Here, we demonstrate that transcription of VvprePIP from grape (Vitis vinifera) encoding the precursor of a PIP (PAMP-Induced secreted Peptide) peptide is activated by Plasmopara viticola infection. Overexpression of VvprePIP increases the expression of defence-related genes and ROS (Reactive Oxygen Species) production, enhancing resistance to P. viticola in V. vinifera. A WRKY transcription factor VvWRKY8 interacts with VvprePIP promoter, upregulating its transcription directly. The immune reactions resulting from ectopic expression of VvprePIP are impaired in NbBAK1-silencing tobacco, implying BAK1 is necessary for the recognition between mature peptide VvPIP and its receptor. The conserved region at the C terminus of VvprePIP carries three typical SGPS-GH motifs, all of which contribute to provoke immune responses in plant. As synthetic VvPIP with a hydroxylated modification at the forth proline can mimic the functions of overexpression of the precursor, while synthetic unmodified VvPIP cannot, we reported that hydroxyproline is required for VvPIPs to serve as an active signal molecular. In conclusion, our studies reveal that VvprePIP plays a role in enhancing plant resistance to pathogens.
Collapse
Affiliation(s)
- Huimin Huang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Liu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Hemara LM, Chatterjee A, Yeh S, Chen RKY, Hilario E, Lievre LL, Crowhurst RN, Bohne D, Arshed S, Patterson HR, Barrett‐Manako K, Thomson S, Allan AC, Brendolise C, Chagné D, Templeton MD, Tahir J, Jayaraman J. Identification and Characterization of Innate Immunity in Actinidia melanandra in Response to Pseudomonas syringae pv. actinidiae. PLANT, CELL & ENVIRONMENT 2025; 48:1037-1050. [PMID: 39400369 PMCID: PMC11695773 DOI: 10.1111/pce.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has decimated kiwifruit orchards growing susceptible kiwifruit Actinidia chinensis varieties. Effector loss has occurred recently in Psa3 isolates from resistant kiwifruit germplasm, resulting in strains capable of partially overcoming resistance present in kiwiberry vines (Actinidia arguta, Actinidia polygama, and Actinidia melanandra). Diploid male A. melanandra recognises several effectors, sharing recognition of at least one avirulence effector (HopAW1a) with previously studied tetraploid kiwiberry vines. Sequencing and assembly of the A. melanandra genome enabled the characterisation of the transcriptomic response of this non-host to wild-type and genetic mutants of Psa3. A. melanandra appears to mount a classic effector-triggered immunity (ETI) response to wildtype Psa3 V-13, as expected. Surprisingly, the type III secretion (T3SS) system-lacking Psa3 V-13 ∆hrcC strain did not appear to trigger pattern-triggered immunity (PTI) despite lacking the ability to deliver immunity-suppressing effectors. Contrasting the A. melanandra responses to an effectorless Psa3 V-13 ∆33E strain and to Psa3 V-13 ∆hrcC suggested that PTI triggered by Psa3 V-13 was based on the recognition of the T3SS itself. The characterisation of both ETI and PTI branches of innate immunity responses within A. melanandra further enables breeding for durable resistance in future kiwifruit cultivars.
Collapse
Affiliation(s)
- Lauren M. Hemara
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Shin‐Mei Yeh
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Ronan K. Y. Chen
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Liam Le Lievre
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
| | - Ross N. Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Deborah Bohne
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Saadiah Arshed
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Haileigh R. Patterson
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Kelvina Barrett‐Manako
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln Research CentreNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Matthew D. Templeton
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research CentreNew Zealand
| |
Collapse
|
4
|
Basak S, Paul D, Das R, Dastidar SG, Kundu P. A novel acidic pH-dependent metacaspase governs defense-response against pathogens in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108850. [PMID: 38917737 DOI: 10.1016/j.plaphy.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
The importance of metacaspases in programmed cell death and tissue differentiation is known, but their significance in disease stress response, particularly in a crop plant, remained enigmatic. We show the tomato metacaspase expression landscape undergoes differential reprogramming during biotrophic and necrotrophic modes of pathogenesis; also, the metacaspase activity dynamics correlate with the disease progression. These stresses have contrasting effects on the expression pattern of SlMC8, a Type II metacaspase, indicating that SlMC8 is crucial for stress response. In accordance, selected biotic stress-related transcription factors repress SlMC8 promoter activity. Interestingly, SlMC8 exhibits maximum proteolysis at an acidic pH range of 5-6. Molecular dynamics simulation identified the low pH-driven protonation event of Glu246 as critical to stabilize the interaction of SlMC8 with its substrate. Mutagenesis of Glu246 to charge-neutral glutamine suppressed SlMC8's proteolytic activity, corroborating the importance of the amino acid in SlMC8 activation. The glutamic acid residue is found in an equivalent position in metacaspases having acidic pH dependence. SlMC8 overexpression leads to heightened ROS levels, cell death, and tolerance to PstDC3000, and SlMC8 repression reversed the phenomena. However, the overexpression of SlMC8 increases tomato susceptibility to necrotrophic Alternaria solani. We propose that SlMC8 activation due to concurrent changes in cellular pH during infection contributes to the basal resistance of the plant by promoting cell death at the site of infection, and the low pH dependence acts as a guard against unwarranted cell death. Our study confirms the essentiality of a low pH-driven Type II metacaspase in tomato biotic stress-response regulation.
Collapse
Affiliation(s)
- Shrabani Basak
- Department of Biological Sciences, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Debarati Paul
- Department of Biological Sciences, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Rohit Das
- Department of Biological Sciences, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Shubhra Ghosh Dastidar
- Department of Biological Sciences, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
5
|
Panda SK, Gupta D, Patel M, Vyver CVD, Koyama H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2071. [PMID: 39124190 PMCID: PMC11313751 DOI: 10.3390/plants13152071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Agriculture and changing environmental conditions are closely related, as weather changes could adversely affect living organisms or regions of crop cultivation. Changing environmental conditions trigger different abiotic stresses, which ultimately cause the accumulation of reactive oxygen species (ROS) in plants. Common ROS production sites are the chloroplast, endoplasmic reticulum, plasma membrane, mitochondria, peroxisomes, etc. The imbalance in ROS production and ROS detoxification in plant cells leads to oxidative damage to biomolecules such as lipids, nucleic acids, and proteins. At low concentrations, ROS initiates signaling events related to development and adaptations to abiotic stress in plants by inducing signal transduction pathways. In plants, a stress signal is perceived by various receptors that induce a signal transduction pathway that activates numerous signaling networks, which disrupt gene expression, impair the diversity of kinase/phosphatase signaling cascades that manage the stress response in the plant, and result in changes in physiological responses under various stresses. ROS production also regulates ABA-dependent and ABA-independent pathways to mitigate drought stress. This review focuses on the common subcellular location of manufacturing, complex signaling mechanisms, and networks of ROS, with an emphasis on cellular effects and enzymatic and non-enzymatic antioxidant scavenging mechanisms of ROS in Poaceae crops against drought stress and how the manipulation of ROS regulates stress tolerance in plants. Understanding ROS systems in plants could help to create innovative strategies to evolve paths of cell protection against the negative effects of excessive ROS in attempts to improve crop productivity in adverse environments.
Collapse
Affiliation(s)
- Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Mayur Patel
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Christell Van Der Vyver
- Institute of Plant Biotechnology, Stellenbosch University, Private Bag X1, Stellenbosch 7601, South Africa;
| | - Hiroyuki Koyama
- Faculty of Applied Biology, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Sun Y, Dong L, Kang L, Zhong W, Jackson D, Yang F. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. MOLECULAR PLANT 2024; 17:1019-1037. [PMID: 38877701 DOI: 10.1016/j.molp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Maize develops separate ear and tassel inflorescences with initially similar morphology but ultimately different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely unclear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel, we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. We identified 16 diverse gene clusters with differential spatiotemporal expression patterns and revealed biased regulation of redox, programmed cell death, and hormone signals during meristem differentiation between ear and tassel. Notably, based on their dynamic expression patterns, we revealed the roles of two RNA-binding proteins in regulating inflorescence meristem activity and axillary meristem formation. Moreover, using the transcriptional profiles of 53 910 single cells, we uncovered the cellular heterogeneity between ear and tassel florets. We found that multiple signals associated with either enhanced cell death or reduced growth are responsible for tassel pistil suppression, while part of the gibberellic acid signal may act non-cell-autonomously to regulate ear stamen arrest during sex differentiation. We further showed that the pistil-protection gene SILKLESS 1 (SK1) functions antagonistically to the known pistil-suppression genes through regulating common molecular pathways, and constructed a regulatory network for pistil-fate determination. Collectively, our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation for identifying new regulators and pathways for maize hybrid breeding and improvement.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
8
|
Luo S, Li A, Luo J, Liao G, Li X, Yao S, Wang A, Xiao D, He L, Zhan J. Mutator-like transposable element 9A interacts with metacaspase 1 and modulates the incidence of Al-induced programmed cell death in peanut. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2113-2126. [PMID: 38069635 DOI: 10.1093/jxb/erad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 03/28/2024]
Abstract
The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD. However, the mechanism by which AhMC1 is altered in the peanut response to Al stress remained unclear. Here, we show that a nuclear protein, mutator-like transposable element 9A (AhMULE9A), directly interacts with AhMC1 in vitro and in vivo. This interaction occurs in the nucleus in peanut and is weakened during Al stress. Furthermore, a conserved C2HC zinc finger domain of AhMULE9A (residues 735-751) was shown to be required for its interaction with AhMC1. Overexpression of AhMULE9A in Arabidopsis and peanut strongly inhibited root growth with a loss of root cell viability under Al treatment. Conversely, knock down of AhMULE9A in peanut significantly reduced Al uptake and Al inhibition of root growth, and alleviated the occurrence of typical hallmarks of Al-induced PCD. These findings provide novel insight into the regulation of Al-induced PCD.
Collapse
Affiliation(s)
- Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jin Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xia Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shaochang Yao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
9
|
Koenig M, Moser D, Leusner J, Depotter JRL, Doehlemann G, Misas Villamil J. Maize Phytocytokines Modulate Pro-Survival Host Responses and Pathogen Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:592-604. [PMID: 37102770 DOI: 10.1094/mpmi-01-23-0005-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytocytokines are signaling peptides that alert plant cells of danger. However, the downstream responses triggered by phytocytokines and their effect on plant survival are still largely unknown. Here, we have identified three biologically active maize orthologues of phytocytokines previously described in other plants. The maize phytocytokines show common features with microbe-associated molecular patterns (MAMPs), including the induction of immune-related genes and activation of papain-like cysteine proteases. In contrast to MAMPs, phytocytokines do not promote cell death in the presence of wounding. In infection assays with two fungal pathogens, we found that phytocytokines affect the development of disease symptoms, likely due to the activation of phytohormonal pathways. Collectively, our results show that phytocytokines and MAMPs trigger unique and antagonistic features of immunity. We propose a model in which phytocytokines activate immune responses partially similar to MAMPs but, in contrast to microbial signals, they act as danger and survival molecules to the surrounding cells. Future studies will focus on the components determining the divergence of signaling outputs upon phytocytokine activation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Maurice Koenig
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Moser
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Julian Leusner
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Johana Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Sobri ZM, Gallois P. Characterising the Gene Expression, Enzymatic Activity and Subcellular Localisation of Arabidopsis thaliana Metacaspase 5 ( AtMCA-IIb). BIOLOGY 2023; 12:1155. [PMID: 37759555 PMCID: PMC10525968 DOI: 10.3390/biology12091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Metacaspases are a class of proteases found in plants that have gained attention in recent years due to their involvement in programmed cell death (PCD) and other essential cellular processes. Although structurally homologous to caspases found in animals, metacaspases have distinct properties and functions. There are nine metacaspase genes in the Arabidopsis thaliana genome; these can be type I or type II, and working out the function of each member of the gene family is challenging. In this study, we report the characterisation of one Arabidopsis type II metacaspase, metacaspase-5 (AtMC5; AtMCA-IIb). We detected the expression of AtMC5 only under specific conditions with a strong upregulation by ER stress and oxidative stress at a narrow 6 h time point. Recombinant AtMC5 was successfully purified from E. coli, with the recombinant AtMC5 working optimally at pH 7, using an optimised reaction buffer containing 10 mM calcium chloride together with 15% sucrose. Like other metacaspases, AtMC5 cleaved after arginine residue and demonstrated a substrate preference towards VRPR. Additionally, AtMC5-RFP was shown to be localised in the cytosol and nucleus of transfected cells. We found no evidence of a strong link between AtMC5 and PCD, and the data provide additional insights into the function of metacaspases in plants and will aid in future research toward further understanding their mode of action.
Collapse
Affiliation(s)
- Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
11
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
12
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
13
|
Maekawa T, Kashkar H, Coll NS. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ 2023; 30:258-268. [PMID: 36195671 PMCID: PMC9950082 DOI: 10.1038/s41418-022-01060-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Host organisms utilise a range of genetically encoded cell death programmes in response to pathogen challenge. Host cell death can restrict pathogen proliferation by depleting their replicative niche and at the same time dying cells can alert neighbouring cells to prepare environmental conditions favouring future pathogen attacks. As expected, many pathogenic microbes have strategies to subvert host cell death to promote their virulence. The structural and lifestyle differences between animals and plants have been anticipated to shape very different host defence mechanisms. However, an emerging body of evidence indicates that several components of the host-pathogen interaction machinery are shared between the two major branches of eukaryotic life. Many proteins involved in cell death execution or cell death-associated immunity in plants and animals exert direct effects on endomembrane and loss of membrane integrity has been proposed to explain the potential immunogenicity of dying cells. In this review we aim to provide a comparative view on how cell death processes are linked to anti-microbial defence mechanisms in plants and animals and how pathogens interfere with these cell death programmes. In comparison to the several well-defined cell death programmes in animals, immunogenic cell death in plant defence is broadly defined as the hypersensitive response. Our comparative overview may help discerning whether specific types of immunogenic cell death exist in plants, and correspondingly, it may provide new hints for previously undiscovered cell death mechanism in animals.
Collapse
Affiliation(s)
- Takaki Maekawa
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany.
- CEPLAS Cluster of Excellence on Plant Sciences at the University of Cologne, Cologne, Germany.
| | - Hamid Kashkar
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, 50931, Cologne, Germany.
- Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain.
| |
Collapse
|
14
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
15
|
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. THE PLANT CELL 2022; 34:3718-3736. [PMID: 35861414 PMCID: PMC9516151 DOI: 10.1093/plcell/koac208] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube guidance regulates the growth direction and ovule targeting of pollen tubes in pistils, which is crucial for the completion of sexual reproduction in flowering plants. The Arabidopsis (Arabidopsis thaliana) pollen-specific receptor kinase (PRK) family members PRK3 and PRK6 are specifically tip-localized and essential for pollen tube growth and guidance. However, the mechanisms controlling the polar localization of PRKs at the pollen tube tip are unclear. The Arabidopsis P4-ATPase ALA3 helps establish the polar localization of apical phosphatidylserine (PS) in pollen tubes. Here, we discovered that loss of ALA3 function caused pollen tube defects in growth and ovule targeting and significantly affected the polar localization pattern of PRK3 and PRK6. Both PRK3 and PRK6 contain two polybasic clusters in the intracellular juxtamembrane domain, and they bound to PS in vitro. PRK3 and PRK6 with polybasic cluster mutations showed reduced or abolished binding to PS and altered polar localization patterns, and they failed to effectively complement the pollen tube-related phenotypes of prk mutants. These results suggest that ALA3 influences the precise localization of PRK3, PRK6, and other PRKs by regulating the distribution of PS, which plays a key role in regulating pollen tube growth and guidance.
Collapse
Affiliation(s)
| | | | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingxia Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
16
|
Basak S, Kundu P. Plant metacaspases: Decoding their dynamics in development and disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:50-63. [PMID: 35390704 DOI: 10.1016/j.plaphy.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Plant metacaspases were evolved in parallel to well-characterized animal counterpart caspases and retained the similar histidine-cysteine catalytic dyad, leading to functional congruity between these endopeptidases. Although phylogenetic relatedness of the catalytic domain and functional commonality placed these proteases in the caspase family, credible counterarguments predominantly about their distinct substrate specificity raised doubts about the classification. Metacaspases are involved in regulating the PCD during development as well as in senescence. Balancing acts of metacaspase activity also dictate cell fate during defense upon the perception of adverse environmental cues. Accordingly, their activity is tightly regulated, while suppressing spurious activation, by a combination of genetic and post-translational modifications. Structural insights from recent studies provided vital clues on the functionality. This comprehensive review aims to explore the origin of plant metacaspases, and their regulatory and functional diversity in different plants while discussing their analogy to mammalian caspases. Besides, we have presented various modern methodologies for analyzing the proteolytic activity of these indispensable molecules in the healthy or stressed life of a plant. The review would serve as a repository of all the available pieces of evidence indicating metacaspases as the key regulator of PCD across the plant kingdom and highlight the prospect of studying metacaspases for their inclusion in a crop improvement program.
Collapse
Affiliation(s)
- Shrabani Basak
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
17
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
18
|
Plant metacaspase: A case study of microcrystal structure determination and analysis. Methods Enzymol 2022; 676:103-131. [DOI: 10.1016/bs.mie.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
20
|
Kiyono H, Katano K, Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. PLANTS 2021; 10:plants10081652. [PMID: 34451697 PMCID: PMC8401158 DOI: 10.3390/plants10081652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022]
Abstract
To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.
Collapse
Affiliation(s)
- Hanako Kiyono
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
| | - Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Correspondence: ; Tel.: +81-3-3238-3884
| |
Collapse
|
21
|
Takeuchi H. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction. Peptides 2021; 142:170572. [PMID: 34004266 DOI: 10.1016/j.peptides.2021.170572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
In angiosperm sexual reproduction, the male pollen tube undergoes a series of interactions with female tissues. For efficient growth and precise guidance, the pollen tube perceives extracellular ligands. In recent decades, various types of secreted cysteine-rich peptides (CRPs) have been identified as peptide ligands that regulate diverse angiosperm reproduction processes, including pollen tube germination, growth, guidance, and rupture. Notably, in two distant core eudicot plants, multiple LURE-type CRPs were found to be secreted from egg-accompanying synergid cells, and these CRPs act as a cocktail of pollen tube attractants for the final step of pollen tube guidance. LURE-type CRPs have species-preferential activity, even among close relatives, and exhibit remarkably divergent molecular evolution with conserved cysteine frameworks, demonstrating that they play a key role in species recognition in pollen tube guidance. In this review, I focus on "reproductive CRPs," particularly LURE-type CRPs, which underlie common but species-specific mechanisms in angiosperm sexual reproduction, and discuss their action, functional regulation, receptors, and evolution.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
22
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
23
|
Stührwohldt N, Scholl S, Lang L, Katzenberger J, Schumacher K, Schaller A. The biogenesis of CLEL peptides involves several processing events in consecutive compartments of the secretory pathway. eLife 2020; 9:e55580. [PMID: 32297855 PMCID: PMC7162652 DOI: 10.7554/elife.55580] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/05/2020] [Indexed: 01/12/2023] Open
Abstract
Post-translationally modified peptides are involved in many aspects of plant growth and development. The maturation of these peptides from their larger precursors is still poorly understood. We show here that the biogenesis of CLEL6 and CLEL9 peptides in Arabidopsis thaliana requires a series of processing events in consecutive compartments of the secretory pathway. Following cleavage of the signal peptide upon entry into the endoplasmic reticulum (ER), the peptide precursors are processed in the cis-Golgi by the subtilase SBT6.1. SBT6.1-mediated cleavage within the variable domain allows for continued passage of the partially processed precursors through the secretory pathway, and for subsequent post-translational modifications including tyrosine sulfation and proline hydroxylation within, and proteolytic maturation after exit from the Golgi. Activation by subtilases including SBT3.8 in post-Golgi compartments depends on the N-terminal aspartate of the mature peptides. Our work highlights the complexity of post-translational precursor maturation allowing for stringent control of peptide biogenesis.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| | - Stefan Scholl
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Lisa Lang
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| | - Julia Katzenberger
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| |
Collapse
|
24
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
25
|
Frachon L, Mayjonade B, Bartoli C, Hautekèete NC, Roux F. Adaptation to Plant Communities across the Genome of Arabidopsis thaliana. Mol Biol Evol 2020; 36:1442-1456. [PMID: 30968130 DOI: 10.1093/molbev/msz078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Despite the importance of plant-plant interactions on plant community dynamics and crop yield, our understanding of the adaptive genetics underlying these interactions is still limited and deserves to be investigated in the context of complex and diffuse interactions occurring in plant assemblages. Here, based on 145 natural populations of Arabidopsis thaliana located in south-west of France and characterized for plant communities, we conducted a Genome-Environment Association analysis to finely map adaptive genomic regions of A. thaliana associated with plant community descriptors. To control for correlated abiotic environment effects, we also characterized the populations for a set of biologically meaningful climate and soil variables. A nonnegligible fraction of top single nucleotide polymorphisms was associated with both plant community descriptors and abiotic variables, highlighting the importance of considering the actual abiotic drivers of plant communities to disentangle genetic variants for biotic adaptation from genetic variants for abiotic adaptation. The adaptive loci associated with species abundance were highly dependent on the identity of the neighboring species suggesting a high degree of biotic specialization of A. thaliana to members of its plant interaction network. Moreover, the identification of adaptive loci associated with α-diversity and composition of plant communities supports the ability of A. thaliana to interact simultaneously with multiple plant neighbors, which in turn can help to understand the role of community-wide selection. Altogether, our study highlights that dissecting the genetic basis underlying plant-plant interactions at a regional scale while controlling for abiotic confounding factors can help understanding the adaptive mechanisms modulating natural plant assemblages.
Collapse
Affiliation(s)
- Léa Frachon
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.,Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy.,Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | | | - Claudia Bartoli
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.,IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | - Nina-Coralie Hautekèete
- Laboratoire Evolution, Ecologie et Paléontologie, CNRS UMR 8198, Université de Lille, Villeneuve d'Ascq, France
| | - Fabrice Roux
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
26
|
Zhang MJ, Zhang XS, Gao XQ. ROS in the Male-Female Interactions During Pollination: Function and Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:177. [PMID: 32180782 PMCID: PMC7059789 DOI: 10.3389/fpls.2020.00177] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 05/18/2023]
Abstract
The male-female interactions in pollination mediate pollen hydration and germination, pollen tube growth and fertilization. Reactive oxygen species (ROS) derived from both male and female tissues play regulatory roles for the communication between the pollen/pollen tube and female tissues at various stages, such as pollen hydration and germination on the stigma, pollen tube growth in the pistil and pollen tube reception in the female gametophyte. In this minireview, we primarily summarize the recent progress on the roles of ROS signaling in male-female interactions during pollination and discuss several ROS-regulated downstream signaling pathways for these interactions. Furthermore, several ROS-involved downstream pathways are outlined, such as Ca2+ signaling, cell wall cytomechanics, the redox modification of CRP, and cell PCD. At the end, we address the roles of ROS in pollen tube guidance and fertilization as future questions that merit study.
Collapse
|
27
|
Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, Bardetti P, Chiara M, Guazzotti A, Caporali E, Mendes MA, Colombo L, Kater MM. MADS-Box and bHLH Transcription Factors Coordinate Transmitting Tract Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:526. [PMID: 32435255 PMCID: PMC7219087 DOI: 10.3389/fpls.2020.00526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 05/14/2023]
Abstract
The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE3 the development of the transmitting tract. Combining the stk ces-4 mutants led to a reduction in ovule fertilization due to a defect in carpel fusion which, caused the formation of holes at the center of the septum where the transmitting tract differentiates. Combining the stk mutant with the bee1 bee3 ces-4 triple mutant showed an increased number of unfertilized ovules and septum defects. The transcriptome profile of this quadruple mutant revealed a small subset of differentially expressed genes which are mainly involved in cell death, extracellular matrix and cell wall development. Our data evidence a regulatory gene network controlling transmitting tract development regulated directly or indirectly by a STK-CES containing complex and reveal new insights in the regulation of transmitting tract development by bHLH and MADS-domain transcription factors.
Collapse
|
28
|
Li X, Zheng Z, Kong X, Xu J, Qiu L, Sun J, Reid D, Jin H, Andersen SU, Oldroyd GED, Stougaard J, Downie JA, Xie F. Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in Lotus japonicus. PLANT PHYSIOLOGY 2019; 181:804-816. [PMID: 31409696 PMCID: PMC6776872 DOI: 10.1104/pp.19.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/01/2019] [Indexed: 05/21/2023]
Abstract
During the legume-rhizobium symbiotic interaction, rhizobial invasion of legumes is primarily mediated by a plant-made tubular invagination called an infection thread (IT). Here, we identify a gene in Lotus japonicus encoding a Leu-rich repeat receptor-like kinase (LRR-RLK), RINRK1 (Rhizobial Infection Receptor-like Kinase1), that is induced by Nod factors (NFs) and is involved in IT formation but not nodule organogenesis. A paralog, RINRK2, plays a relatively minor role in infection. RINRK1 is required for full induction of early infection genes, including Nodule Inception (NIN), encoding an essential nodulation transcription factor. RINRK1 displayed an infection-specific expression pattern, and NIN bound to the RINRK1 promoter, inducing its expression. RINRK1 was found to be an atypical kinase localized to the plasma membrane and did not require kinase activity for rhizobial infection. We propose RINRK1 is an infection-specific RLK, which may specifically coordinate output from NF signaling or perceive an unknown signal required for rhizobial infection.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiqiong Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiao Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liping Qiu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jongho Sun
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
The Role of Peptide Signals Hidden in the Structure of Functional Proteins in Plant Immune Responses. Int J Mol Sci 2019; 20:ijms20184343. [PMID: 31491850 PMCID: PMC6770897 DOI: 10.3390/ijms20184343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023] Open
Abstract
Plants have evolved a sophisticated innate immune system to cope with a diverse range of phytopathogens and insect herbivores. Plasma-membrane-localized pattern recognition receptors (PRRs), such as receptor-like kinases (RLK), recognize special signals, pathogen- or damage-associated molecular patterns (PAMPs or DAMPs), and trigger immune responses. A growing body of evidence shows that many peptides hidden in both plant and pathogen functional protein sequences belong to the group of such immune signals. However, the origin, evolution, and release mechanisms of peptide sequences from functional and nonfunctional protein precursors, known as cryptic peptides, are largely unknown. Various special proteases, such as metacaspase or subtilisin-like proteases, are involved in the release of such peptides upon activation during defense responses. In this review, we discuss the roles of cryptic peptide sequences hidden in the structure of functional proteins in plant defense and plant-pathogen interactions.
Collapse
|
30
|
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao P, Gonçalves A, Pavie B, Boller T, Gevaert K, Van Breusegem F, Bartels S, Stael S. Damage on plants activates Ca 2+-dependent metacaspases for release of immunomodulatory peptides. Science 2019; 363:363/6433/eaar7486. [PMID: 30898901 DOI: 10.1126/science.aar7486] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/06/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Physical damage to cells leads to the release of immunomodulatory peptides to elicit a wound defense response in the surrounding tissue. In Arabidopsis thaliana, the plant elicitor peptide 1 (Pep1) is processed from its protein precursor, PRECURSOR OF PEP1 (PROPEP1). We demonstrate that upon damage, both at the tissue and single-cell levels, the cysteine protease METACASPASE4 (MC4) is instantly and spatiotemporally activated by binding high levels of Ca2+ and is necessary and sufficient for Pep1 maturation. Cytosol-localized PROPEP1 and MC4 react only after loss of plasma membrane integrity and prolonged extracellular Ca2+ entry. Our results reveal that a robust mechanism consisting of conserved molecular components links the intracellular and Ca2+-dependent activation of a specific cysteine protease with the maturation of damage-induced wound defense signals.
Collapse
Affiliation(s)
- Tim Hander
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
| | - Álvaro D Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robert P Kumpf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Hendrik Schatowitz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Panfeng Yao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- VIB BioImaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), 9052 Ghent, Belgium
| | - Benjamin Pavie
- VIB BioImaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), 9052 Ghent, Belgium
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sebastian Bartels
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland.,Department of Medicine II, University Hospital Freiburg-Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium. .,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| |
Collapse
|
31
|
Abstract
Plants protect their wounds against pathogen invasion by releasing damage signals that induce immune responses in neighboring cells. A new study shows that a conserved bioactive peptide is released from its cytoplasmic precursor upon wounding by a metacaspase that is activated by calcium influx into the injured cell.
Collapse
|
32
|
Escamez S, Stael S, Vainonen JP, Willems P, Jin H, Kimura S, Van Breusegem F, Gevaert K, Wrzaczek M, Tuominen H. Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2199-2210. [PMID: 30753577 PMCID: PMC6460963 DOI: 10.1093/jxb/erz021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/29/2019] [Indexed: 05/04/2023]
Abstract
During plant vascular development, xylem tracheary elements (TEs) form water-conducting, empty pipes by genetically regulated cell death. Cell death is prevented from spreading to non-TEs by unidentified intercellular mechanisms, downstream of METACASPASE9 (MC9)-mediated regulation of autophagy in TEs. Here, we identified differentially abundant extracellular peptides in vascular-differentiating wild-type and MC9-down-regulated Arabidopsis cell suspensions. A peptide named Kratos rescued the abnormally high ectopic non-TE death resulting from either MC9 knockout or TE-specific overexpression of the ATG5 autophagy protein during experimentally induced vascular differentiation in Arabidopsis cotyledons. Kratos also reduced cell death following mechanical damage and extracellular ROS production in Arabidopsis leaves. Stress-induced but not vascular non-TE cell death was enhanced by another identified peptide, named Bia. Bia is therefore reminiscent of several known plant cell death-inducing peptides acting as damage-associated molecular patterns. In contrast, Kratos plays a novel extracellular cell survival role in the context of development and during stress response.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Correspondence:
| | - Simon Stael
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patrick Willems
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Huiting Jin
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Stael S, Van Breusegem F, Gevaert K, Nowack MK. Plant proteases and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1991-1995. [PMID: 31222306 PMCID: PMC6460956 DOI: 10.1093/jxb/erz126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
34
|
Hou S, Liu Z, Shen H, Wu D. Damage-Associated Molecular Pattern-Triggered Immunity in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:646. [PMID: 31191574 PMCID: PMC6547358 DOI: 10.3389/fpls.2019.00646] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 05/14/2023]
Abstract
As a universal process in multicellular organisms, including animals and plants, cells usually emit danger signals when suffering from attacks of microbes and herbivores, or physical damage. These signals, termed as damage-associated molecular patterns (DAMPs), mainly include cell wall or extracellular protein fragments, peptides, nucleotides, and amino acids. Once exposed on cell surfaces, DAMPs are detected by plasma membrane-localized receptors of surrounding cells to regulate immune responses against the invading organisms and promote damage repair. DAMPs may also act as long-distance mobile signals to mediate systemic wounding responses. Generation, release, and perception of DAMPs, and signaling events downstream of DAMP perception are all rigorously modulated by plants. These processes integrate together to determine intricate mechanisms of DAMP-triggered immunity in plants. In this review, we present an extensive overview on our current understanding of DAMPs in plant immune system.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- *Correspondence: Shuguo Hou,
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Daoji Wu,
| |
Collapse
|
35
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
36
|
Marsollier AC, Ingram G. Getting physical: invasive growth events during plant development. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:8-17. [PMID: 29981931 DOI: 10.1016/j.pbi.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/10/2023]
Abstract
Plant cells are enclosed in cell walls that weld them together, meaning that cells rarely change neighbours. Nonetheless, invasive growth events play critical roles in plant development and are often key hubs for the integration of environmental and/or developmental signalling. Here we review cellular processes involved in three such events: lateral root emergence, pollen tube growth through stigma and style tissues, and embryo expansion through the endosperm (Figures 1-3). We consider processes such as regulation of water fluxes and cell turgor (driving growth), cell wall modifications (e.g. cell separation) and cell death (for creating space) within these three contexts with the aim of identifying key mechanisms implicated in providing a chemical and biophysical environments permitting invasive growth events.
Collapse
Affiliation(s)
- Anne-Charlotte Marsollier
- Université de Lyon, Laboratoire Reproduction et Développement des Plantes, ENS de lyon, CNRS, INRA, 46 Allée d'Italie, 69007 Lyon, France
| | - Gwyneth Ingram
- Université de Lyon, Laboratoire Reproduction et Développement des Plantes, ENS de lyon, CNRS, INRA, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
37
|
Fortin J, Lam E. Domain swap between two type-II metacaspases defines key elements for their biochemical properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:921-936. [PMID: 30176090 DOI: 10.1111/tpj.14079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Type-II metacaspases are conserved cysteine proteases found in eukaryotes with oxygenic photosynthesis, including green plants and some algae, such as Chlamydomonas and Volvox. Genetic and biochemical studies showed that some members in this protease family could be involved in oxidative stress-induced cell death in higher plants, but their regulatory mechanisms remain unclear. Biochemically, two distinct classes of type-II metacaspases are exemplified by AtMC4 and AtMC9 from Arabidopsis, with AtMC4 activation dependent on calcium under neutral pH, whereas AtMC9 is active only under mildly acidic pH, regardless of the availability of calcium. Here, we constructed all six possible combinations between the p20, linker, and p10 domains from AtMC4 and AtMC9. Our results show that calcium stimulation of AtMC4 activity is associated with essential amino acids located in its p20 domain. In contrast, the acidic pH optimum trait is lost from AtMC9 if one or two of its domains are replaced by that from AtMC4, suggesting that multiple interactions between domains in AtMC9 may be responsible for this property. Consistent with this, we found conserved 'signature' residues in each of the three domains that distinguish AtMC4- and AtMC9-like classes of metacaspases. Tracing the origin of the AtMC9 class, we found evidence for its appearance between lycophytes and gymnosperms, coincident with the evolution of more complex root archetypes in terrestrial plants. Our work suggests that the distinctive properties of the AtMC9-like protease could be associated with special cellular physiology in the roots of gymnosperms and angiosperms that are distinct from lycophytes.
Collapse
Affiliation(s)
- Jianqiao Fortin
- Department of Plant Biology, Rutgers,The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers,The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
38
|
Sierla M, Hõrak H, Overmyer K, Waszczak C, Yarmolinsky D, Maierhofer T, Vainonen JP, Salojärvi J, Denessiouk K, Laanemets K, Tõldsepp K, Vahisalu T, Gauthier A, Puukko T, Paulin L, Auvinen P, Geiger D, Hedrich R, Kollist H, Kangasjärvi J. The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. THE PLANT CELL 2018; 30:2813-2837. [PMID: 30361234 PMCID: PMC6305979 DOI: 10.1105/tpc.18.00441] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.
Collapse
Affiliation(s)
- Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, D-97082 Würzburg, Germany
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Adrien Gauthier
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, D-97082 Würzburg, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
39
|
Li B, Gao K, Ren H, Tang W. Molecular mechanisms governing plant responses to high temperatures. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:757-779. [PMID: 30030890 DOI: 10.1111/jipb.12701] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/20/2018] [Indexed: 05/20/2023]
Abstract
The increased prevalence of high temperatures (HTs) around the world is a major global concern, as they dramatically affect agronomic productivity. Upon HT exposure, plants sense the temperature change and initiate cellular and metabolic responses that enable them to adapt to their new environmental conditions. Decoding the mechanisms by which plants cope with HT will facilitate the development of molecular markers to enable the production of plants with improved thermotolerance. In recent decades, genetic, physiological, molecular, and biochemical studies have revealed a number of vital cellular components and processes involved in thermoresponsive growth and the acquisition of thermotolerance in plants. This review summarizes the major mechanisms involved in plant HT responses, with a special focus on recent discoveries related to plant thermosensing, heat stress signaling, and HT-regulated gene expression networks that promote plant adaptation to elevated environmental temperatures.
Collapse
Affiliation(s)
- Bingjie Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Kang Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
40
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
41
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
42
|
Lema Asqui S, Vercammen D, Serrano I, Valls M, Rivas S, Van Breusegem F, Conlon FL, Dangl JL, Coll NS. AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing in planta. THE NEW PHYTOLOGIST 2018; 218:1156-1166. [PMID: 28157265 DOI: 10.1111/nph.14446] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/16/2016] [Indexed: 05/10/2023]
Abstract
The hypersensitive response (HR) is a localized programmed cell death phenomenon that occurs in response to pathogen recognition at the site of attempted invasion. Despite more than a century of research on HR, little is known about how it is so tightly regulated and how it can be contained spatially to a few cells. AtMC1 is an Arabidopsis thaliana plant metacaspase that positively regulates the HR. Here, we used an unbiased approach to identify new AtMC1 regulators. Immunoaffinity purification of AtMC1-containing complexes led us to the identification of the protease inhibitor AtSerpin1. Our data clearly showed that coimmunoprecipitation between AtMC1 and AtSerpin1 and formation of a complex between them was lost upon mutation of the AtMC1 catalytic site, and that the AtMC1 prodomain was not required for the interaction. AtSerpin1 blocked AtMC1 self-processing and inhibited AtMC1-mediated cell death. Our results constitute an in vivo example of a Serpin acting as a suicide inhibitor in plants, reminiscent of the activity of animal or viral serpins on immune/cell death regulators, including caspase-1. These results indicate a conserved function of a protease inhibitor on cell death regulators from different kingdoms with unrelated modes of action (i.e. caspases vs metacaspases).
Collapse
Affiliation(s)
- Saul Lema Asqui
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Dominique Vercammen
- Department of Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
| | - Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marc Valls
- Department of Genetics, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, Catalonia, 08193, Spain
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Department of Medical Protein Research, VIB, Ghent, 9000, Belgium
- Department of Biochemistry, Ghent University, Ghent, 9000, Belgium
| | - Frank L Conlon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
43
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
44
|
Zhou Y, Hu L, Jiang L, Liu S. Genome-wide identification, characterization, and transcriptional analysis of the metacaspase gene family in cucumber (Cucumis sativus). Genome 2018; 61:187-194. [DOI: 10.1139/gen-2017-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metacaspase (MC), a family of caspase-like proteins, plays vital roles in regulating programmed cell death (PCD) during development and in response to stresses in plants. In this study, five MC genes (designated as CsMC1 to CsMC5) were identified in the cucumber (Cucumis sativus) genome. Sequence analysis revealed that CsMC1–CsMC3 belong to type I MC proteins, while CsMC4 and CsMC5 are type II MC proteins. Phylogenetic tree and conserved motif analysis of MC proteins indicated that these proteins can be classified into two groups, which are correlated with the types of these MC proteins. Gene structure analysis demonstrated that type I CsMC genes contain 4–7 introns, while all type II CsMC genes harbor one intron. In addition, many hormone-, stress-, and development-related cis-elements were identified in the promoter regions of CsMC genes. Expression analysis using RNA-seq data revealed that CsMC genes have distinct expression patterns in various tissues and developmental stages. qRT-PCR results showed that the transcript levels of CsMC genes could be regulated by various abiotic stresses such as NaCl, PEG, and cold. These results demonstrate that the cucumber MC gene family may function in tissue development and plant stress responses.
Collapse
Affiliation(s)
- Yong Zhou
- College of Science, Jiangxi Agricultural University, Nanchang Economic and Technological Development District, Nanchang, Jiangxi 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lunwei Jiang
- College of Science, Jiangxi Agricultural University, Nanchang Economic and Technological Development District, Nanchang, Jiangxi 330045, China
| | - Shiqiang Liu
- College of Science, Jiangxi Agricultural University, Nanchang Economic and Technological Development District, Nanchang, Jiangxi 330045, China
| |
Collapse
|
45
|
Indispensable Role of Proteases in Plant Innate Immunity. Int J Mol Sci 2018; 19:ijms19020629. [PMID: 29473858 PMCID: PMC5855851 DOI: 10.3390/ijms19020629] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.
Collapse
|
46
|
Bouvier LA, Niemirowicz GT, Salas‐Sarduy E, Cazzulo JJ, Alvarez VE. DNA
‐damage inducible protein 1 is a conserved metacaspase substrate that is cleaved and further destabilized in yeast under specific metabolic conditions. FEBS J 2018; 285:1097-1110. [DOI: 10.1111/febs.14390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Affiliation(s)
- León A. Bouvier
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Gabriela T. Niemirowicz
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Emir Salas‐Sarduy
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Vanina E. Alvarez
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
47
|
Muschietti JP, Wengier DL. How many receptor-like kinases are required to operate a pollen tube. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:73-82. [PMID: 28992536 DOI: 10.1016/j.pbi.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Successful fertilization depends on active molecular dialogues that the male gametophyte can establish with the pistil and the female gametophyte. Pollen grains and stigmas must recognize each other; pollen tubes need to identify the pistil tissues they will penetrate, follow positional cues to exit the transmitting tract and finally, locate the ovules. These molecular dialogues directly affect pollen tube growth rate and orientation. Receptor-like kinases (RLKs) are natural candidates for the perception and decoding of extracellular signals and their transduction to downstream cytoplasmic interactors. Here, we update knowledge regarding how RLKs are involved in pollen tube growth, cell wall integrity and guidance. In addition, we use public data to build a pollen tube RLK interactome that might help direct experiments to elucidate the function of pollen RLKs and their associated proteins.
Collapse
Affiliation(s)
- Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EGA, Argentina.
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
48
|
Duckney P, Deeks MJ, Dixon MR, Kroon J, Hawkins TJ, Hussey PJ. Actin-membrane interactions mediated by NETWORKED2 in Arabidopsis pollen tubes through associations with Pollen Receptor-Like Kinase 4 and 5. THE NEW PHYTOLOGIST 2017; 216:1170-1180. [PMID: 28940405 DOI: 10.1111/nph.14745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
During fertilization, Pollen Receptor-Like Kinases (PRKs) control pollen tube growth through the pistil in response to extracellular signals, and regulate the actin cytoskeleton at the tube apex to drive tip growth. We investigated a novel link between membrane-integral PRKs and the actin cytoskeleton, mediated through interactions between PRKs and NET2A; a pollen-specific member of the NETWORKED superfamily of actin-binding proteins. We characterize NET2A as a novel actin-associated protein that localizes to punctae at the plasma membrane of the pollen tube shank, which are stably associated with cortical longitudinal actin cables. NET2A was demonstrated to interact specifically with PRK4 and PRK5 in Nicotiana benthamiana transient expression assays, and associated at discreet foci at the shank membrane of Arabidopsis pollen tubes. Our data indicate that NET2A is recruited to the plasma membrane by PRK4 and PRK5, and that PRK kinase activity is important in facilitating its interaction with NET2A. We conclude that NET2A-PRK interactions mediate discreet sites of stable interactions between the cortical longitudinal actin cables and plasma membrane in the shank region of growing pollen tubes, which we have termed Actin-Membrane Contact Sites (AMCSs). Interactions between PRKs and NET2A implicate a role for NET2A in signal transduction to the actin cytoskeleton during fertilization.
Collapse
Affiliation(s)
- Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Michael J Deeks
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Martin R Dixon
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Johan Kroon
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
49
|
Stührwohldt N, Schardon K, Stintzi A, Schaller A. A Toolbox for the Analysis of Peptide Signal Biogenesis. MOLECULAR PLANT 2017; 10:1023-1025. [PMID: 28735025 DOI: 10.1016/j.molp.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Nils Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Katharina Schardon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
50
|
Moussu S, Doll NM, Chamot S, Brocard L, Creff A, Fourquin C, Widiez T, Nimchuk ZL, Ingram G. ZHOUPI and KERBEROS Mediate Embryo/Endosperm Separation by Promoting the Formation of an Extracuticular Sheath at the Embryo Surface. THE PLANT CELL 2017; 29:1642-1656. [PMID: 28696222 PMCID: PMC5559742 DOI: 10.1105/tpc.17.00016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/23/2017] [Accepted: 07/09/2017] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana seed development requires the concomitant development of two zygotic compartments, the embryo and the endosperm. Following fertilization, the endosperm expands and the embryo grows invasively through the endosperm, which breaks down. Here, we describe a structure we refer to as the embryo sheath that forms on the surface of the embryo as it starts to elongate. The sheath is deposited outside the embryonic cuticle and incorporates endosperm-derived material rich in extensin-like molecules. Sheath production is dependent upon the activity of ZHOUPI, an endosperm-specific transcription factor necessary for endosperm degradation, embryo growth, embryo-endosperm separation, and normal embryo cuticle formation. We show that the peptide KERBEROS, whose expression is ZHOUPI dependent, is necessary both for the formation of a normal embryo sheath and for embryo-endosperm separation. Finally, we show that the receptor-like kinases GSO1 and GSO2 are required for sheath deposition at the embryo surface but not for production of sheath material in the endosperm. We present a model in which sheath formation depends on the coordinated production of material in the endosperm and signaling within the embryo, highlighting the complex molecular interaction between these two tissues during early seed development.
Collapse
Affiliation(s)
- Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Lysiane Brocard
- Centre National de la Recherche Scientifique/University of Bordeaux, Plant Imaging Platform of Bordeaux Imaging Center, UMS 3420, F-33000 Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000 Bordeaux, France
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000 Bordeaux, France
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Chloé Fourquin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| |
Collapse
|