1
|
Paolì A, Sadeghi S, Battistello G, Carpanese V, Checchetto V. In silico pan-cancer analysis of VRAC subunits and their prognostic roles in human cancers. Sci Rep 2025; 15:12388. [PMID: 40216864 PMCID: PMC11992229 DOI: 10.1038/s41598-025-97078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The study focuses on the VRAC channel and its significant roles in cancer development. It addresses a research gap by conducting a pan-cancer analysis with multi-omics bioinformatics tools, integrating data from the Human Protein Atlas (HPA) and Genotype-Tissue Expression (GTEx) datasets to examine mRNA expression patterns of its Leucine Rich Repeat Containing 8 (LRRC8) subunits in various tissues and cancers. The study links variations in LRRC8s expression with patient outcomes and includes analyses of DNA and RNA methylation. The study reveals significant correlations between LRRC8s expression and immune cell infiltration, as well as a positive association with cancer-associated fibroblasts and key immune regulators such as major histocompatibility complex (MHCs) and chemokines. Furthermore, the research suggests that LRRC8s are involved in cancer-signalling pathways, which may offer new therapeutic targets. Additionally, a drug sensitivity analysis shows that LRRC8 subunits affect drug responses differently, supporting the use of personalized therapeutic strategies. In conclusion, the study emphasizes the significance of VRAC subunits in cancer biology and suggests their potential as biomarkers and targets in cancer immunotherapy and personalized medicine.
Collapse
Affiliation(s)
| | - Soha Sadeghi
- Department of Biology, University of Padova, Padua, Italy
| | | | | | | |
Collapse
|
2
|
Ogden J, Sellers R, Sahoo S, Oojageer A, Chaturvedi A, Dive C, Lopez-Garcia C. A human model to deconvolve genotype-phenotype causations in lung squamous cell carcinoma. Nat Commun 2025; 16:3215. [PMID: 40185723 PMCID: PMC11971459 DOI: 10.1038/s41467-025-58343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Tractable, patient-relevant models are needed to investigate cancer progression and heterogeneity. Here, we report an alternative in vitro model of lung squamous cell carcinoma (LUSC) using primary human bronchial epithelial cells (hBECs) from three healthy donors. The co-operation of ubiquitous alterations (TP53 and CDKN2A loss) and components of commonly deregulated pathways including squamous differentiation (SOX2), PI3K signalling (PTEN) and the oxidative stress response (KEAP1) is investigated by generating hBECs harbouring cumulative alterations. Our analyses confirms that SOX2-overexpression initiates early preinvasive LUSC stages, and co-operation with the oxidative stress response and PI3K pathways to drive more aggressive phenotypes, with expansion of cells expressing LUSC biomarkers and invasive properties. This cooperation is consistent with the classical LUSC subtype. Importantly, we connect pathway dysregulation with gene expression changes associated with cell-intrinsic processes and immunomodulation. Our approach constitutes a powerful system to model LUSC and unravel genotype-phenotype causations of clinical relevance.
Collapse
Affiliation(s)
- Julia Ogden
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Robert Sellers
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Sudhakar Sahoo
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Anthony Oojageer
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Anshuman Chaturvedi
- Department of Histopathology, The Christie Hospital, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
- Cancer Research UK, National Biomarker Centre, Wilmslow Road, M20 4BX, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Carlos Lopez-Garcia
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom.
- Cancer Research UK Lung Cancer Centre of Excellence, Wilmslow Road, M20 4BX, Manchester, United Kingdom.
| |
Collapse
|
3
|
Naffaa MM, Yin HH. Lateral Ventricular Neural Stem Cells Provide Negative Feedback to Circuit Activation Through GABAergic Signaling. Cells 2025; 14:426. [PMID: 40136675 PMCID: PMC11940892 DOI: 10.3390/cells14060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Recent studies have demonstrated that circuit activation in vivo can regulate proliferation of lateral ventricular neural stem cells (LV NSCs), although the underlying molecular and cellular mechanisms are not yet fully understood. Here, we investigated the role of GABAergic signaling in the interaction between LV NSCs and the anterior cingulate cortex-subependymal-choline acetyltransferase+ (ChAT+) neuron (ACC-subep-ChAT+) circuit. We found that monoamine oxidase B (MAOB), a key enzyme involved in gamma-aminobutyric acid (GABA) synthesis, is expressed in LV NSCs, and that activation of the ACC-subep-ChAT+ circuit can modulate MAOB activity. Additionally, LV NSCs express LRRC8D, a core component of volume-regulated anion channels, and GABA transporter-1 (GAT-1, SLC6A1). We show evidence that, through GABA signaling, LRRC8D and GAT-1 can provide a negative feedback signal to ChAT+ neurons, a key component of the ACC-subep-ChAT+ circuit that regulate proliferation of LV NSCs. These findings suggest that MAOB-driven GABA synthesis, LRRC8D-regulated chloride and GABA transport, and GAT-1-facilitated GABA reuptake can regulate neural circuit activation and influence NSC proliferation dynamics in the LV.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Costantino M, Mirra L, D'arcy P, Corno C, Carenini N, Corna E, Gubat J, Ciniselli CM, Pratesi P, Verderio P, Linder S, Beretta GL, Perego P. PSMC6 regulation of ovarian cancer cisplatin resistance unravels a new mode for proteasome targeting. Int J Biol Sci 2025; 21:2258-2274. [PMID: 40083690 PMCID: PMC11900818 DOI: 10.7150/ijbs.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Ovarian carcinoma has still a poor prognosis. CRISPR/Cas9 loss-of-function screen revealed a relationship between the PSMC6 proteasome subunit expression and survival of cisplatin-sensitive and -resistant ovarian carcinoma cells. Increased levels of PSMC6 were evidenced in multiple ovarian carcinoma cell lines versus normal cells. An association between PSMC6 levels and tumour stages as well as with a reduced progression-free survival was found. Since a PSMC6 interactome analysis evidenced limited knowledge on PSMC6 biology, mechanistic studies were carried out. PSMC6 knockdown indicated reduced cell growth and clonogenicity in cisplatin-sensitive IGROV-1 and -resistant IGROV-1/Pt1 cells, with a higher impact in resistant cells. This behaviour was accompanied by the accumulation of ubiquitinated proteins and down-regulation of ERK1/2 phosphorylation mediated by increased DUSP6. PSMC6 silencing increased sensitivity to cisplatin in IGROV-1/Pt1 cells as shown by clonogenic assay and 3D spheroids. Since PSMC6 knockdown did not change sensitivity to 20S and 19S proteasome inhibitors, we suggest a new mode of proteasome targeting by interference with a proteasome ATPase. Overall, a link between PSMC6 and ovarian carcinoma aggressiveness is envisioned, highlighting PSMC6 as a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Matteo Costantino
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Mirra
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Padraig D'arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Cristina Corno
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nives Carenini
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Corna
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Johannes Gubat
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Chiara M. Ciniselli
- Unit of Bioinformatics and Biostatistics, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - Pietro Pratesi
- Unit of Bioinformatics and Biostatistics, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni L. Beretta
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Perego
- Unit of Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
5
|
Karakas E, Strange K, Denton JS. Recent advances in structural characterization of volume-regulated anion channels (VRACs). J Physiol 2025. [PMID: 39977537 DOI: 10.1113/jp286189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Volume-regulated anion channels (VRACs) encoded by the LRRC8 gene family play essential roles in diverse and fundamentally important physiological processes in vertebrate cells. The recent determination of high-resolution cryo-electron microscopy (cryo-EM) structures of homomeric and heteromeric LRRC8 channel complexes has created unprecedented opportunities for understanding the molecular basis of VRAC structure, function and pharmacology. Native LRRC8 channels are obligatory heteromers composed of at least one LRRC8A subunit together with one of the other paralogues (LRRC8B-E) with an unknown stoichiometry. This heteromeric nature of endogenously expressed VRACs and the difficulties associated with controlling the composition and stoichiometry of heterologously expressed LRRC8 channels present considerable experimental challenges. The development of LRRC8 chimeras, which exhibit normal functional and regulatory properties and that can be expressed as homomeric channels, circumvents many of these challenges. In this review, we discuss the recent advances in the structural characterization of LRRC8 channels, with a primary focus on the cryo-EM structures of one such chimera, created by swapping 25 residues from LRRC8A subunits to LRRC8C subunits and termed as 8C-8A(IL125).
Collapse
Affiliation(s)
- Erkan Karakas
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, USA
- Center for Structural Biology, Vanderbilt University, Nashville, USA
| | - Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, USA
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, USA
| |
Collapse
|
6
|
Yao Y, Zhang J, Huang K, Peng Y, Cheng S, Liu S, Zhou T, Chen J, Li H, Zhao Y, Wang H. Engineered CAF-cancer cell hybrid membrane biomimetic dual-targeted integrated platform for multi-dimensional treatment of ovarian cancer. J Nanobiotechnology 2025; 23:83. [PMID: 39910555 PMCID: PMC11796236 DOI: 10.1186/s12951-025-03165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The efficacy of current therapies for ovarian cancer is limited due to the multilevel and complex tumor microenvironment (TME), which induces drug resistance and tumor progression in a single treatment regimen. Additionally, poor targeting and insufficient tissue penetration are important constraints in ovarian cancer treatment. RESULT We constructed PH20-overexpressing cancer-associated fibroblast (CAF)-cancer hybrid-cell membrane vesicles (PH20/CCM) for the dual-targeted delivery of carboplatin (CBP) and siRNA targeting p65 (sip65) loaded on the poly (dimethyl diallyl ammonium chloride) (PDDA)-modified MXene (PMXene), named PMXene@CBP-sip65 (PMCS). The nanoparticle PH20/CCM@PMCS could penetrate the extracellular matrix of tumor tissues and target both cancer cells and CAFs. After tumor cell internalization, these nanoparticles significantly inhibited cancer cell proliferation, generated reactive oxygen species, induced endoplasmic reticulum stress, and triggered immunogenic cell death. After CAF internalization, they inhibited pro-tumor factor release and activated immune effects, promoting immune system infiltration. In an experiment with ID8 homograft-carrying mice, PH20/CCM@PMCS significantly improved tumor inhibition and enhanced immune infiltration in tumor tissues. CONCLUSION These new therapeutic nanoparticles can simultaneously target tumor cells, CAFs, immune cells, and the extracellular matrix, thereby increasing treatment sensitivity and improving the TME. Therefore, these TME-regulating nanoparticles, combining specificity, efficiency, and effectiveness, provide new insights into ovarian cancer treatment.
Collapse
Affiliation(s)
- Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jiarui Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Kexin Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yingying Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuangge Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jinhua Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, 430022, China.
| |
Collapse
|
7
|
Shirbhate E, Singh V, Kore R, Koch B, Veerasamy R, Tiwari AK, Rajak H. Synergistic strategies: histone deacetylase inhibitors and platinum-based drugs in cancer therapy. Expert Rev Anticancer Ther 2025; 25:121-141. [PMID: 39873641 DOI: 10.1080/14737140.2025.2458156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential. AREAS COVERED The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.gov to explore publications on HDAC inhibitors, platinum drugs, and combination cancer therapies, revealing preliminary evidence of innovative treatment strategies involving HDAC inhibitors and platinum chemotherapeutics. Several new platinum (IV) complexes, with HDAC inhibitory moieties and better cytotoxicity profiles than conventional platinum drugs, are also reviewed here. EXPERT OPINION The above combination has great potential in cancer treatment, however managing toxicity, dosage regimens, and patient selection biomarkers are problematic. More selective HDAC inhibitors and innovative delivery techniques are potential areas for future research. An adaptation toward changing cancer therapeutic landscapes, highlights combining HDAC inhibitors with platinum-based medicines serves as a new concept for personalized medicine, however, a deeper research is still needed at this time.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Biplab Koch
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | - Amit Kumar Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| |
Collapse
|
8
|
Furuya K, Hirata H, Kobayashi T, Ishiguro H, Sokabe M. Volume-regulated anion channels conduct ATP in undifferentiated mammary cells and promote tumorigenesis in xenograft nude mouse. Front Cell Dev Biol 2025; 12:1519642. [PMID: 39882260 PMCID: PMC11774906 DOI: 10.3389/fcell.2024.1519642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells. In breast cell lines, ATP was released with a slowly rising diffuse pattern, whereas in primary cultured cells, ATP was intermittently released with transient-sharp peaks. The diffuse ATP release pattern changed to a transient-sharp pattern by cholera toxin treatment and the reverse change was induced by transforming growth factor (TGF) β treatment. DCPIB, an inhibitor of volume-regulated anion channels (VRACs), suppressed the diffuse pattern. The inflammatory mediator sphingosine-1-phosphate (S1P) induced a diffuse ATP release pattern isovolumetrically. Knockdown of the A isoform of leucine-rich repeat-containing protein 8 (LRRC8A), the essential molecular entity of VRACs, using shRNA suppressed the diffuse pattern. In the nude mouse xenograft model, LRRC8A knockdown suppressed the tumorigenesis of subcutaneously implanted breast cancer cells. These results suggest that abundantly expressed VRACs are a conduit of ATP release in undifferentiated cells, including cancer cells.
Collapse
Affiliation(s)
- Kishio Furuya
- Department Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Information Systems Labs, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, Japan
| | - Takeshi Kobayashi
- Department Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Information Systems Labs, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, Japan
| |
Collapse
|
9
|
Shi Q, Yang Z, Yang H, Xu L, Xia J, Gu J, Chen M, Wang Y, Zhao X, Liao Z, Mou Y, Gu X, Xie T, Sui X. Targeting ion channels: innovative approaches to combat cancer drug resistance. Theranostics 2025; 15:521-545. [PMID: 39744692 PMCID: PMC11671388 DOI: 10.7150/thno.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na+) and potassium ion (K+) channels is significantly correlated with the sensitivity of chemotherapy drugs. The endogenous calcium (Ca2+) channels contribute to the acquired resistance of osimertinib in epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer cell lines. Ferrous ions (Fe2+) enhance the sensitivity of breast cancer cells to doxorubicin treatment. Preclinical models have also demonstrated the effect of specific ion channel blockers or modulators on anticancer drug resistance. This review describes the current understanding about the interaction between ion channels and the therapeutic efficacy of anticancer drugs. Then, the therapeutic potential of ion channel blockers or modulators in enhancing the sensitivity or overcoming the resistance of cancer cells to anticancer therapies is discussed. Targeting ion channels will hopefully offer a novel and promising strategy for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Qian Shi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zijing Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huan Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lihui Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengting Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohong Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zehua Liao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical University, Hangzhou, Zhejiang, China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Quinodoz M, Rutz S, Peter V, Garavelli L, Innes AM, Lehmann EF, Kellenberger S, Peng Z, Barone A, Campos-Xavier B, Unger S, Rivolta C, Dutzler R, Superti-Furga A. De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder. EMBO J 2025; 44:413-436. [PMID: 39623139 PMCID: PMC11729881 DOI: 10.1038/s44318-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Volume-regulated anion channels (VRACs) are multimeric proteins composed of different paralogs of the LRRC8 family. They are activated in response to hypotonic swelling, but little is known about their specific functions. We studied two human individuals with the same congenital syndrome affecting blood vessels, brain, eyes, and bones. The LRRC8C gene harbored de novo variants in both patients, located in a region of the gene encoding the boundary between the pore and a cytoplasmic domain, which is depleted of sequence variations in control subjects. When studied by cryo-EM, both LRRC8C mutant proteins assembled as their wild-type counterparts, but showed increased flexibility, suggesting a destabilization of subunit interactions. When co-expressed with the obligatory LRRC8A subunit, the mutants exhibited enhanced activation, resulting in channel activity even at isotonic conditions in which wild-type channels are closed. We conclude that structural perturbations of LRRC8C impair channel gating and constitute the mechanistic basis of the dominant gain-of-function effect of these pathogenic variants. The pleiotropic phenotype of this novel clinical entity associated with monoallelic LRRC8C variants indicates the fundamental roles of VRACs in different tissues and organs.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sonja Rutz
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Virginie Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123, Reggio Emilia, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T3B 6A8, Canada
| | - Elena F Lehmann
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Stephan Kellenberger
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Zhong Peng
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Angelica Barone
- Pediatric Onco-Hematology Unit, Children's Hospital, Parma University Hospital, Parma, Italy
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
- Genetica AG, Zurich and Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Raimund Dutzler
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland.
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland.
- Genetica AG, Zurich and Lausanne, Switzerland.
| |
Collapse
|
11
|
Yanushkevich S, Zieminska A, Gonzalez J, Añazco F, Song R, Arias-Cavieres A, Granados ST, Zou J, Rao Y, Concepcion AR. Recent advances in the structure, function and regulation of the volume-regulated anion channels and their role in immunity. J Physiol 2024. [PMID: 39709525 DOI: 10.1113/jp285200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e. LRRC8B-E) to form functional heteromeric channels. VRACs were discovered in T lymphocytes over 35 years ago and are found in virtually all vertebrate cells. Initially, these anion channels were characterized for their role in Cl- efflux during the regulatory volume decrease process triggered when cells are subjected to hypotonic challenges. However, substantial evidence suggests that VRACs also transport small molecules under isotonic conditions. These findings have expanded the research on VRACs to explore their functions beyond volume regulation. In innate immune cells, VRACs promote inflammation by modulating the transport of immunomodulatory cyclic dinucleotides, itaconate and ATP. In adaptive immune cells, VRACs suppress their function by taking up cyclic dinucleotides to activate the STING signalling pathway. In this review, we summarize the current understanding of LRRC8 proteins in immunity and discuss recent progress in their structure, function, regulation and mechanisms for channel activation and gating. Finally, we also examine potential immunotherapeutic applications of VRAC modulation.
Collapse
Affiliation(s)
- Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aleksandra Zieminska
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joshua Gonzalez
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisca Añazco
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Richard Song
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Yan Rao
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
12
|
Wang M, Li F, Wang Z, Lv L, Liu W. Research progress of natural product-conjugated platinum and gold complexes as potential antitumor agents. Eur J Med Chem 2024; 280:116956. [PMID: 39413444 DOI: 10.1016/j.ejmech.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Cancer is widely recognized as a serious disease that poses a significant threat to human life and health. The distinctive chemical properties and pronounced antiproliferative activity of platinum drugs are considered to be responsible for their remarkable efficacy in clinical applications. However, undesirable side effects and resistance have severely hampered the treatment of various types of cancer with platinum-based drugs. Natural products (NPs) exhibit extensive pharmacological activities and represent an important source for developing cancer therapeutics. Therefore, the combination of metals and NPs is an attractive strategy for the development of new anticancer agents. Several studies have indicated that combining metals with NPs has a synergistic enhancement effect in antitumor activity. For transition metals, there has been burgeoning research output investigating NP-conjugated platinum and gold complexes. The present article reviews the progress made over the past 5-10 years on the development of NP-conjugated platinum and gold complexes, including a brief introduction to their chemistry and mechanism of action, and a summary of their benefits.
Collapse
Affiliation(s)
- Meiyu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fuwei Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhaoran Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wukun Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Feldman LER, Mohapatra S, Jones RT, Scholtes M, Tilton CB, Orman MV, Joshi M, Deiter CS, Broneske TP, Qu F, Gutierrez C, Ye H, Clambey ET, Parker S, Mahmoudi T, Zuiverloon T, Costello JC, Theodorescu D. Regulation of volume-regulated anion channels alters sensitivity to platinum chemotherapy. SCIENCE ADVANCES 2024; 10:eadr9364. [PMID: 39671496 PMCID: PMC11641020 DOI: 10.1126/sciadv.adr9364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Cisplatin-based chemotherapy is used across many common tumor types, but resistance reduces the likelihood of long-term survival. We previously found the puromycin-sensitive aminopeptidase, NPEPPS, as a druggable driver of cisplatin resistance in vitro and in vivo and in patient-derived organoids. Here, we present a general mechanism where NPEPPS interacts with the volume-regulated anion channels (VRACs) to control cisplatin import into cells and thus regulate cisplatin response across a range of cancer types. We also find the NPEPPS/VRAC gene expression ratio is a predictive measure of cisplatin response in multiple cancer cohorts, showing the broad applicability of this mechanism. Our work describes a specific mechanism of cisplatin resistance, which, given the characteristics of NPEPPS as a drug target, has the potential to improve cancer patient outcomes. In addition, we describe an intracellular mechanism regulating VRAC activity, which is critical for volume regulation in normal cells - a finding with functional implications beyond cancer.
Collapse
Affiliation(s)
| | - Saswat Mohapatra
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Robert T. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mathijs Scholtes
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Charlene B. Tilton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael V. Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cailin S. Deiter
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Travis P. Broneske
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fangyuan Qu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Corazon Gutierrez
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Huihui Ye
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric T. Clambey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah Parker
- Smidt Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tahlita Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
Kostritskaia Y, Pervaiz S, Klemmer A, Klüssendorf M, Stauber T. Sphingosine-1-phosphate activates LRRC8 volume-regulated anion channels through Gβγ signalling. J Physiol 2024. [PMID: 39496493 DOI: 10.1113/jp286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Volume-regulated anion channels (VRACs) formed by leucin-rich repeat containing 8 (LRRC8) proteins play a pivotal role in regulatory volume decrease by mediating the release of chloride and organic osmolytes. Apart from the regulation of cell volume, LRRC8/VRAC function underlies numerous physiological processes in vertebrate cells including membrane potential regulation, glutamate release and apoptosis. LRRC8/VRACs are also permeable to antibiotics and anti-cancer drugs, representing therefore important therapeutic targets. The activation mechanisms for LRRC8/VRACs are still unclear. Besides through osmotic cell swelling, LRRC8/VRACs can be activated by various stimuli under isovolumetric conditions. Sphingosine-1-phosphate (S1P), an important signalling lipid, which signals through a family of G protein-coupled receptors (GPCRs), has been reported to activate LRRC8/VRACs in several cell lines. Here, we measured inter-subunit Förster resonance energy transfer (FRET) and used whole-cell patch clamp electrophysiology to investigate S1P-induced LRRC8/VRAC activation. We systematically assessed the involvement of GPCRs and G protein-mediated signal transduction in channel activation. We found that S1P-induced channel activation is mediated by S1PR1 in HeLa cells. Following the downstream signalling pathway of S1PR1 and using toxin-mediated inhibition of the associated G proteins, we showed that Gβγ dimers rather than Gαi or Gαq play a critical role in S1P-induced VRAC activation. We could also show that S1P causes protein kinase D (PKD) phosphorylation, suggesting that Gβγ recruits phospholipase Cβ (PLCβ) with the consequent PKD activation by diacylglycerol. Notably, S1P did not activate LRRC8/VRAC in HEK293 cells, but overexpression of Gβγ-responsive PLCβ isoform could facilitate S1P-induced LRRC8/VRAC currents. We thus identified S1PR1-mediated Gβγ-PLCβ signalling as a key mechanism underlying isosmotic LRRC8/VRAC activation. KEY POINTS: Leucin-rich repeat containing 8 (LRRC8) anion/osmolyte channels are involved in multiple physiological processes where they can be activated as volume-regulated anion channels (VRACs) by osmotic cell swelling or isovolumetric stimuli such as sphingosine-1-phosphate (S1P). In the present study, using pharmacological modulation and gene-depleted cells in patch clamp recording and optical monitoring of LRRC8 activity, we find that LRRC8/VRAC activation by S1P is mediated by the G protein-coupled receptor S1PR1 coupled to G proteins of the Gi family. The signal transduction to LRRC8/VRAC activation specifically involves phospholipase Cβ activation by βγ subunits of pertussis toxin-insensitive heteromeric Gi proteins. S1P-mediated and hypotonicity-induced LRRC8/VRAC activation pathways converge in protein kinase D activation.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anna Klemmer
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Kefas J, Flynn M. Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: rationale, challenges, and novel strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:39. [PMID: 39534871 PMCID: PMC11555186 DOI: 10.20517/cdr.2024.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Ovarian cancer is a significant global health challenge, with cytoreductive surgery and platinum-based chemotherapy serving as established primary treatments. Unfortunately, most patients relapse and ultimately become platinum-resistant, at which point there are limited effective treatment options. Given the success of immunotherapy in inducing durable treatment responses in several other cancers, its potential in platinum-resistant ovarian cancer (PROC) is currently being investigated. However, in unselected advanced ovarian cancer populations, researchers have reported low response rates to immune checkpoint inhibition, and thus far, no validated biomarkers are predictive of response. Understanding the intricate interplay between platinum resistance, immune recognition, and the tumour microenvironment (TME) is crucial. In this review, we examine the research challenges encountered thus far, the biological rationale for immunotherapy, the underlying mechanisms of immune resistance, and new strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Michael Flynn
- Medical Oncology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK
| |
Collapse
|
16
|
Kumar D, Harris AL, Luo YL. Molecular permeation through large pore channels: computational approaches and insights. J Physiol 2024:10.1113/JP285198. [PMID: 39373834 PMCID: PMC11973239 DOI: 10.1113/jp285198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Computational methods such as molecular dynamics (MD) have illuminated how single-atom ions permeate membrane channels and how selectivity among them is achieved. Much less is understood about molecular permeation through eukaryotic channels that mediate the flux of small molecules (e.g. connexins, pannexins, LRRC8s, CALHMs). Here we describe computational methods that have been profitably employed to explore the movements of molecules through wide pores, revealing mechanistic insights, guiding experiments, and suggesting testable hypotheses. This review illustrates MD techniques such as voltage-driven flux, potential of mean force, and mean first-passage-time calculations, as applied to molecular permeation through wide pores. These techniques have enabled detailed and quantitative modeling of molecular interactions and movement of permeants at the atomic level. We highlight novel contributors to the transit of molecules through these wide pathways. In particular, the flexibility and anisotropic nature of permeant molecules, coupled with the dynamics of pore-lining residues, lead to bespoke permeation dynamics. As more eukaryotic large-pore channel structures and functional data become available, these insights and approaches will be important for understanding the physical principles underlying molecular permeation and as guides for experimental design.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Andrew L. Harris
- Department of Pharmacology, Physiology, and Neuroscience. New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
17
|
Tranter JD, Mikami RT, Kumar A, Brown G, Abd El-Aziz TM, Zhao Y, Abraham N, Meyer C, Ajanel A, Xie L, Ashworth K, Hong J, Zhang H, Kumari T, Balutowski A, Liu A, Bark D, Nair VK, Lasky NM, Feng Y, Stitziel NO, Lerner DJ, Campbell RA, Paola JD, Cho J, Sah R. LRRC8 complexes are adenosine nucleotide release channels regulating platelet activation and arterial thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615233. [PMID: 39386563 PMCID: PMC11463368 DOI: 10.1101/2024.09.26.615233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Platelet shape and volume changes are early mechanical events contributing to platelet activation and thrombosis. Here, we identify single-nucleotide polymorphisms in Leucine-Rich Repeat Containing 8 (LRRC8) protein subunits that form the Volume-Regulated Anion Channel (VRAC) which are independently associated with altered mean platelet volume. LRRC8A is required for functional VRAC in megakaryocytes (MKs) and regulates platelet volume, adhesion, and agonist-stimulated activation, aggregation, ATP secretion and calcium mobilization. MK-specific LRRC8A cKO mice have reduced arteriolar thrombus formation and prolonged arterial thrombosis without affecting bleeding times. Mechanistically, platelet LRRC8A mediates swell-induced ATP/ADP release to amplify agonist-stimulated calcium and PI3K-AKT signaling via P2X1, P2Y 1 and P2Y 12 receptors. Small-molecule LRRC8 channel inhibitors recapitulate defects observed in LRRC8A-null platelets in vitro and in vivo . These studies identify the mechanoresponsive LRRC8 channel complex as an ATP/ADP release channel in platelets which regulates platelet function and thrombosis, providing a proof-of-concept for a novel anti-thrombotic drug target.
Collapse
|
18
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
19
|
Hu Y, Qin J, Ma Y, Yang R, Liu X, Shi C. Comprehensive review on the novel immunotherapy target: Leucine-rich repeat-containing 8A/volume-regulated anion channel. Int J Biol Sci 2024; 20:3881-3891. [PMID: 39113714 PMCID: PMC11302880 DOI: 10.7150/ijbs.95933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Leucine-rich repeat-containing 8A (LRRC8A) is a key component of the volume-regulated anion channel (VRAC) that influences essential homeostatic processes in various immune cells. These processes include the regulation of cell volume and membrane potential and the facilitation of the transport of organic agents used as anticancer drugs and immune-stimulating factors. Therefore, understanding the structure-function relationship of LRRC8A, exploring its physiological role in immunity, assessing its efficacy in treating diseases, and advancing the development of compounds that regulate its activity are important research frontiers. This review emphasized the emerging field of LRRC8A, outlined its structure and function, and summarized its role in immune cell development and immune cell-mediated antiviral and antitumor effects. Additionally, it explored the potential of LRRC8A as an immunotherapeutic target, offering insights into resolving persistent challenges and future research directions.
Collapse
Affiliation(s)
- Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Pathology, Affiliated Hospital of Yan'an University, Yanan, Shaanxi 716000, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
| | - Runze Yang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
| | - Xinyu Liu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, Shaanxi 716000, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
20
|
Knecht DA, Zeziulia M, Bhavsar MB, Puchkov D, Maier H, Jentsch TJ. LRRC8/VRAC volume-regulated anion channels are crucial for hearing. J Biol Chem 2024; 300:107436. [PMID: 38838775 PMCID: PMC11260850 DOI: 10.1016/j.jbc.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC‑K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.
Collapse
Affiliation(s)
- Deborah A Knecht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Mariia Zeziulia
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; Graduate Program of the Freie Universität Berlin, Berlin, Germany
| | - Mit B Bhavsar
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Maier
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Carpanese V, Festa M, Prosdocimi E, Bachmann M, Sadeghi S, Bertelli S, Stein F, Velle A, Abdel-Salam MAL, Romualdi C, Pusch M, Checchetto V. Interactomic exploration of LRRC8A in volume-regulated anion channels. Cell Death Discov 2024; 10:299. [PMID: 38909013 PMCID: PMC11193767 DOI: 10.1038/s41420-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024] Open
Abstract
Ion channels are critical in enabling ion movement into and within cells and are important targets for pharmacological interventions in different human diseases. In addition to their ion transport abilities, ion channels interact with signalling and scaffolding proteins, which affects their function, cellular positioning, and links to intracellular signalling pathways. The study of "channelosomes" within cells has the potential to uncover their involvement in human diseases, although this field of research is still emerging. LRRC8A is the gene that encodes a crucial protein involved in the formation of volume-regulated anion channels (VRACs). Some studies suggest that LRRC8A could be a valuable prognostic tool in different types of cancer, serving as a biomarker for predicting patients' outcomes. LRRC8A expression levels might be linked to tumour progression, metastasis, and treatment response, although its implications in different cancer types can be varied. Here, publicly accessible databases of cancer patients were systematically analysed to determine if a correlation between VRAC channel expression and survival rate exists across distinct cancer types. Moreover, we re-evaluated the impact of LRRC8A on cellular proliferation and migration in colon cancer via HCT116 LRRC8A-KO cells, which is a current topic of debate in the literature. In addition, to investigate the role of LRRC8A in cellular signalling, we conducted biotin proximity-dependent identification (BioID) analysis, revealing a correlation between VRAC channels and cell-cell junctions, mechanisms that govern cellular calcium homeostasis, kinases, and GTPase signalling. Overall, this dataset improves our understanding of LRRC8A/VRAC and explores new research avenues while identifying promising therapeutic targets and promoting inventive methods for disease treatment.
Collapse
Affiliation(s)
| | - Margherita Festa
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Institute of Biophysics, CNR, Via De Marini, 6 16149, Genova, Italy
| | | | - Magdalena Bachmann
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Daba Farber Cancer Research Institute, Boston, MA, USA
| | - Soha Sadeghi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Sara Bertelli
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- Humboldt Universität Berlin, AG Zelluläre Biophysik, Dorotheenstr, 19-21 10099, Berlin, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Angelo Velle
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mostafa A L Abdel-Salam
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chiara Romualdi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Padua Center for Network Medicine, University of Padua, Via F. Marzolo 8, 315126, Padova, Italy
| | - Michael Pusch
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- RAISE Ecosystem, Genova, Italy
| | | |
Collapse
|
22
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release. J Physiol Sci 2024; 74:34. [PMID: 38877402 PMCID: PMC11177392 DOI: 10.1186/s12576-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
23
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
24
|
Michelucci A, Sforna L, Franciolini F, Catacuzzeno L. Hypoxia, Ion Channels and Glioblastoma Malignancy. Biomolecules 2023; 13:1742. [PMID: 38136613 PMCID: PMC10742235 DOI: 10.3390/biom13121742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The malignancy of glioblastoma (GBM), the most aggressive type of human brain tumor, strongly correlates with the presence of hypoxic areas within the tumor mass. Oxygen levels have been shown to control several critical aspects of tumor aggressiveness, such as migration/invasion and cell death resistance, but the underlying mechanisms are still unclear. GBM cells express abundant K+ and Cl- channels, whose activity supports cell volume and membrane potential changes, critical for cell proliferation, migration and death. Volume-regulated anion channels (VRAC), which mediate the swelling-activated Cl- current, and the large-conductance Ca2+-activated K+ channels (BK) are both functionally upregulated in GBM cells, where they control different aspects underlying GBM malignancy/aggressiveness. The functional expression/activity of both VRAC and BK channels are under the control of the oxygen levels, and these regulations are involved in the hypoxia-induced GBM cell aggressiveness. The present review will provide a comprehensive overview of the literature supporting the role of these two channels in the hypoxia-mediated GBM malignancy, suggesting them as potential therapeutic targets in the treatment of GBM.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| | | | | | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| |
Collapse
|
25
|
Wu X, Yi X, Zhao B, Zhi Y, Xu Z, Cao Y, Cao X, Pang J, Yung KKL, Zhang S, Liu S, Zhou P. The volume regulated anion channel VRAC regulates NLRP3 inflammasome by modulating itaconate efflux and mitochondria function. Pharmacol Res 2023; 198:107016. [PMID: 38006980 DOI: 10.1016/j.phrs.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ken Kin Lam Yung
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
27
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
28
|
Liu H, Polovitskaya MM, Yang L, Li M, Li H, Han Z, Wu J, Zhang Q, Jentsch TJ, Liao J. Structural insights into anion selectivity and activation mechanism of LRRC8 volume-regulated anion channels. Cell Rep 2023; 42:112926. [PMID: 37543949 PMCID: PMC10480491 DOI: 10.1016/j.celrep.2023.112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Volume-regulated anion channels (VRACs) are hexamers of LRRC8 proteins that are crucial for cell volume regulation. N termini (NTs) of the obligatory LRRC8A subunit modulate VRACs activation and ion selectivity, but the underlying mechanisms remain poorly understood. Here, we report a 2.8-Å cryo-electron microscopy structure of human LRRC8A that displays well-resolved NTs. Amino-terminal halves of NTs fold back into the pore and constrict the permeation path, thereby determining ion selectivity together with an extracellular selectivity filter with which it works in series. They also interact with pore-surrounding helices and support their compact arrangement. The C-terminal halves of NTs interact with intracellular loops that are crucial for channel activation. Molecular dynamics simulations indicate that low ionic strength increases NT mobility and expands the radial distance between pore-surrounding helices. Our work suggests an unusual pore architecture with two selectivity filters in series and a mechanism for VRAC activation by cell swelling.
Collapse
Affiliation(s)
- Heng Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maya M Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China.
| | - Meiling Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Hongyue Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 45001, China
| | - Jianguo Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany; Cluster of Excellence NeuroCure, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Jun Liao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Liu T, Li Y, Wang D, Stauber T, Zhao J. Trends in volume-regulated anion channel (VRAC) research: visualization and bibliometric analysis from 2014 to 2022. Front Pharmacol 2023; 14:1234885. [PMID: 37538172 PMCID: PMC10394876 DOI: 10.3389/fphar.2023.1234885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective: In this study, we utilized bibliometric methods to assess the worldwide scientific output and identify hotspots related to the research on the volume-regulated anion channel (VRAC) from 2014 to 2022. Methods: From Web of Science, we obtained studies related to VRAC published from 2014 to 2022. To analyzed the data, we utilized VOSviewer, a tool for visualizing network, to create networks based on the collaboration between countries, institutions, and authors. Additionally, we performed an analysis of journal co-citation, document citation, and co-occurrence of keywords. Furthermore, we employed CiteSpace (6.1. R6 Advanced) to analyzed keywords and co-cited references with the strongest burst. Results: The final analysis included a total of 278 related articles and reviews, covering the period from 2014 to 2022. The United States emerged as the leading country contributing to this field, while the University of Copenhagen stood out as the most prominent institution. The author with most publications and most citations was Thomas J. Jentsch. Among the cited references, the article by Voss et al. published in Science (2014) gained significant attention for its identification of LRRC8 heteromers as a crucial component of the volume-regulated anion channel VRAC. Pflügers Archiv European Journal of Physiology and Journal of Physiology-London were the leading journals in terms of the quantity of associated articles and citations. Through the analysis of keyword co-occurrence, it was discovered that VRAC is involved in various physiological processes including cell growth, migration, apoptosis, swelling, and myogenesis, as well as anion and organic osmolyte transport including chloride, taurine, glutamate and ATP. VRAC is also associated with related ion channels such as TMEM16A, TMEM16F, pannexin, and CFTR, and associated with various diseases including epilepsy, leukodystrophy, atherosclerosis, hypertension, cerebral edema, stroke, and different types of cancer including gastric cancer, glioblastoma and hepatocellular carcinoma. Furthermore, VRAC is involved in anti-tumor drug resistance by regulating the uptake of platinum-based drugs and temozolomide. Additionally, VRAC has been studied in the context of pharmacology involving DCPIB and flavonoids. Conclusion: The aim of this bibliometric analysis is to provide an overall perspective for research on VRAC. VRAC has become a topic of increasing interest, and our analysis shows that it continues to be a prominent area. This study offers insights into the investigation of VRAC channel and may guide researchers in identifying new directions for future research.
Collapse
Affiliation(s)
- Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
| | - Yin Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Dawei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
| |
Collapse
|
30
|
Pan Z, Zhang H, Dokudovskaya S. The Role of mTORC1 Pathway and Autophagy in Resistance to Platinum-Based Chemotherapeutics. Int J Mol Sci 2023; 24:10651. [PMID: 37445831 DOI: 10.3390/ijms241310651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum I) is a platinum-based drug, the mainstay of anticancer treatment for numerous solid tumors. Since its approval by the FDA in 1978, the drug has continued to be used for the treatment of half of epithelial cancers. However, resistance to cisplatin represents a major obstacle during anticancer therapy. Here, we review recent findings on how the mTORC1 pathway and autophagy can influence cisplatin sensitivity and resistance and how these data can be applicable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zhenrui Pan
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Hanxiao Zhang
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
31
|
Zhang H, Jing Z, Liu R, Shada Y, Shria S, Cui S, Ren Y, Wei Y, Li L, Peng S. LRRC8A promotes the initial development of oxaliplatin resistance in colon cancer cells. Heliyon 2023; 9:e16872. [PMID: 37313175 PMCID: PMC10258452 DOI: 10.1016/j.heliyon.2023.e16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Leucine-rich repeat-containing 8 A (LRRC8A) is an essential component of the volume-regulated anion channel (VRAC), which plays a vital role in cell proliferation, migration, apoptosis, and drug resistance. In this study, we investigated the effects of LRRC8A on oxaliplatin resistance in colon cancer cells. The cell viability was measured after oxaliplatin treatment with cell counting kit-8 (CCK8) assay. RNA sequencing was used to analyze the differentially expressed genes (DEGs) between HCT116 and oxaliplatin-resistant HCT116 cell line (R-Oxa) cells. CCK8 assay and apoptosis assay indicated that R-Oxa cells significantly promoted drug resistance to oxaliplatin compared with native HCT116 cells. R-Oxa cells, deprived of oxaliplatin treatment for over six months (R-Oxadep), maintained a similar resistant property as R-Oxa cells. The LRRC8A mRNA and protein expression were markedly increased in both R-Oxa and R-Oxadep cells. Regulation of LRRC8A expression affected the resistance to oxaliplatin in native HCT116 cells, but not R-Oxa cells. Furthermore, The transcriptional regulation of genes in the platinum drug resistance pathway may contribute to the maintenance of oxaliplatin resistance in colon cancer cells. In conclusion, we propose that LRRC8A promotes the acquisition rather than the maintenance of oxaliplatin resistance in colon cancer cells.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Zhenghui Jing
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Rong Liu
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Yassin Shada
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Sindhwani Shria
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Shiyu Cui
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Yuhua Ren
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Liangming Li
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| | - Shuang Peng
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
32
|
Blest HTW, Chauveau L. cGAMP the travelling messenger. Front Immunol 2023; 14:1150705. [PMID: 37287967 PMCID: PMC10242147 DOI: 10.3389/fimmu.2023.1150705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Al Saihati HA, Rabaan AA. Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy. Saudi Med J 2023; 44:329-344. [PMID: 37062547 PMCID: PMC10153614 DOI: 10.15537/smj.2023.44.4.20220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Despite major advancements in cancer healing approaches over the last few decades, chemotherapy remains the most popular malignancy treatment. Chemotherapeutic drugs are classified into many kinds based on their mechanism of action. Multidrug resistance (MDR) is responsible for approximately 90% of fatalities in malignancy cases treated with standard chemotherapeutics or innovative targeted medicines. Many innovative prospective anti-cancer medicines displayed high anti-cancer efficacy in a single application. However, combining them with other medications improves cancer treatment efficacy. This supports the belief that a combination of drugs is significantly more effective than a single medicine. Due to the intricacy of MDR processes and the diversity of tumor illnesses, there will rarely be a single medicine that can be utilized to treat all types of cancer. Finding new medications that can reverse MDR in malignancy cells will augment efficacy of chemotherapeutic agents and allow us to treat cancers that are now incurable.
Collapse
Affiliation(s)
- Hajir A. Al Saihati
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| | - Ali A. Rabaan
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| |
Collapse
|
34
|
Kern DM, Bleier J, Mukherjee S, Hill JM, Kossiakoff AA, Isacoff EY, Brohawn SG. Structural basis for assembly and lipid-mediated gating of LRRC8A:C volume-regulated anion channels. Nat Struct Mol Biol 2023:10.1038/s41594-023-00944-6. [PMID: 36928458 DOI: 10.1038/s41594-023-00944-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Leucine-rich repeat-containing protein 8 (LRRC8) family members form volume-regulated anion channels activated by hypoosmotic cell swelling. LRRC8 channels are ubiquitously expressed in vertebrate cells as heteromeric assemblies of LRRC8A (SWELL1) and LRRC8B-E subunits. Channels of different subunit composition have distinct properties that explain the functional diversity of LRRC8 currents across cell types. However, the basis for heteromeric LRRC8 channel assembly and function is unknown. Here we leverage a fiducial-tagging strategy to determine single-particle cryo-EM structures of heterohexameric LRRC8A:C channels in multiple conformations. Compared to homomers, LRRC8A:C channels show pronounced differences in architecture due to heterotypic LRR interactions that displace subunits away from the conduction axis and poise the channel for activation. Structures and functional studies further reveal that lipids embedded in the channel pore block ion conduction in the closed state. These results provide insight into determinants for heteromeric LRRC8 channel assembly, activity and gating by lipids.
Collapse
Affiliation(s)
- David M Kern
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
| | - Julia Bleier
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Jennifer M Hill
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Ehud Y Isacoff
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA.
| |
Collapse
|
35
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
36
|
Rutz S, Deneka D, Dittmann A, Sawicka M, Dutzler R. Structure of a volume-regulated heteromeric LRRC8A/C channel. Nat Struct Mol Biol 2023; 30:52-61. [PMID: 36522427 PMCID: PMC9851909 DOI: 10.1038/s41594-022-00899-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Volume-regulated anion channels (VRACs) participate in the cellular response to osmotic swelling. These membrane proteins consist of heteromeric assemblies of LRRC8 subunits, whose compositions determine permeation properties. Although structures of the obligatory LRRC8A, also referred to as SWELL1, have previously defined the architecture of VRACs, the organization of heteromeric channels has remained elusive. Here we have addressed this question by the structural characterization of murine LRRC8A/C channels. Like LRRC8A, these proteins assemble as hexamers. Despite 12 possible arrangements, we find a predominant organization with an A:C ratio of two. In this assembly, four LRRC8A subunits cluster in their preferred conformation observed in homomers, as pairs of closely interacting proteins that stabilize a closed state of the channel. In contrast, the two interacting LRRC8C subunits show a larger flexibility, underlining their role in the destabilization of the tightly packed A subunits, thereby enhancing the activation properties of the protein.
Collapse
Affiliation(s)
- Sonja Rutz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Dawid Deneka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Widmer CA, Klebic I, Domanitskaya N, Decollogny M, Howald D, Siffert M, Essers P, Nowicka Z, Stokar-Regenscheit N, van de Ven M, de Korte-Grimmerink R, Galván JA, Pritchard CE, Huijbers IJ, Fendler W, Vens C, Rottenberg S. Loss of the volume-regulated anion channel components LRRC8A and LRRC8D limits platinum drug efficacy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1266-1281. [PMID: 36467895 PMCID: PMC7613873 DOI: 10.1158/2767-9764.crc-22-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years platinum (Pt) drugs have been found to be especially efficient to treat patients with cancers that lack a proper DNA damage response, e.g. due to dysfunctional BRCA1. Despite this knowledge, we are still missing helpful markers to predict Pt response in the clinic. We have previously shown that volume-regulated anion channels, containing the subunits LRRC8A and LRRC8D, promote the uptake of cisplatin and carboplatin in BRCA1-proficient cell lines. Here, we show that the loss of LRRC8A or LRRC8D significantly reduces the uptake of cis- and carboplatin in BRCA1;p53-deficient mouse mammary tumor cells. This results in reduced DNA damage and in vivo drug resistance. In contrast to Lrrc8a, the deletion of the Lrrc8d gene does not affect the viability and fertility of mice. Interestingly, Lrrc8d-/- mice tolerate a two-fold cisplatin maximum-tolerable dose. This allowed us to establish a mouse model for intensified Pt-based chemotherapy, and we found that an increased cisplatin dose eradicates BRCA1;p53-deficient tumors, whereas eradication is not possible in WT mice. Moreover, we show that decreased expression of LRRC8A/D in head and neck squamous cell carcinoma patients, who are treated with a Pt-based chemoradiotherapy, leads to decreased overall survival of the patients. In particular, high cumulative cisplatin dose treatments lost their efficacy in patients with a low LRRC8A/D expression in their cancers. Our data therefore suggest that LRRC8A and LRRC8D should be included in a prospective trial to predict the success of intensified cis- or car-boplatin-based chemotherapy.
Collapse
Affiliation(s)
- Carmen A. Widmer
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ismar Klebic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- COMPATH, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Natalya Domanitskaya
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Morgane Decollogny
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Myriam Siffert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paul Essers
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renske de Korte-Grimmerink
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José A. Galván
- Translational Research Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer and Aging Research (MCCA), Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer and Aging Research (MCCA), Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Conchita Vens
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Corresponding Author: Sven Rottenberg, Institute of Animal Pathology and Bern Center for Precision Medicine, Länggassstrasse 122, Bern 3012, Switzerland. Phone: +41-(0)31-6842395; E-mail:
| |
Collapse
|
38
|
Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet function. Front Endocrinol (Lausanne) 2022; 13:972115. [PMID: 36246925 PMCID: PMC9558271 DOI: 10.3389/fendo.2022.972115] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) is a non-proteinogenic amino acid and neurotransmitter that is produced in the islet at levels as high as in the brain. GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD), of which the 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes. Originally described to be released via synaptic-like microvesicles or from insulin secretory vesicles, beta cells are now understood to release substantial quantities of GABA directly from the cytosol via volume-regulated anion channels (VRAC). Once released, GABA influences the activity of multiple islet cell types through ionotropic GABAA receptors and metabotropic GABAB receptors. GABA also interfaces with cellular metabolism and ATP production via the GABA shunt pathway. Beta cells become depleted of GABA in type 1 diabetes (in remaining beta cells) and type 2 diabetes, suggesting that loss or reduction of islet GABA correlates with diabetes pathogenesis and may contribute to dysfunction of alpha, beta, and delta cells in diabetic individuals. While the function of GABA in the nervous system is well-understood, the description of the islet GABA system is clouded by differing reports describing multiple secretion pathways and effector functions. This review will discuss and attempt to unify the major experimental results from over 40 years of literature characterizing the role of GABA in the islet.
Collapse
Affiliation(s)
- D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sandra M. Ferreira
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Gustavo J. Santos
- Islet Biology and Metabolism Lab – I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Ghouli MR, Fiacco TA, Binder DK. Structure-function relationships of the LRRC8 subunits and subdomains of the volume-regulated anion channel (VRAC). Front Cell Neurosci 2022; 16:962714. [PMID: 36035259 PMCID: PMC9399500 DOI: 10.3389/fncel.2022.962714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Volume Regulated Anion Channels (VRAC) are critical contributors to cell volume homeostasis and are expressed ubiquitously in all vertebrate cells. VRAC sense increases in cell volume, and act to return cells to baseline volume in a process known as regulatory volume decrease (RVD) through the efflux of anions and organic osmolytes. This review will highlight seminal studies that elucidated the role of VRAC in RVD, their characteristics as a function of subunit specificity, and their clinical relevance in physiology and pathology. VRAC are also known as volume-sensitive outward rectifiers (VSOR) and volume-sensitive organic osmolyte/anion channels (VSOAC). In this review, the term VRAC will be used to refer to this family of channels.
Collapse
Affiliation(s)
- Manolia R. Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California–Riverside, Riverside, CA, United States
| | - Todd A. Fiacco
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California–Riverside, Riverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California–Riverside, Riverside, CA, United States
- *Correspondence: Devin K. Binder
| |
Collapse
|
40
|
López-Cayuqueo KI, Planells-Cases R, Pietzke M, Oliveras A, Kempa S, Bachmann S, Jentsch TJ. Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy. J Am Soc Nephrol 2022; 33:1528-1545. [PMID: 35777784 PMCID: PMC9342636 DOI: 10.1681/asn.2021111458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.
Collapse
Affiliation(s)
- Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Pietzke
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anna Oliveras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany,NeuroCure Centre of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Bertelli S, Zuccolini P, Gavazzo P, Pusch M. Molecular determinants underlying VRAC subunit dependent oxidation sensitivity. J Physiol 2022; 600:3965-3982. [PMID: 35861288 PMCID: PMC9540897 DOI: 10.1113/jp283321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract The volume‐regulated anion channel (VRAC) is formed by LRRC8 subunits. Besides their role in the maintenance of cell homeostasis, VRACs are critically involved in oxidative stress mechanisms: reactive oxygen species directly modulate VRACs in a subunit‐dependent manner. It was reported that LRRC8A–LRRC8E heteromeric channels are activated by oxidation, whereas LRRC8A–LRRC8C heteromers are inhibited. Here we adopted chimeric‐ as well as concatemeric‐based strategies to identify residues responsible for the divergent effect of oxidants. We identified two cysteines in the first two leucine rich repeats of LRRC8E, C424 and C448, as the targets of oxidation. Oxidation likely results in the formation of a disulfide bond between the two cysteines, which in turn induces a conformational change leading to channel activation. Additionally, we found that LRRC8C inhibition is caused by oxidation of the first methionine. We thus identified crucial molecular elements involved in channel activation, which are conceivably relevant in determining physiological ROS effects.
![]() Key points Volume‐regulated anion channels (VRACs) are heterohexameric complexes composed of an essential LRRC8A subunit and a variable number of LRRC8B–E subunits. VRACs are directly regulated by oxidation, with LRRC8A–LRRC8E heteromers being potentiated and LRRC8A–LRRC8C heteromers being inhibited by oxidation. We identified two LRRC8E specific intracellular cysteines that form a disulfide bond upon oxidation leading to LRRC8A–LRRC8E potentiation. Inhibition of LRRC8A–LRRC8C heteromers is mediated by the oxidation of the start methionine, being additionally dependent on the identity of the LRR domain. Besides providing physiological insights concerning the outcome of reactive oxygen species modulation, the results point to key structural elements involved in VRAC activation.
Collapse
Affiliation(s)
- Sara Bertelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Paolo Zuccolini
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Paola Gavazzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
42
|
Saltarella I, Altamura C, Lamanuzzi A, Apollonio B, Vacca A, Frassanito MA, Desaphy JF. Ion Channels in Multiple Myeloma: Pathogenic Role and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137302. [PMID: 35806308 PMCID: PMC9266328 DOI: 10.3390/ijms23137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of “onco-channelopathy”. Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells’ survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Benedetta Apollonio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
43
|
Sawicka M, Dutzler R. Regulators of cell volume: The structural and functional properties of anion channels of the LRRC8 family. Curr Opin Struct Biol 2022; 74:102382. [DOI: 10.1016/j.sbi.2022.102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
44
|
Zhang J, Yuan H, Yao X, Chen S. Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells. Pflugers Arch 2022; 474:665-680. [PMID: 35567642 DOI: 10.1007/s00424-022-02700-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/21/2022]
Abstract
Mammalian expression systems, particularly the human embryonic kidney (HEK-293) cells, combined with electrophysiological studies, have greatly benefited our understanding of the function, characteristic, and regulation of various ion channels. It was previously assumed that the existence of endogenous ion channels in native HEK-293 cells could be negligible. Still, more and more ion channels are gradually reported in native HEK-293 cells, which should draw our attention. In this regard, we summarize the different ion channels that are endogenously expressed in HEK-293 cells, including voltage-gated Na+ channels, Ca2+ channels, K+ channels, Cl- channels, nonselective cation channels, TRP channels, acid-sensitive ion channels, and Piezo channels, which may complicate the recording of the heterogeneously expressed ion channels to a certain degree. We noted that the expression patterns and channel profiles varied with different studies, which may be due to the distinct originality of the cells, cell culture conditions, passage numbers, and different recording protocols. Therefore, a better knowledge of endogenous ion channels may help minimize potential problems in characterizing heterologously expressed ion channels. Based on this, it is recommended that HEK-293 cells from unknown sources should be examined before transfection for the characterization of their functional profile, especially when the expression level of exogenous ion channels does not overwhelm the endogenous ion channels largely, or the current amplitude is not significantly higher than the native currents.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Huikai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University at Daqing, No. 39 Xinyang Rd, High-tech District, Daqing, 163319, Heilongjiang Province, China.
| |
Collapse
|
45
|
Kasuya G, Nureki O. Recent Advances in the Structural Biology of the Volume-Regulated Anion Channel LRRC8. Front Pharmacol 2022; 13:896532. [PMID: 35645818 PMCID: PMC9130832 DOI: 10.3389/fphar.2022.896532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/23/2023] Open
Abstract
Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC), which is activated by cell swelling and releases chloride ions (Cl−) or other osmolytes to counteract cell swelling. Although the LRRC8 protein family was identified as the molecular entity of VRAC only in 2014, due to recent advances in cryo-electron microscopy (cryo-EM), various LRRC8 structures, including homo-hexameric LRRC8A and LRRC8D structures, as well as inhibitor-bound and synthetic single-domain antibody-bound homo-hexameric LRRC8A structures, have been reported, thus extending our understanding of the molecular mechanisms of this protein family. In this review, we describe the important features of LRRC8 provided by these structures, particularly the overall architectures, and the suggested mechanisms underlying pore inhibition and allosteric modulation by targeting the intracellular leucine-rich repeat (LRR) domain.
Collapse
Affiliation(s)
- Go Kasuya
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
- *Correspondence: Go Kasuya, ; Osamu Nureki,
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Go Kasuya, ; Osamu Nureki,
| |
Collapse
|
46
|
Liu C, Zhou S, Bai W, Shi L, Li X. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct 2022; 13:4839-4860. [PMID: 35416186 DOI: 10.1039/d1fo04391a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.
Collapse
Affiliation(s)
- Chaofan Liu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
47
|
Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, Fu Q, Li Q, Wang Y, Wang J, Xia Y, Huang X. Advances in the Study of CircRNAs in Tumor Drug Resistance. Front Oncol 2022; 12:868363. [PMID: 35615158 PMCID: PMC9125088 DOI: 10.3389/fonc.2022.868363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that circRNAs can affect tumor DNA damage and repair, apoptosis, proliferation, and invasion and influence the transport of intratumor substances by acting as miRNA sponges and transcriptional regulators and binding to proteins in a variety of ways. However, research on the role of circRNAs in cancer radiotherapy and chemoresistance is still in its early stages. Chemotherapy is a common approach to oncology treatment, but the development of tumor resistance limits the overall clinical efficacy of chemotherapy for cancer patients. The current study suggests that circRNAs have a facilitative or inhibitory effect on the development of resistance to conventional chemotherapy in a variety of tumors, suggesting that circRNAs may serve as a new direction for the study of antitumor drug resistance. In this review, we will briefly discuss the biological features of circRNAs and summarize the recent progression of the involvement of circRNAs in the development and pathogenesis of cancer chemoresistance.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Long Qian
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Li Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yan Jin
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Hao Hu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qingsheng Fu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qian Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Ye Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jiawei Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yabin Xia
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Xiaoxu Huang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
- *Correspondence: Xiaoxu Huang,
| |
Collapse
|
48
|
Jeon D, Ryu K, Jo S, Kim I, Namkung W. VI-116, A Novel Potent Inhibitor of VRAC with Minimal Effect on ANO1. Int J Mol Sci 2022; 23:ijms23095168. [PMID: 35563558 PMCID: PMC9103758 DOI: 10.3390/ijms23095168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Volume-regulated anion channel (VRAC) is ubiquitously expressed and plays a pivotal role in vertebrate cell volume regulation. A heterologous complex of leucine-rich repeat containing 8A (LRRC8A) and LRRC8B-E constitutes the VRAC, which is involved in various processes such as cell proliferation, migration, differentiation, intercellular communication, and apoptosis. However, the lack of a potent and selective inhibitor of VRAC limits VRAC-related physiological and pathophysiological studies, and most previous VRAC inhibitors strongly blocked the calcium-activated chloride channel, anoctamin 1 (ANO1). In the present study, we performed a cell-based screening for the identification of potent and selective VRAC inhibitors. Screening of 55,000 drug-like small-molecules and subsequent chemical modification revealed 3,3′-((2-hydroxy-3-methoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (VI-116), a novel potent inhibitor of VRAC. VI-116 fully inhibited VRAC-mediated I− quenching with an IC50 of 1.27 ± 0.18 μM in LN215 cells and potently blocked endogenous VRAC activity in PC3, HT29 and HeLa cells in a dose-dependent manner. Notably, VI-116 had no effect on intracellular calcium signaling up to 10 μM, which completely inhibited VRAC, and showed high selectivity for VRAC compared to ANO1 and ANO2. However, DCPIB, a VRAC inhibitor, significantly affected ATP-induced increases in intracellular calcium levels and Eact-induced ANO1 activation. In addition, VI-116 showed minimal effect on hERG K+ channel activity up to 10 μM. These results indicate that VI-116 is a potent and selective VRAC inhibitor and a useful research tool for pharmacological dissection of VRAC.
Collapse
|
49
|
Xia Y, Huang X, Mo L, Wang C, Fan W, Huang H. TMT-based proteomics analysis of the cerebral cortex of TauT knockout rats. Proteome Sci 2022; 20:6. [PMID: 35468821 PMCID: PMC9040245 DOI: 10.1186/s12953-022-00189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Taurine serves a variety of nutritional and physiological roles, and it is mostly transported in cells via taurine transporter (TauT). The effect of taurine transporter in cerebral cortex is still unknown. We employed TMT label-based proteomics to find differences in proteins in the cerebral cortex of TauT knockout rats in this investigation. The goal of this research was to see how TauT deletion affected protein alterations in brain tissue and to see if there was a new research area for TauT. Methods The cerebral cortex of TauT knockout rats and wild-type control rats were analyzed using TMT-based proteomics, and differentially expressed proteins were analyzed by bioinformatics analysis means such as GO and KEGG, the association between the proteins was found by PPI, and biologically significant and interesting proteins were selected for verification by WB and immunohistochemistry. Results There were total of 8275 proteins found, but only 35 differentially expressed proteins were identified (27 up-regulated and 8 down-regulated), and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological pathways and functional classification of the proteins. The results show that these differentially expressed proteins are mainly enriched in lysine degradation, cell cycle, chronic myeloid leukemia, and longevity regulating pathways-multiple species, renal cell carcinoma, pathways in cancer, etc. To verify the proteomic data, we analyzed the expression of Annexin6 and Pik3r2 by western blotting and immunofluorescence. The results are consistent with proteomics, which proves the reliability of our proteomics data. Conclusion Through TMT-based proteomics, we have a comprehensive understanding of the effect of TauT knockout on the changes of other proteins in the cerebral cortex, providing new evidence for further understanding the function of TauT.
Collapse
Affiliation(s)
- Yiming Xia
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoling Huang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Lidong Mo
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Chen Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Huiling Huang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
50
|
He J, Biswas R, Bugde P, Li J, Liu DX, Li Y. Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050894. [PMID: 35631480 PMCID: PMC9147533 DOI: 10.3390/pharmaceutics14050894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, sequence-specific clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems have been widely used in genome editing of various cell types and organisms. The most developed and broadly used CRISPR-Cas system, CRISPR-Cas9, has benefited from the proof-of-principle studies for a better understanding of the function of genes associated with drug absorption and disposition. Genome-scale CRISPR-Cas9 knockout (KO) screen study also facilitates the identification of novel genes in which loss alters drug permeability across biological membranes and thus modulates the efficacy and safety of drugs. Compared with conventional heterogeneous expression models or other genome editing technologies, CRISPR-Cas9 gene manipulation techniques possess significant advantages, including ease of design, cost-effectiveness, greater on-target DNA cleavage activity and multiplexing capabilities, which makes it possible to study the interactions between membrane proteins and drugs more accurately and efficiently. However, many mechanistic questions and challenges regarding CRISPR-Cas9 gene editing are yet to be addressed, ranging from off-target effects to large-scale genetic alterations. In this review, an overview of the mechanisms of CRISPR-Cas9 in mammalian genome editing will be introduced, as well as the application of CRISPR-Cas9 in studying the barriers to drug delivery.
Collapse
Affiliation(s)
- Ji He
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Piyush Bugde
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Jiawei Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-9921-9999 (ext. 7109)
| |
Collapse
|