1
|
Gao Y, Liu X, Li J. Targeting tRNA methyltransferases: from molecular mechanisms to drug discovery. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2886-2. [PMID: 40347212 DOI: 10.1007/s11427-024-2886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/24/2025] [Indexed: 05/12/2025]
Abstract
Transfer RNA methyltransferases (tRNA MTases) catalyze site-specific methylation on tRNAs, a critical process that ensures the stability and functionality of tRNA molecules, thereby maintaining cellular homeostasis of tRNA methylation. Recent studies have illuminated the structural diversity, specific substrate recognition, and conserved catalytic mechanisms of tRNA MTases, revealing how their dysregulation contributes to various diseases, including cancers and neurodevelopmental disorders. This review integrates these advances, exploring the challenges of achieving precise substrate recognition and modification in the context of complex and specific tRNA modification landscape, while emphasizing the crucial role of tRNA MTases in disease pathogenesis. The identification of small-molecule inhibitors targeting specific tRNA MTases marks a promising step toward the development of novel therapies. With continued research into the broader biological functions and regulatory mechanisms of tRNA MTases, these insights hold great potential to drive clinical advancements and therapeutic innovations.
Collapse
Affiliation(s)
- Yanrong Gao
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010020, China
- School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Xinyu Liu
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010020, China
- School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jiazhi Li
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010020, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| |
Collapse
|
2
|
Sun X, Kleiner RE. Dynamic Regulation of 5-Formylcytidine on tRNA. ACS Chem Biol 2025; 20:907-916. [PMID: 40079837 DOI: 10.1021/acschembio.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Post-transcriptional modifications on RNA play an important role in biological processes, but we lack an understanding of the molecular mechanisms underlying the function of many modifications. Here we characterize the distribution and dynamic regulation of 5-formylcytidine (f5C), a modification primarily found on tRNAs, across different cell lines, mouse tissues, and in response to environmental stress. We identify perturbation in bulk f5C levels using nucleoside LC-MS and quantify individual modification stoichiometry at the wobble base of mt-tRNA-Met and tRNA-Leu-CAA using nucleotide resolution f5C sequencing technology. Our studies show that f5C modifications on tRNAs are dynamic, and responsive to fluctuations in cellular iron levels and O2 concentration. Further, we show using a translation reporter assay that decoding of Leu UUA codons is impaired in cells lacking f5C, implicating f5C(m)34 on tRNA-Leu-CAA in wobble decoding. Together, our work illuminates dynamic epitranscriptomic mechanisms regulating protein translation in response to environment.
Collapse
Affiliation(s)
- Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Orji OC, Stones J, Rajani S, Markus R, Öz MD, Knight HM. Global Co-regulatory Cross Talk Between m 6A and m 5C RNA Methylation Systems Coordinate Cellular Responses and Brain Disease Pathways. Mol Neurobiol 2025; 62:5006-5021. [PMID: 39499421 PMCID: PMC11880056 DOI: 10.1007/s12035-024-04555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
N6 adenosine and C5 cytosine modification of mRNAs, tRNAs and rRNAs are regulated by the behaviour of distinct sets of writer, reader and eraser effector proteins which are conventionally considered to function independently. Here, we provide evidence of global cross-regulatory and functional interaction between the m6A and m5C RNA methylation systems. We first show that m6A and m5C effector protein transcripts are subject to reciprocal base modification supporting the existence of co-regulatory post-transcriptional feedback loops. Using global mass spectrometry proteomic data generated after biological perturbation to identify proteins which change in abundance with effector proteins, we found novel co-regulatory cellular response relationships between m6A and m5C proteins such as between the m6A eraser, ALKBH5, and the m5C writer, NSUN4. Gene ontology analysis of co-regulated proteins indicated that m6A and m5C RNA cross-system control varies across cellular processes, e.g. proteasome and mitochondrial mechanisms, and post-translational modification processes such as SUMOylation and phosphorylation. We also uncovered novel relationships between effector protein networks including contributing to intellectual disability pathways. Finally, we provided in vitro confirmation of colocalisation between m6A-RNAs and the m5C reader protein, ALYREF, after synaptic NMDA activation. These findings have important implications for understanding control of RNA metabolism, cellular proteomic responses, and brain disease mechanisms.
Collapse
Affiliation(s)
- Oliver Chukwuma Orji
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Department of Medical Laboratory Sciences, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Joseph Stones
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Seema Rajani
- School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Robert Markus
- School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Merve Demirbugen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
4
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Chujo T, Tomizawa K. Mitochondrial tRNA modifications: functions, diseases caused by their loss, and treatment strategies. RNA (NEW YORK, N.Y.) 2025; 31:382-394. [PMID: 39719325 PMCID: PMC11874988 DOI: 10.1261/rna.080257.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Mitochondrial tRNA (mt-tRNA) modifications play pivotal roles in decoding and sustaining tRNA stability, thereby enabling the synthesis of essential respiratory complex proteins in mitochondria. Consequently, loss of human mt-tRNA modifications caused by mutations in the mitochondrial or nuclear genome can cause life-threatening mitochondrial diseases such as encephalopathy and cardiomyopathy. In this article, we first provide a comprehensive overview of the functions of mt-tRNA modifications, the responsible modification enzymes, and the diseases caused by the loss of mt-tRNA modifications. We then discuss progress and potential strategies to treat these diseases, including taurine supplementation for MELAS patients, targeted deletion of mtDNA variants, and overexpression of modification-related proteins. Finally, we discuss factors that need to be overcome to cure "mitochondrial tRNA modopathies."
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
6
|
Lou N, Gu X, Fu L, Li J, Xue C. Significant roles of RNA 5-methylcytosine methylation in cancer. Cell Signal 2025; 126:111529. [PMID: 39615772 DOI: 10.1016/j.cellsig.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024]
Abstract
Cancer stands as a leading cause of mortality and poses an escalating threat to global health. Epigenetic dysregulation is pivotal in the onset and advancement of cancer. Recent research on RNA 5-methylcytosine (m5C) methylation has underscored its significant role in cancer. RNA m5C methylation is a key component in gene expression regulation and is intricately linked to cancer development, offering valuable insights for cancer diagnosis, treatment, and prognosis. This review provides an in-depth examination of the three types of regulators associated with RNA m5C methylation and their biological functions. It further investigates the expression and impact of RNA m5C methylation and its regulators in cancer, focusing on their mechanisms in cancer progression and clinical relevance. The current research on inhibitors targeting RNA m5C methylation-related regulators remains underdeveloped, necessitating further exploration and discovery.
Collapse
Affiliation(s)
- Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
7
|
Lee M, Wakigawa T, Jia Q, Liu C, Huang R, Huang S, Nagao A, Suzuki T, Tomita K, Iwasaki S, Takeuchi-Tomita N. Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation. Nucleic Acids Res 2025; 53:gkaf021. [PMID: 39878211 PMCID: PMC11775629 DOI: 10.1093/nar/gkaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/04/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
The mammalian mitochondrial protein synthesis system produces 13 essential subunits of oxidative phosphorylation (OXPHOS) complexes. Translation initiation in mammalian mitochondria is characterized by the use of leaderless messenger RNAs (mRNAs) and non-AUG start codons, where the proofreading function of IF-3mt still remains elusive. Here, we developed a reconstituted mammalian mitochondrial translation system using in vitro transcribed and native mitochondrial transfer RNAs (tRNAs) to investigate IF-3mt's proofreading function. Similar to bacterial IF-3, IF-3mt permits an initiator tRNA to participate in initiation by discriminating the three G-C pairs in its anticodon stem, and by the cognate interactions of its anticodon with the AUG start codon. As a result, IF-3mt promotes the accurate initiation of leaderless mRNAs. Nevertheless, IF-3mt can also facilitate initiation from the non-AUG(AUA) start codon through its unique N- and C-terminal extensions, in concert with the 5-methylcytidine (m5C) or 5-formylcytidine (f5C) modification at the anticodon wobble position of mt-tRNAMet. This is partly because the IF-3mt-specific N- and C-terminal extensions and the KKGK-motif favor leaderless mRNA initiation and relax non-AUG start codon discrimination. Analyses of IF-3mt-depleted human cells revealed that IF-3mt indeed participates in translating the open reading frames (ORFs) of leaderless mRNAs, as well as the internal ORFs of dicistronic mRNAs.
Collapse
MESH Headings
- Codon, Initiator/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Humans
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/chemistry
- Mitochondria/genetics
- Mitochondria/metabolism
- Animals
- Protein Biosynthesis
- Peptide Chain Initiation, Translational
- Anticodon
- RNA, Mitochondrial
Collapse
Affiliation(s)
- Muhoon Lee
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Taisei Wakigawa
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Qimin Jia
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Chang Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Ruiyuan Huang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shuai Huang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
8
|
Wang Z, Fang Y, Yu Y, Pan H. ALKBH1-mediated N6-methyladenosine methylation of TRAF1 promotes osteosarcoma proliferation and metastasis. Am J Cancer Res 2025; 15:375-389. [PMID: 39949951 PMCID: PMC11815365 DOI: 10.62347/alxr1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Osteosarcoma (OS) is a highly malignant bone tumor with poor prognosis and limited therapeutic options. Recent studies have highlighted the critical role of RNA modifications, particularly N6-methyladenosine (m6A) methylation, in cancer progression. This study aimed to investigate the role of ALKBH1, a m6A demethylase, in the proliferation and metastasis of OS through the regulation of TRAF1. Our findings showed that lower ALKBH1 expression correlates with poorer overall survival in OS patients. Knockdown of ALKBH1 significantly enhanced the proliferation, migration, and clonogenicity of OS cell lines (MG63 and HOS cells), while overexpression had the opposite effects. Transcriptomic analysis revealed that ALKBH1 regulates the expression of key oncogenes, including TRAF1, through m6A methylation. m6A-RIP and qPCR assays further confirmed that overexpression of ALKBH1 significantly decreased the m6A methylation and expression of TRAF1 in both MG63 and HOS cells, and ALKBH1 knockdown had the opposite roles. Combined knockdown of ALKBH1 and TRAF1 further reduced the oncogenic properties of osteosarcoma cells compared to individual knockdown for ALKBH1. In conclusion, ALKBH1 silence promotes osteosarcoma proliferation and metastasis by regulating TRAF1 expression through m6A methylation. Targeting the ALKBH1-TRAF1 axis may provide a novel therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Zhichao Wang
- The Sixth Department of Orthopaedics, The Fifth Hospital of HarbinTongtian Street No. 58, Harbin, Heilongjiang, China
| | - Yuli Fang
- The Sixth Department of Orthopaedics, The Fifth Hospital of HarbinTongtian Street No. 58, Harbin, Heilongjiang, China
| | - Yang Yu
- Endocrinology Department, Beidahuang Group General HospitalDayoufang Street No. 135, Harbin, Heilongjiang, China
| | - Haile Pan
- The Second Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical UniversityBaojian Road No. 148, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Li Z, Mi K, Xu C. Most m5C Modifications in Mammalian mRNAs are Nonadaptive. Mol Biol Evol 2025; 42:msaf008. [PMID: 39824217 PMCID: PMC11756383 DOI: 10.1093/molbev/msaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
5-Methylation (m5C) on mRNA molecules is a prevalent internal posttranscriptional modification in eukaryotes. Although m5C modification has been reported to regulate some biological processes, whether most mRNA m5C modifications are functional is unknown. To address this question, we analyzed the genome-wide evolutionary characteristics of m5C modifications in protein-coding genes of humans and mice. Our analysis of RNA sequencing data from 13 tissues of both species revealed that (i) the occurrence of m5C modification is exceedingly low, (ii) the fraction of m5Cs decreases with the amount of Cs across genes or tissues, (iii) m5C modifications are mostly unshared between species, and (iv) m5C sites and motifs do not exhibit greater evolutionary conservation. Additionally, we estimate that a large fraction of the observed mRNA m5C modifications may be deleterious. Together, these observations suggest that most m5C modifications in mammalian mRNAs are nonadaptive, which has important implications for understanding the biological significance of m5C and other posttranscriptional modifications.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Mi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuan Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
10
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
11
|
Zhang H, Li X, Bai J, Zhang C. Mice with NOP2/sun RNA methyltransferase 5 deficiency die before reaching puberty due to fatal kidney damage. Ren Fail 2024; 46:2349139. [PMID: 38712768 PMCID: PMC11078075 DOI: 10.1080/0886022x.2024.2349139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice. METHODS In the present research, we built a mouse model (Nsun5-/-) using the CRISPR/Cas9 system to investigated the specific role of NSUN5. RESULTS We observed that Nsun5-/- mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5-/- mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5-/- kidneys. Furthermore, we found that the kidneys of Nsun5-/- mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21. CONCLUSIONS In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.
Collapse
Affiliation(s)
- Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaohui Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jing Bai
- Jinan Maternal and Child Health Care Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
12
|
Huang J, Wang X, Xia R, Yang D, Liu J, Lv Q, Yu X, Meng J, Chen K, Song B, Wang Y. Domain-knowledge enabled ensemble learning of 5-formylcytosine (f5C) modification sites. Comput Struct Biotechnol J 2024; 23:3175-3185. [PMID: 39253057 PMCID: PMC11381828 DOI: 10.1016/j.csbj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
5-formylcytidine (f5C) is a unique post-transcriptional RNA modification found in mRNA and tRNA at the wobble site, playing a crucial role in mitochondrial protein synthesis and potentially contributing to the regulation of translation. Recent studies have unveiled that the f5C modifications may drive mitochondrial mRNA translation to power cancer metastasis. Accurate identification of f5C sites is essential for further unraveling their molecular functions and regulatory mechanisms, but there are currently no computational methods available for predicting their locations. In this study, we introduce an innovative ensemble approach, successfully enabling the computational recognition of Saccharomyces cerevisiae f5C. We conducted a comprehensive model selection process that involved multiple basic machine learning and deep learning algorithms such as recurrent neural networks, convolutional neural networks and Transformer-based models. Initially trained only on sequence information, these individual models achieved an AUROC ranging from 0.7104 to 0.7492. Through the integration of 32 novel domain-derived genomic features, the performance of individual models has significantly improved to an AUROC between 0.7309 and 0.8076. To further enhance accuracy and robustness, we then constructed the ensembles of these individual models with different combinations. The best performance attained by our ensemble models reached an AUROC of 0.8391. Shapley additive explanations were conducted to explain the significant contributions of genomic features, providing insights into the putative distribution of f5C across various topological regions and potentially paving the way for revealing their functional relevance within distinct genomic contexts. A freely accessible web server that allows real-time analysis of user-uploaded sites can be accessed at: www.rnamd.org/Resf5C-Pred.
Collapse
Affiliation(s)
- Jiaming Huang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xuan Wang
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Rong Xia
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dongqing Yang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoxuan Yu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Tang X, Li K, Wang Y, Rocchi S, Shen S, Cerezo M. Metabolism and mRNA translation: a nexus of cancer plasticity. Trends Cell Biol 2024:S0962-8924(24)00225-3. [PMID: 39603916 DOI: 10.1016/j.tcb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Tumors often face energy deprivation due to mutations, hypoxia, and nutritional deficiencies within the harsh tumor microenvironment (TME), and as an effect of anticancer treatments. This metabolic stress triggers adaptive reprogramming of mRNA translation, which in turn adjusts metabolic plasticity and associated signaling pathways to ensure tumor cell survival. Emerging evidence is beginning to reveal the complex interplay between metabolism and mRNA translation, shedding light on the mechanisms that synchronize ribosome assembly and reconfigure translation programs under metabolic stress. This review explores recent advances in our understanding of the coordination between metabolism and mRNA translation, offering insights that could inform therapeutic strategies targeting both cancer metabolism and translation, with the aim of disrupting cancer cell plasticity and survival.
Collapse
Affiliation(s)
- Xinpu Tang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiu Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Stéphane Rocchi
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France
| | - Shensi Shen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Michael Cerezo
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
14
|
Wen J, Zhu Q, Liu Y, Gou LT. RNA modifications: emerging players in the regulation of reproduction and development. Acta Biochim Biophys Sin (Shanghai) 2024; 57:33-58. [PMID: 39574165 PMCID: PMC11802351 DOI: 10.3724/abbs.2024201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/05/2024] [Indexed: 01/25/2025] Open
Abstract
The intricate world of RNA modifications, collectively termed the epitranscriptome, covers over 170 identified modifications and impacts RNA metabolism and, consequently, almost all biological processes. In this review, we focus on the regulatory roles and biological functions of a panel of dominant RNA modifications (including m 6A, m 5C, Ψ, ac 4C, m 1A, and m 7G) on three RNA types-mRNA, tRNA, and rRNA-in mammalian development, particularly in the context of reproduction as well as embryonic development. We discuss in detail how those modifications, along with their regulatory proteins, affect RNA processing, structure, localization, stability, and translation efficiency. We also highlight the associations among dysfunctions in RNA modification-related proteins, abnormal modification deposition and various diseases, emphasizing the roles of RNA modifications in critical developmental processes such as stem cell self-renewal and cell fate transition. Elucidating the molecular mechanisms by which RNA modifications influence diverse developmental processes holds promise for developing innovative strategies to manage developmental disorders. Finally, we outline several unexplored areas in the field of RNA modification that warrant further investigation.
Collapse
Affiliation(s)
- Junfei Wen
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qifan Zhu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yong Liu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Lan-Tao Gou
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
15
|
Wang R, Ding L, Lin Y, Luo W, Xu Z, Li W, Lu Y, Zhu Z, Lu Z, Li F, Mao X, Xia L, Li G. The Quiet Giant: Identification, Effectors, Molecular Mechanism, Physiological and Pathological Function in mRNA 5-methylcytosine Modification. Int J Biol Sci 2024; 20:6241-6254. [PMID: 39664561 PMCID: PMC11628344 DOI: 10.7150/ijbs.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024] Open
Abstract
5-Methylcytosine (m5C) is a prevalent nucleotide alteration observed in transfer RNA (tRNA) and ribosomal RNA (rRNA), and it is also widely distributed in the transcriptome, serving as one of the internal modifications of messenger RNA (mRNA) in higher eukaryotes. Increasing evidence has substantiated the presence of m5C in mRNA. As research on m5C progresses, there is an initial comprehension of its molecular mechanisms and biological significance in mRNA. This work aims to provide a comprehensive summary of the most recent advancements in the identification and screening, distribution, molecular functions, and biological effects of m5C in mRNA. We outline the current status of research and provide prospects for potential future applications.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weilin Li
- Department of Urology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziwei Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Fan Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
16
|
Li D, Liu Y, Yang G, He M, Lu L. Recent insights into RNA m5C methylation modification in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189223. [PMID: 39577751 DOI: 10.1016/j.bbcan.2024.189223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
RNA 5-methylcytosine (m5C) methylation involves the addition of a methyl (-CH3) group to the cytosine (C) base within an RNA molecule, forming the m5C modification. m5C plays a role in numerous essential biological processes, including the regulation of RNA stability, nuclear export, and protein translation. Recent studies have highlighted the importance of m5C in the pathogenesis of various diseases, particularly tumors. Emerging evidence indicates that RNA m5C methylation is intricately implicated in the mechanisms underlying hepatocellular carcinoma (HCC). Dysregulation of m5C-associated regulatory factors is common in HCC and shows significant associations with prognosis, treatment response, and clinicopathological features. This review provides an in-depth analysis of the components and functions of m5C regulators, particularly emphasizing their research advancements in the context of HCC.
Collapse
Affiliation(s)
- Danyang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Guang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Mingyu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China; Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China.
| |
Collapse
|
17
|
Yu LM, Wang ZR, Fan QX, Jia T, Zhang TH, Zhu XQ, Liu Q. mRNA 5-methylcytosine in Eimeria tenella oocysts: An abundant post-transcriptional modification associated with broad-ranging biological processes. Int J Biol Macromol 2024; 280:135817. [PMID: 39306157 DOI: 10.1016/j.ijbiomac.2024.135817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Eimeria tenella is the major causative agent of chicken coccidiosis. 5-Methylcytosine (m5C) is a type of RNA chemical modifications reported to regulate diverse biological processes. However, the distribution and biological functions of m5C in E. tenella mRNAs are yet to be known. Herein, we report transcriptome-wide profiling of mRNA m5C in E. tenella by employing m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). Our data showed that m5C peaks were distributed across the whole mRNA body. Compared with unsporulated oocysts, there were 2813 hypermethylated and 1850 hypomethylated m5C peaks in sporulated oocysts. Generally, a positive correlation between m5C modification and gene expression levels was observed. The mRNA sequencing (RNA-seq) and m5C-RIP-seq data were consistent with the results of the quantitative reverse transcription PCR (RT-qPCR) and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively. Gene Ontology (GO) and pathway enrichment analysis predicated diverse biological functions and pathways, including microtubule motor activity, helicase activity, cGMP-PKG signaling pathway, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, and spliceosome. Meanwhile, stage-specific gene expression signatures of m5C-related regulators were observed. Altogether, our findings reveal the transcriptional significance of m5C modification in E. tenella oocysts, providing resources and clues for further in-depth research.
Collapse
Affiliation(s)
- Lin-Mei Yu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Zi-Rui Wang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Qing-Xin Fan
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Tao Jia
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Tian-Hong Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| |
Collapse
|
18
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
19
|
Lidonnici J, Oberkersch RE. Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis. Int J Mol Sci 2024; 25:11284. [PMID: 39457064 PMCID: PMC11508371 DOI: 10.3390/ijms252011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Angiogenesis, the process of formation of new blood vessels from pre-existing vasculature, is essential for tumor growth and metastasis. Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF) signaling is a powerful tool to combat tumor growth; however, anti-tumor angiogenesis therapy has shown limited efficacy, with survival benefits ranging from only a few weeks to months. Compensation by upregulation of complementary growth factors and switches to different modes of vascularization have made these types of therapies less effective. Recent evidence suggests that targeting specific players in endothelial metabolism is a valuable therapeutic strategy against tumor angiogenesis. Although it is clear that metabolism can modulate the translational machinery, the reciprocal relationship between metabolism and mRNA translational control during tumor angiogenesis is not fully understood. In this review, we explore emerging examples of how endothelial cell metabolism affects mRNA translation during the formation of blood vessels. A deeper comprehension of these mechanisms could lead to the development of innovative therapeutic strategies for both physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy;
| | | |
Collapse
|
20
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Nakai M, Hase H, Zhao Y, Okawa K, Honda K, Ikuma K, Kitae K, Tsujikawa K. RNA-modifying enzyme Alkbh8 is involved in mouse embryonic development. iScience 2024; 27:110777. [PMID: 39280612 PMCID: PMC11402254 DOI: 10.1016/j.isci.2024.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
RNAs undergo more than 300 modifications after transcription. Aberrations in RNA modifications can lead to diseases; their involvement in fetal development has been suggested. This study explored the RNA modifications related to fetal development in mice. We quantified changes in RNA modifications present in mouse embryos at each stage: Metaphase II (MII) oocyte; pronucleus; 2-cell; morula; blastocyst; embryonic days (E)10.5, 13.5, 16.5, and 19.5; and newborn (post-natal day [P]0) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Our results confirm that many RNAs undergo dynamic modifications. In particular, 5-methoxycarbonylmethyluridine (mcm5U) modification was distinctive and increased during the fetal period. In Alkbh8-knockout (KO) mice, the tRNA protein translation efficiency was reduced. Proteome analysis revealed that the factors downregulated in Alkbh8-KO mice were associated with red blood cell and protoporphyrin metabolism. Our results suggest that ALKBH8 facilitates changes in tRNA balance in conjunction with mcm5U, which are essential for normal red blood cell differentiation and embryogenesis in mice.
Collapse
Affiliation(s)
- Manami Nakai
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutong Zhao
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsuya Okawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohei Honda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaori Ikuma
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
24
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
25
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
26
|
Guo W, Russo S, Tuorto F. Lost in translation: How neurons cope with tRNA decoding. Bioessays 2024; 46:e2400107. [PMID: 38990077 DOI: 10.1002/bies.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Post-transcriptional tRNA modifications contribute to the decoding efficiency of tRNAs by supporting codon recognition and tRNA stability. Recent work shows that the molecular and cellular functions of tRNA modifications and tRNA-modifying-enzymes are linked to brain development and neurological disorders. Lack of these modifications affects codon recognition and decoding rate, promoting protein aggregation and translational stress response pathways with toxic consequences to the cell. In this review, we discuss the peculiarity of local translation in neurons, suggesting a role for fine-tuning of translation performed by tRNA modifications. We provide several examples of tRNA modifications involved in physiology and pathology of the nervous system, highlighting their effects on protein translation and discussing underlying mechanisms, like the unfolded protein response (UPR), ribosome quality control (RQC), and no-go mRNA decay (NGD), which could affect neuronal functions. We aim to deepen the understanding of the roles of tRNA modifications and the coordination of these modifications with the protein translation machinery in the nervous system.
Collapse
Affiliation(s)
- Wei Guo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefano Russo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
27
|
Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, Gao L, Fu A, Liu C, He B, Xiong X, Yin Y, Wang Q, Yi C, Li X. Base-resolution m 5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach. Mol Cell 2024; 84:2984-3000.e8. [PMID: 39002544 DOI: 10.1016/j.molcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.
Collapse
Affiliation(s)
- Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuenan Zhou
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zuokun Shi
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiwen Xie
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Zhang
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaoliao Gao
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anbo Fu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- The Second Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
28
|
Santos-Pujol E, Quero-Dotor C, Esteller M. Clinical Perspectives in Epitranscriptomics. Curr Opin Genet Dev 2024; 87:102209. [PMID: 38824905 DOI: 10.1016/j.gde.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Epitranscriptomics, the study of reversible and dynamic chemical marks on the RNA, is rapidly emerging as a pivotal field in post-transcriptional gene expression regulation. Increasing knowledge about epitranscriptomic landscapes implicated in disease pathogenesis proves an invaluable opportunity for the identification of epitranscriptomic biomarkers and the development of new potential therapeutic drugs. Hence, recent advances in the characterization of these marks and associated enzymes in both health and disease blaze a trail toward the use of epitranscriptomics approaches for clinical applications. Here, we review the latest studies to provide a wide and comprehensive perspective of clinical epitranscriptomics and emphasize its transformative potential in shaping future health care paradigms.
Collapse
Affiliation(s)
- Eloy Santos-Pujol
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. https://twitter.com/@EloySantosPujol
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
29
|
Malka-Tunitsky N, Sas-Chen A. Role of RNA modifications in cancer metastasis. Curr Opin Genet Dev 2024; 87:102232. [PMID: 39047587 DOI: 10.1016/j.gde.2024.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The epitranscriptome encompasses over 170 post-transcriptional modifications found in various RNA species. RNA modifications play pivotal roles in regulating gene expression by shaping RNA structure and function, implicating the epitranscriptome in diverse biological processes, including pathology progression. This review focuses on research elucidating the roles of the epitranscriptome in cancer metastasis. Metastasis, a primary cause of solid tumor patient mortality, involves a multistep process whereby tumor cells migrate from a primary tumor to distant secondary organs. We discuss RNA modifications found on rRNA, tRNA, and mRNA, highlighting their roles in different stages of metastasis. Understanding mechanisms by which modifications regulate molecular and cellular processes during metastasis is crucial for leveraging epitranscriptomic signatures in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Nofar Malka-Tunitsky
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6195001 Tel Aviv, Israel. https://twitter.com/@Nofar_MalkaTun
| | - Aldema Sas-Chen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6195001 Tel Aviv, Israel.
| |
Collapse
|
30
|
Tang Z, Zhang N, Chen S, Fang J, Tang X, Lou Y, Jiang Y, Ma Y, Chen X, Chen Z, Zhan S, Ding X, Ding W, Ma Z. Bipyridine Derivatives as NOP2/Sun RNA Methyltransferase 3 Inhibitors for the Treatment of Colorectal Cancer. J Med Chem 2024. [PMID: 39054645 DOI: 10.1021/acs.jmedchem.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Based on the structure of caerulomycin A, 90 novel bipyridine derivatives were designed and synthesized. Among these, compound B19 exerted strong antitumor effects in vivo and in vitro. Importantly, NOP2/Sun RNA methyltransferase 3 (NSUN3) protein was identified as the target specific binding to B19, which inhibits oxidative phosphorylation of mitochondrial energy metabolism and enhances glycolytic activity by binding to NSUN3. Knockdown of NSUN3 inhibited both proliferation and migration of colorectal cancer (CRC) cells by activating AMPK-related signaling and inhibiting downstream STAT3 signaling to exert antiproliferative and pro-apoptotic effects. Our findings support the use of NSUN3 inhibitors as promising therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Zhen Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ningjing Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Shuang Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiebin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xinyi Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongjun Jiang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316021, China
| | - Yijun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuai Zhan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xia Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
31
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
32
|
Zhong J, Xu Z, Ding N, Wang Y, Chen W. The biological function of demethylase ALKBH1 and its role in human diseases. Heliyon 2024; 10:e33489. [PMID: 39040364 PMCID: PMC11260981 DOI: 10.1016/j.heliyon.2024.e33489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
AlkB homolog 1 (ALKBH1) is a member of the AlkB family of dioxygenases that are dependent on Fe(II) and α-ketoglutarate. Mounting evidence demonstrates that ALKBH1 exhibits enzymatic activity against various substrates, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N3-methylcytidine (m3C), 5-methylcytosine (m5C), N6-methyladenine (N6-mA, 6mA), and H2A, indicating its dual roles in different biological processes and involvement in human diseases. Up to the present, there is ongoing debate regarding ALKBH1's enzymatic activity. In this review, we present a comprehensive summary of recent research on ALKBH1, including its substrate diversity and pathological roles in a wide range of human disorders, the underlying mechanisms of its functions, and its dysregulation. We also explored the potential of ALKBH1 as a prognostic target.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Zhengyang Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Yanting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
33
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
34
|
Yang L, Tang L, Min Q, Tian H, Li L, Zhao Y, Wu X, Li M, Du F, Chen Y, Li W, Li X, Chen M, Gu L, Sun Y, Xiao Z, Shen J. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther 2024; 31:816-830. [PMID: 38351139 PMCID: PMC11192634 DOI: 10.1038/s41417-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Linwei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
35
|
Knight HM, Demirbugen Öz M, PerezGrovas-Saltijeral A. Dysregulation of RNA modification systems in clinical populations with neurocognitive disorders. Neural Regen Res 2024; 19:1256-1261. [PMID: 37905873 PMCID: PMC11467953 DOI: 10.4103/1673-5374.385858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms. Methylation of N6 adenosine (m6A) and C5 cytosine (m5C) bases occur on mRNAs, tRNA, mt-tRNA, and rRNA species as well as non-coding RNAs. With emerging knowledge of RNA binding proteins that act as writer, reader, and eraser effector proteins, comes a new understanding of physiological processes controlled by these systems. Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain, give rise to different forms of disease. In this review, we discuss accumulating evidence that changes in the m6A and m5C methylation systems contribute to neurocognitive disorders. Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m6A RNA reader protein. Subsequently, familial mutations within the m6A writer gene METTL5, m5C writer genes NSUN2, NSUN3, NSUN5, and NSUN6, as well as THOC2 and THOC6 that form a protein complex with the m5C reader protein ALYREF, were recognized to cause intellectual development disorders. Similarly, differences in expression of the m5C writer and reader effector proteins, NSUN6, NSUN7, and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease, individuals with a high neuropathological load or have suffered traumatic brain injury. Likewise, an abundance of m6A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases, Alzheimer's disease, and individuals with high cognitive reserve. m6A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue, whilst modified RNAs are misplaced within diseased cells, particularly where synapses are located. In parahippocampal brain tissue, m6A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits. These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders. Targeting these RNA modification systems brings new prospects for neural regenerative therapies.
Collapse
Affiliation(s)
- Helen M. Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Merve Demirbugen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | |
Collapse
|
36
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
37
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
38
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
39
|
Li L, Xia X, Yang T, Sun Y, Liu X, Xu W, Lu M, Cui D, Wu Y. RNA methylation: A potential therapeutic target in autoimmune disease. Int Rev Immunol 2024; 43:160-177. [PMID: 37975549 DOI: 10.1080/08830185.2023.2280544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m6A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytidine (m5C) and N7-methylguanosine (m7G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.
Collapse
Affiliation(s)
- Lele Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoping Xia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Tian Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuchao Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xueke Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wei Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mei Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
40
|
de Muijnck C, Brink JBT, de Haan HG, Rodenburg RJ, Wolf NI, Bergen AA, Boon CJF, van Genderen MM. Mutations in NSUN3, a Mitochondrial Methyl Transferase Gene, Cause Inherited Optic Neuropathy. Genes (Basel) 2024; 15:530. [PMID: 38790159 PMCID: PMC11121614 DOI: 10.3390/genes15050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited optic neuropathies (IONs) are rare genetic diseases characterized by progressive visual loss due the atrophy of optic nerves. The standard diagnostic workup involving next-generation sequencing panels has a diagnostic yield of about forty percent. In the other 60% of the patients with a clinical diagnosis of ION, the underlying genetic variants remain unknown. In this case study, we describe a potentially new disease-associated gene, NSUN3, for IONs. The proband was a young woman with consanguineous parents. She presented with bilateral optic atrophy and nystagmus at the age of seven years. Genetic testing revealed the homozygous variant c.349_352dup p.(Ala118Glufs*45) in NSUN3, with a segregation in the family compatible with autosomal recessive inheritance. Additional functional analysis showed decreased NSUN3 mRNA levels, slightly diminished mitochondrial complex IV levels, and decreased cell respiration rates in patient fibroblasts compared to healthy controls. In conclusion, pathogenic variants in NSUN3 can cause optic neuropathy. Trio whole-exome sequencing should be considered as a diagnostic strategy in ION cases where standard diagnostic analysis does not reveal disease-causing variants.
Collapse
Affiliation(s)
- Cansu de Muijnck
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Ophthalmology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Hugoline G. de Haan
- Department of Human Genetics, Amsterdam University Medical Centers, Location VU, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, Departments of Pediatrics and Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicole I. Wolf
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Location VU, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A. Bergen
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Emma Centre for Precision Medicine, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Maria M. van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Bartiméus Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| |
Collapse
|
41
|
Benak D, Kolar F, Hlavackova M. Epitranscriptomic Regulations in the Heart. Physiol Res 2024; 73:S185-S198. [PMID: 38634649 PMCID: PMC11412340 DOI: 10.33549/physiolres.935265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA modifications affect key stages of the RNA life cycle, including splicing, export, decay, and translation. Epitranscriptomic regulations therefore significantly influence cellular physiology and pathophysiology. Here, we selected some of the most abundant modifications and reviewed their roles in the heart and in cardiovascular diseases: N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), pseudouridine (?), 5 methylcytidine (m5C), and inosine (I). Dysregulation of epitranscriptomic machinery affecting these modifications vastly changes the cardiac phenotype and is linked with many cardiovascular diseases such as myocardial infarction, cardiomyopathies, or heart failure. Thus, a deeper understanding of these epitranscriptomic changes and their regulatory mechanisms can enhance our knowledge of the molecular underpinnings of prevalent cardiac diseases, potentially paving the way for novel therapeutic strategies. Keywords: Epitranscriptomics, RNA modifications, Epigenetics, m6A, RNA, Heart.
Collapse
Affiliation(s)
- D Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
42
|
Zhang T, Zhao F, Li J, Sun X, Zhang X, Wang H, Fan P, Lai L, Li Z, Sui T. Programmable RNA 5-methylcytosine (m5C) modification of cellular RNAs by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res 2024; 52:2776-2791. [PMID: 38366553 PMCID: PMC11014266 DOI: 10.1093/nar/gkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
5-Methylcytosine (m5C), an abundant RNA modification, plays a crucial role in regulating RNA fate and gene expression. While recent progress has been made in understanding the biological roles of m5C, the inability to introduce m5C at specific sites within transcripts has hindered efforts to elucidate direct links between specific m5C and phenotypic outcomes. Here, we developed a CRISPR-Cas13d-based tool, named reengineered m5C modification system (termed 'RCMS'), for targeted m5C methylation and demethylation in specific transcripts. The RCMS editors consist of a nuclear-localized dCasRx conjugated to either a methyltransferase, NSUN2/NSUN6, or a demethylase, the catalytic domain of mouse Tet2 (ten-eleven translocation 2), enabling the manipulation of methylation events at precise m5C sites. We demonstrate that the RCMS editors can direct site-specific m5C incorporation and demethylation. Furthermore, we confirm their effectiveness in modulating m5C levels within transfer RNAs and their ability to induce changes in transcript abundance and cell proliferation through m5C-mediated mechanisms. These findings collectively establish RCMS editors as a focused epitranscriptome engineering tool, facilitating the identification of individual m5C alterations and their consequential effects.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Feiyu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Jinze Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Xiaodi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Xiyun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Hejun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Peng Fan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| |
Collapse
|
43
|
Seitz F, Jungnickel T, Kleiber N, Kretschmer J, Dietzsch J, Adelmann J, Bohnsack KE, Bohnsack MT, Höbartner C. Atomic Mutagenesis of N6-Methyladenosine Reveals Distinct Recognition Modes by Human m 6A Reader and Eraser Proteins. J Am Chem Soc 2024; 146:7803-7810. [PMID: 38445613 DOI: 10.1021/jacs.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
N6-methyladenosine (m6A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m6A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m6A by proteins. Here, we use atomic mutagenesis of m6A to systematically investigate the mechanisms of the two human m6A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m6A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m6A analogues introduced in this work will be useful probes for other proteins in m6A research.
Collapse
Affiliation(s)
- Florian Seitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tina Jungnickel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Jens Kretschmer
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Julia Dietzsch
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Juliane Adelmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, University of Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| |
Collapse
|
44
|
Añazco-Guenkova AM, Miguel-López B, Monteagudo-García Ó, García-Vílchez R, Blanco S. The impact of tRNA modifications on translation in cancer: identifying novel therapeutic avenues. NAR Cancer 2024; 6:zcae012. [PMID: 38476632 PMCID: PMC10928989 DOI: 10.1093/narcan/zcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Recent advancements have illuminated the critical role of RNA modifications in post-transcriptional regulation, shaping the landscape of gene expression. This review explores how tRNA modifications emerge as critical players, fine-tuning functionalities that not only maintain the fidelity of protein synthesis but also dictate gene expression and translation profiles. Highlighting their dysregulation as a common denominator in various cancers, we systematically investigate the intersection of both cytosolic and mitochondrial tRNA modifications with cancer biology. These modifications impact key processes such as cell proliferation, tumorigenesis, migration, metastasis, bioenergetics and the modulation of the tumor immune microenvironment. The recurrence of altered tRNA modification patterns across different cancer types underscores their significance in cancer development, proposing them as potential biomarkers and as actionable targets to disrupt tumorigenic processes, offering new avenues for precision medicine in the battle against cancer.
Collapse
Affiliation(s)
- Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
45
|
Fitzsimmons CM, Mandler MD, Lunger JC, Chan D, Maligireddy S, Schmiechen A, Gamage S, Link C, Jenkins L, Chan K, Andresson T, Crooks D, Meier J, Linehan W, Batista P. Rewiring of RNA methylation by the oncometabolite fumarate in renal cell carcinoma. NAR Cancer 2024; 6:zcae004. [PMID: 38328795 PMCID: PMC10849186 DOI: 10.1093/narcan/zcae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer that facilitates changes in many adaptive biological processes. Mutations in the tricarboxylic acid cycle enzyme fumarate hydratase (FH) lead to fumarate accumulation and cause hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is a rare, inherited disease characterized by the development of non-cancerous smooth muscle tumors of the uterus and skin, and an increased risk of an aggressive form of kidney cancer. Fumarate has been shown to inhibit 2-oxoglutarate-dependent dioxygenases (2OGDDs) involved in the hydroxylation of HIF1α, as well as in DNA and histone demethylation. However, the link between fumarate accumulation and changes in RNA post-transcriptional modifications has not been defined. Here, we determine the consequences of fumarate accumulation on the activity of different members of the 2OGDD family targeting RNA modifications. By evaluating multiple RNA modifications in patient-derived HLRCC cell lines, we show that mutation of FH selectively affects the levels of N6-methyladenosine (m6A), while the levels of 5-formylcytosine (f5C) in mitochondrial tRNA are unaffected. This supports the hypothesis of a differential impact of fumarate accumulation on distinct RNA demethylases. The observation that metabolites modulate specific subsets of RNA-modifying enzymes offers new insights into the intersection between metabolism and the epitranscriptome.
Collapse
Affiliation(s)
- Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith C Lunger
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dalen Chan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddhardha S Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra C Schmiechen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Courtney Link
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - King Chan
- Protein Characterization Laboratory, Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Chang R, Tsui KH, Pan LF, Li CJ. Spatial and single-cell analyses uncover links between ALKBH1 and tumor-associated macrophages in gastric cancer. Cancer Cell Int 2024; 24:57. [PMID: 38317214 PMCID: PMC10845659 DOI: 10.1186/s12935-024-03232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AlkB homolog 1, histone H2A dioxygenase (ALKBH1), a crucial enzyme involved in RNA demethylation in humans, plays a significant role in various cellular processes. While its role in tumor progression is well-established, its specific contribution to stomach adenocarcinoma (STAD) remains elusive. This study seeks to explore the clinical and pathological relevance of ALKBH1, its impact on the tumor immune microenvironment, and its potential for precision oncology in STAD. METHODS We adopted a comprehensive multi-omics approach to identify ALKBH1 as an potential diagnostic biomarker for STAD, demonstrating its association with advanced clinical stages and reduced overall survival rates. Our analysis involved the utilization of publicly available datasets from GEO and TCGA. We identified differentially expressed genes in STAD and scrutinized their relationships with immune gene expression, overall survival, tumor stage, gene mutation profiles, and infiltrating immune cells. Moreover, we employed spatial transcriptomics to investigate ALKBH1 expression across distinct regions of STAD. Additionally, we conducted spatial transcriptomic and single-cell RNA-sequencing analyses to elucidate the correlation between ALKBH1 expression and immune cell populations. Our findings were validated through immunohistochemistry and bioinformatics on 60 STAD patient samples. RESULTS Our study unveiled crucial gene regulators in STAD linked with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators demonstrated a positive association with distinct immune cell populations across six immune datasets, exerting a substantial influence on immune cell infiltration in STAD. Furthermore, we established a connection between elevated ALKBH1 expression and macrophage infiltration in STAD. Pharmacogenomic analysis of gastric cancer cell lines further indicated that ALKBH1 inactivation correlated with heightened sensitivity to specific small-molecule drugs. CONCLUSION In conclusion, our study highlights the potential role of ALKBH1 alterations in the advancement of STAD, shedding light on novel diagnostic and prognostic applications of ALKBH1 in this context. We underscore the significance of ALKBH1 within the tumor immune microenvironment, suggesting its utility as a precision medicine tool and for drug screening in the management of STAD.
Collapse
Affiliation(s)
- Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Li-Fei Pan
- Department of General Affair Office, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
47
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
48
|
Zhao Y, Xing C, Peng H. ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci 2024; 338:122372. [PMID: 38135116 DOI: 10.1016/j.lfs.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
5-Methylcytosine (m5C) methylation is present in almost all types of RNA as an essential epigenetic modification. It is dynamically modulated by its associated enzymes, including m5C methyltransferases (NSUN, DNMT and TRDMT family members), demethylases (TET family and ALKBH1) and binding proteins (YTHDF2, ALYREF and YBX1). Among them, aberrant expression of the RNA-binding protein ALYREF can facilitate a variety of malignant phenotypes such as maintenance of proliferation, malignant heterogeneity, metastasis, and drug resistance to cell death through different regulatory mechanisms, including pre-mRNA processing, mRNA stability, and nuclear-cytoplasmic shuttling. The induction of these cellular processes by ALYREF results in treatment resistance and poor outcomes for patients. However, there are currently few reports of clinical applications or drug trials related to ALYREF. In addition, the looming observations on the role of ALYREF in the mechanisms of carcinogenesis and disease prognosis have triggered considerable interest, but critical evidence is not available. For example, animal experiments and ALYREF small molecule inhibitor trials. In this review, we, therefore, revisit the literature on ALYREF and highlight its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan 410011, China.
| |
Collapse
|
49
|
Helm M, Bohnsack MT, Carell T, Dalpke A, Entian KD, Ehrenhofer-Murray A, Ficner R, Hammann C, Höbartner C, Jäschke A, Jeltsch A, Kaiser S, Klassen R, Leidel SA, Marx A, Mörl M, Meier JC, Meister G, Rentmeister A, Rodnina M, Roignant JY, Schaffrath R, Stadler P, Stafforst T. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2441-2449. [PMID: 37962075 DOI: 10.1021/acschembio.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | | | - Ralf Ficner
- Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Christian Hammann
- Department of Medicine, HMU Health and Medical University, 14471 Potsdam, Germany
| | - Claudia Höbartner
- Institute for Organic Chemistry, Julius-Maximilians-University of Würzburg, 97074 Würzburg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefanie Kaiser
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Roland Klassen
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andreas Marx
- Department of Chemistry - Organic/Cellular Chemistry, University of Constance, 78457 Constance, Germany
| | - Mario Mörl
- Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Jochen C Meier
- Department of Cell Physiology, Technical University of Braunschweig, 38106 Brunswick, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology - Biochemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Rentmeister
- Institute for Biochemistry, Westphalian Wilhelms University Münster, 48149 Münster, Germany
| | - Marina Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raffael Schaffrath
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Peter Stadler
- Institute for Computer Science - Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Thorsten Stafforst
- Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
50
|
Zheng L, Duan Y, Li M, Wei J, Xue C, Chen S, Wei Q, Tang F, Xiong W, Zhou M, Deng H. Deciphering the vital roles and mechanism of m5C modification on RNA in cancers. Am J Cancer Res 2023; 13:6125-6146. [PMID: 38187052 PMCID: PMC10767349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
5-methylcytosine (m5C modification) plays an essential role in tumors, which affects different types of RNA, the expression of downstream target genes, and downstream pathways, thus participating in the tumor process. However, the effect of m5C modification on RNA in tumors and the exact mechanism have not been systematically reviewed. Therefore, we reviewed the status and sites of m5C modification, as well as the expression pattern and biological functions of m5C regulators in tumors, and further summarized the effects and regulation mechanism of m5C modification on messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA) and other RNA in tumors. Finally, we summed up the interaction network, potential application, and value in clinical diagnosis and treatment of tumors. Taken together, this review benefits revealing the mechanism of m5C modification in tumor progression and provides new strategies for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| |
Collapse
|