1
|
Sarkar P, Lüscher BP, Ye Z, Chung WY, Abtahi AM, Zheng C, Lee MG, Varga Á, Pallagi P, Maléth J, Ahuja M, Muallem S. Lipid transporters E-Syt3 and ORP5 regulate epithelial ion transport by controlling phosphatidylserine enrichment at ER/PM junctions. EMBO J 2025:10.1038/s44318-025-00470-9. [PMID: 40425857 DOI: 10.1038/s44318-025-00470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Endoplasmic reticulum/plasma membrane (ER/PM) junctions are a major site of cellular signal transduction including in epithelia; however, whether their lipid membrane environment affects junctional ion transporters function remains unclear. Here, we show that epithelial secretion is governed by phosphatidylserine (PtdSer) levels in ER/PM nanodomains, specified by the antagonistic action of the lipid transfer proteins E-Syt3 and ORP5, which transduce cAMP signals to the chloride channel CFTR and activate the sodium-bicarbonate cotransporter NBCe1-B by IRBIT. Lipid transfer by E-Syt3, along with restricted plasma membrane localization by the E-Syt3 C2C domain, are essential for E-Syt3 function, as removal of PtdSer from junctions by E-Syt3 dissociated the cAMP signaling pathway complex, preventing CFTR activation, and prevented NBCe1-B activation by IRBIT. CFTR and NBCe1-B PtdSer sensor domains responded to PtdSer reduction by E-Syt3; which was reversed by exogenous PtdSer or by PtdSer supplied by ORP5. In mice, E-Syt3 depletion improved chloride flux and fluid secretion in salivary glands and isolated pancreatic ducts. These findings provide a framework for understanding the role of junctional lipids in the assembly of functional ion protein complexes and cellular communication at epithelial signaling hubs.
Collapse
Affiliation(s)
- Paramita Sarkar
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Benjamin P Lüscher
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Zengyou Ye
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ava Movahed Abtahi
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyu Zheng
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Árpád Varga
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Nath VR, Krishnan H, Mishra S, Raghu P. Ca2+ binding to Esyt modulates membrane contact site density in Drosophila photoreceptors. J Cell Biol 2025; 224:e202407190. [PMID: 40042442 PMCID: PMC11893162 DOI: 10.1083/jcb.202407190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/12/2025] Open
Abstract
Membrane contact sites (MCS) between the plasma membrane (PM) and endoplasmic reticulum (ER) regulate Ca2+ influx. However, the mechanisms by which cells modulate ER-PM MCS density are not understood, and the role of Ca2+, if any, in regulating these is unknown. We report that in Drosophila photoreceptors, MCS density is regulated by the Ca2+ channels, TRP and TRPL. Regulation of MCS density by Ca2+ is mediated by Drosophila extended synaptotagmin (dEsyt), a protein localized to ER-PM MCS and previously shown to regulate MCS density. We find that the Ca2+-binding activity of dEsyt is required for its function in vivo. dEsytCaBM, a Ca2+ non-binding mutant of dEsyt is unable to modulate MCS structure. Further, reconstitution of dEsyt null photoreceptors with dEsytCaBM is unable to rescue ER-PM MCS density and other key phenotypes. Thus, our data supports a role for Ca2+ binding to dEsyt in regulating ER-PM MCS density in photoreceptors thus tuning signal transduction during light-activated Ca2+ influx.
Collapse
Affiliation(s)
- Vaisaly R. Nath
- National Centre for Biological Sciences-TIFR, Bangalore, India
- School of Biotechnology, Amrita University, Kollam, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Shirish Mishra
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bangalore, India
| |
Collapse
|
3
|
Lin WY, Chung WY, Park S, Movahed Abtahi A, Leblanc B, Ahuja M, Muallem S. Multiple cAMP/PKA complexes at the STIM1 ER/PM junction specified by E-Syt1 and E-Syt2 reciprocally gates ANO1 (TMEM16A) via Ca 2. Nat Commun 2025; 16:3378. [PMID: 40204782 PMCID: PMC11982563 DOI: 10.1038/s41467-025-58682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
ANO1 plays a crucial role in determining numerous physiological functions, including epithelial secretion, yet its regulatory mechanisms remain incompletely understood. Here, we describe a fundamental dynamic regulation of ANO1 surface expression and Ca2+-dependent gating via the cAMP/PKA pathway at the STIM1 ER/PM junctions. At these junctions, STIM1 assembles AC-AKAP-PKA complexes, while E-Syt1 mediates formation of ANO1-VAPA-IRBIT-E-Syt1-AC8-AKAP5-PKA complex, that phosphorylates ANO1 S673, increasing ANO1 Ca2+ affinity. Within these complexes, the Ca2+ and cAMP pathways act synergistically to enhance ANO1 function. By contrast, E-Syt2 dissociates the ANO1-VAPA interaction, forming ANO1-IRBIT-E-Syt2-AC6-AKAP11-PKA complex that phosphorylates ANO1 S221, which markedly reduces ANO1 Ca2+ affinity. The effects of the E-Syts are primarily mediated by their reciprocal regulation of junctional PI(4)P, PI(4,5)P2 and PtdSer. Accordingly, IRBIT deletion in mice impairs receptor-stimulated activation of ANO1 and fluid secretion. These findings should have broad implications for ANO1 roles and functions across various tissues.
Collapse
Affiliation(s)
- Wei-Yin Lin
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Woo Young Chung
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Seonghee Park
- Department of Physiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ava Movahed Abtahi
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Leblanc
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Malini Ahuja
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shmuel Muallem
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Kaier A, Ntefidou M. The Extended Synaptotagmins of Physcomitrium patens. PLANTS (BASEL, SWITZERLAND) 2025; 14:1027. [PMID: 40219095 PMCID: PMC11990657 DOI: 10.3390/plants14071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Membrane contact sites (MCSs) between the endoplasmic reticulum and the plasma membrane enable the transport of lipids without membrane fusion. Extended Synaptotagmins (ESYTs) act at MCSs, functioning as tethers between two membrane compartments. In plants, ESYTs have been mainly investigated in A. thaliana and shown to maintain the integrity of the plasma membrane, especially during stress responses like cold acclimatization, mechanical trauma, and salt stress. ESYTs are present at the MCSs of plasmodesmata, where they regulate defense responses by modulating cell-to-cell transfer of pathogens. Here, the analysis of ESYTs was expanded to the bryophyte Physcomitrium patens, an extant representative of the earliest land plant lineages. P. patens was found to contain a large number of ESYTs, distributed over all previously established classes and an additional class not present in A. thaliana. Motif discovery identified regions in the Synaptotagmin-like mitochondrial (SMP) domain that may explain phylogenetic relationships as well as protein function. The adaptation mechanisms of P. patens necessary to conquer land and its simple tissue structure make it highly suitable as a model organism to study ESYT functions in tip growth, stress responses, and plasmodesmata-mediated transport, and open new directions of research regarding the function of MCSs in cellular processes and plant evolution.
Collapse
Affiliation(s)
- Alexander Kaier
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Maria Ntefidou
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Andhare D, Katzenell S, Najera SI, Bauer KM, Ragusa MJ. Reconstitution of autophagosomal membrane tethering reveals that Atg11 can bind and cluster vesicles on cargo mimetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.19.572332. [PMID: 38187578 PMCID: PMC10769207 DOI: 10.1101/2023.12.19.572332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Autophagy is essential for the degradation of mitochondria from yeast to humans. Mitochondrial autophagy in yeast is initiated when the selective autophagy scaffolding protein Atg11 is recruited to mitochondria through its interaction with the selective autophagy receptor Atg32. This also results in the recruitment of small 30 nm vesicles that fuse to generate the initial autophagosomal membrane. We demonstrate that Atg11 can bind to autophagosomal-like membranes in vitro in a curvature dependent manner via a predicted amphipathic helix. Deletion of the amphipathic helix from Atg11 results in a delay in the formation of mitophagy initiation sites in yeast. Furthermore, using a novel biochemical approach we demonstrate that the interaction between Atg11 and Atg32 results in the tethering of autophagosomal-like vesicles in clusters to giant unilamellar vesicles containing a lipid composition designed to mimic the outer mitochondrial membrane. Taken together our results demonstrate an important role for autophagosomal membrane binding by Atg11 in the initiation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Devika Andhare
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Sarah Katzenell
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Sarah I Najera
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine M Bauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Song C, Zheng W, Liu G, Xu Y, Deng Z, Xiu Y, Zhang R, Yang L, Zhang Y, Yu G, Su Y, Luo J, He B, Xu J, Dai H. Sarcopenic obesity is attenuated by E-syt1 inhibition via improving skeletal muscle mitochondrial function. Redox Biol 2025; 79:103467. [PMID: 39675068 PMCID: PMC11699297 DOI: 10.1016/j.redox.2024.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
In aging and metabolic disease, sarcopenic obesity (SO) correlates with intramuscular adipose tissue (IMAT). Using bioinformatics analysis, we found a potential target protein Extended Synaptotagmin 1 (E-syt1) in SO. To investigate the regulatory role of E-syt1 in muscle metabolism, we performed in vivo and in vitro experiments through E-syt1 loss- and gain-of-function on muscle physiology. When E-syt1 is overexpressed in vitro, myoblast proliferation, differentiation, mitochondrial respiration, biogenesis, and mitochondrial dynamics are impaired, which were alleviated by the silence of E-syt1. Furthermore, overexpression of E-syt1 inhibited mitophagic flux. Mechanistically, E-syt1 overexpression leads to mitochondrial calcium overload and mitochondrial ROS burst, inhibits the fusion of mitophagosomes with lysosomes, and impedes the acidification of lysosomes. Animal experiments demonstrated the inhibition of E-syt1 increased the capacity of endurance exercise, muscle mass, mitochondrial function, and oxidative capacity of the muscle fibers in OVX mice. These findings establish E-syt1 as a novel contributor to the pathogenesis of skeletal muscle metabolic disorders in SO. Consequently, targeting E-syt1-induced dysfunction may serve as a viable strategy for attenuating SO.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China; School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350001, China
| | - Wu Zheng
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Guoming Liu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yiyang Xu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Zhibo Deng
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yu Xiu
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rongsheng Zhang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Linhai Yang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yifei Zhang
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Guoyu Yu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yibin Su
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Luo
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Bingwei He
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China; School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350001, China.
| | - Jie Xu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China.
| | - Hanhao Dai
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China.
| |
Collapse
|
7
|
Wang Y, Shi Q, Yang Q, Yang Y, Bian X. DNA-Assisted Assays for Studying Lipid Transfer Between Membranes. Methods Mol Biol 2025; 2888:221-236. [PMID: 39699734 DOI: 10.1007/978-1-0716-4318-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Extended-synaptotagmins (E-Syts) are proteins located on the endoplasmic reticulum (ER) that tether the ER to the plasma membrane (PM) and regulate their lipid homeostasis via its lipid transfer module, the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. Here, we describe in vitro DNA nanostructure-assisted lipid transfer assays investigating how the SMP domain transports lipids between membranes and associates with the membranes to extract and release lipids. The lipid transfer signal was detected through fluorescence resonance energy transfer (FRET). This method overcomes the limitations of commonly used lipid transfer assays in accurately controlling inter-liposome distance and liposome size, enabling us to further understand the details involved in the process of SMP domain-mediated lipid transfer. Similar platforms can be extended to studying the lipid transfer distance and membrane curvature sensitivity of other lipid transfer proteins.
Collapse
Affiliation(s)
- Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Qian Shi
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiulan Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
9
|
Mu B, Rutkowski DM, Grenci G, Vavylonis D, Zhang D. Ca 2+-dependent vesicular and non-vesicular lipid transfer controls hypoosmotic plasma membrane expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619261. [PMID: 39484559 PMCID: PMC11527000 DOI: 10.1101/2024.10.20.619261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Robust coordination of surface and volume changes is critical for cell integrity. Few studies have elucidated the plasma membrane (PM) remodeling events during cell surface and volume alteration, especially regarding PM sensing and its subsequent rearrangements. Here, using fission yeast protoplasts, we reveal a Ca2+-dependent mechanism for membrane addition that ensures PM integrity and allows its expansion during acute hypoosmotic cell swelling. We show that MscS-like mechanosensitive channels activated by PM tension control extracellular Ca2+ influx, which triggers direct lipid transfer at endoplasmic reticulum (ER)-PM contact sites by conserved extended-synaptotagmins and accelerates exocytosis, enabling PM expansion necessary for osmotic equilibrium. Defects in any of these key events result in rapid protoplast rupture upon severe hypotonic shock. Our numerical simulations of hypoosmotic expansion further propose a cellular strategy that combines instantaneous non-vesicular lipid transfer with bulk exocytic membrane delivery to maintain PM integrity for dramatic cell surface/volume adaptation.
Collapse
Affiliation(s)
- Baicong Mu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | - Gianluca Grenci
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411
| | | | - Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
10
|
Ji J, Du S, Wang K, Qi Z, Zhang C, Wang R, Bruening G, Wang P, Duanmu D, Fan Q. Cowpea lipid transfer protein 1 regulates plant defense by inhibiting the cysteine protease of cowpea mosaic virus. Proc Natl Acad Sci U S A 2024; 121:e2403424121. [PMID: 39159367 PMCID: PMC11363299 DOI: 10.1073/pnas.2403424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
Collapse
Affiliation(s)
- Jie Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shengli Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Ziyan Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunyang Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - George Bruening
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
11
|
Luan L, Liang D, Chiu DC, Tei R, Baskin JM. Imaging Interorganelle Phospholipid Transport by Extended Synaptotagmins Using Bioorthogonally Tagged Lipids. ACS Chem Biol 2024; 19:1683-1694. [PMID: 39023576 PMCID: PMC11851332 DOI: 10.1021/acschembio.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The proper distribution of lipids within organelle membranes requires rapid interorganelle lipid transport, much of which occurs at membrane contact sites and is mediated by lipid transfer proteins (LTPs). Our current understanding of LTP mechanism and function is based largely on structural studies and in vitro reconstitution. Existing cellular assays for LTP function use indirect readouts, and it remains an open question as to whether substrate specificity and transport kinetics established in vitro are similar in cellular settings. Here, we harness bioorthogonal chemistry to develop tools for direct visualization of interorganelle transport of phospholipids between the plasma membrane (PM) and the endoplasmic reticulum (ER). Unnatural fluorescent phospholipid analogs generated by the transphosphatidylation activity of phospholipase D (PLD) at the PM are rapidly transported to the ER dependent in part upon extended synaptotagmins (E-Syts), a family of LTPs at ER-PM contact sites. Ectopic expression of an artificial E-Syt-based tether at ER-mitochondria contact sites results in fluorescent phospholipid accumulation in mitochondria. Finally, in vitro reconstitution assays demonstrate that the fluorescent lipids are bona fide E-Syt substrates. Thus, fluorescent lipids generated in situ via PLD activity and bioorthogonal chemical tagging can enable direct visualization of the activity of LTPs that mediate bulk phospholipid transport at ER-PM contact sites.
Collapse
Affiliation(s)
- Lin Luan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Dongjun Liang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Din-Chi Chiu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Reika Tei
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Trothen S, Teplitsky JE, Armstong RE, Zang RX, Lurie A, Mumby MJ, Edgar CR, Grol MW, Dikeakos JD. PACS-1 Interacts with TRPC3 and ESyt1 to Mediate Protein Trafficking while Promoting SOCE and Cooperatively Regulating Hormone Secretion. ACS OMEGA 2024; 9:35014-35027. [PMID: 39157130 PMCID: PMC11325417 DOI: 10.1021/acsomega.4c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Corticotropic cells of the anterior pituitary gland release adrenocorticotropic hormone (ACTH) in a regulated manner to promote the production of cortisol and androgens. The process of ACTH secretion is partly mediated by the phosphofurin acidic cluster sorting protein 1 (PACS-1); however, the underlying mechanisms behind this regulation remain unclear. Herein, we demonstrated PACS-1 interactions with the short transient receptor potential channel 3 (TRPC3) calcium transporter and the extended synaptotagmin-1 (ESyt1) endoplasmic reticulum-plasma membrane tethering protein. Importantly, PACS-1 promoted interactions between TRPC3 and ESyt1 and regulated their plasma membrane localization. Lastly, we demonstrated that PACS-1 is required for a proper store-operated calcium entry (SOCE) response and that ESyt1 regulates ACTH secretion through an unknown mechanism regulated by PACS-1. Overall, our study provides new insights into the physiological role PACS-1 plays in modulating intracellular calcium levels and regulating ACTH secretion in corticotropic cells.
Collapse
Affiliation(s)
- Steven
M. Trothen
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jack E. Teplitsky
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ryan E. Armstong
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rong Xuan Zang
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Antony Lurie
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell J. Mumby
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Cassandra R. Edgar
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew W. Grol
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
13
|
Kim YJ, Tohyama S, Nagashima T, Nagase M, Hida Y, Hamada S, Watabe AM, Ohtsuka T. A light-controlled phospholipase C for imaging of lipid dynamics and controlling neural plasticity. Cell Chem Biol 2024; 31:1336-1348.e7. [PMID: 38582083 DOI: 10.1016/j.chembiol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCβ (opto-PLCβ). Opto-PLCβ uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCβ triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCβ can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCβ offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.
Collapse
Affiliation(s)
- Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Takashi Nagashima
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Yamato Hida
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Shun Hamada
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan.
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
14
|
Mora S, Stuckert A, von Huth Friis R, Pietersz K, Noes-Holt G, Montañana-Rosell R, Wang H, Sørensen AT, Selvan R, Verhaagen J, Allodi I. Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS. Nat Commun 2024; 15:4867. [PMID: 38849367 PMCID: PMC11161600 DOI: 10.1038/s41467-024-48925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Anna Stuckert
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Kimberly Pietersz
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Gith Noes-Holt
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Haoyu Wang
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Joost Verhaagen
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ilary Allodi
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| |
Collapse
|
15
|
Schreiber R, Ousingsawat J, Kunzelmann K. The anoctamins: Structure and function. Cell Calcium 2024; 120:102885. [PMID: 38642428 DOI: 10.1016/j.ceca.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Collapse
Affiliation(s)
- Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg, Germany.
| |
Collapse
|
16
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model. Cell Rep 2024; 43:114117. [PMID: 38630590 PMCID: PMC11244331 DOI: 10.1016/j.celrep.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason A Weesner
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ida Annunziata
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; St. Jude Children's Research Hospital, Compliance Office, Memphis, TN 38105, USA
| | | | - Camenzind G Robinson
- St. Jude Children's Research Hospital, Cellular Imaging Shared Resource, Memphis, TN 38105, USA
| | - Yvan Campos
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- St. Jude Children's Research Hospital, Center for Proteomics and Metabolomics, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Elida Gomero
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Huimin Hu
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; University of Tennessee Health Science Center, Department of Anatomy and Physiology, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Stephan G, Haddock S, Wang S, Erdjument-Bromage H, Liu W, Ravn-Boess N, Frenster JD, Bready D, Cai J, Ronnen R, Sabio-Ortiz J, Fenyo D, Neubert TA, Placantonakis DG. Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1. Cell Rep 2024; 43:114229. [PMID: 38758649 PMCID: PMC11209873 DOI: 10.1016/j.celrep.2024.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Wang J, Xiong J, Zhang S, Li D, Chu Q, Chang W, Deng L, Ji WK. Biogenesis of Rab14-positive endosome buds at Golgi-endosome contacts by the RhoBTB3-SHIP164-Vps26B complex. Cell Discov 2024; 10:38. [PMID: 38565878 PMCID: PMC10987540 DOI: 10.1038/s41421-024-00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Early endosomes (EEs) are crucial in cargo sorting within vesicular trafficking. While cargoes destined for degradation are retained in EEs and eventually transported to lysosomes, recycled cargoes for the plasma membrane (PM) or the Golgi undergo segregation into specialized membrane structures known as EE buds during cargo sorting. Despite this significance, the molecular basis of the membrane expansion during EE bud formation has been poorly understood. In this study, we identify a protein complex comprising SHIP164, an ATPase RhoBTB3, and a retromer subunit Vps26B, which promotes the formation of EE buds at Golgi-EE contacts. Our findings reveal that Vps26B acts as a novel Rab14 effector, and Rab14 activity regulates the association of SHIP164 with EEs. Depletion of SHIP164 leads to enlarged Rab14+ EEs without buds, a phenotype rescued by wild-type SHIP164 but not the lipid transfer-defective mutants. Suppression of RhoBTB3 or Vps26B mirrors the effects of SHIP164 depletion. Together, we propose a lipid transport-dependent pathway mediated by the RhoBTB3-SHIP164-Vps26B complex at Golgi-EE contacts, which is essential for EE budding.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Xiong
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qingzhu Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Elgendy M, Tamada H, Taira T, Iio Y, Kawamura A, Kunogi A, Mizutani Y, Kiyama H. Dynamic changes in endoplasmic reticulum morphology and its contact with the plasma membrane in motor neurons in response to nerve injury. Cell Tissue Res 2024; 396:71-84. [PMID: 38311679 PMCID: PMC10997708 DOI: 10.1007/s00441-024-03858-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
The endoplasmic reticulum (ER) extends throughout a cell and plays a critical role in maintaining cellular homeostasis. Changes in ER shape could provide a clue to explore the mechanisms that underlie the fate determination of neurons after axon injury because the ER drastically changes its morphology under neuronal stress to maintain cellular homeostasis and recover from damage. Because of their tiny structures and richness in the soma, the detailed morphology of the ER and its dynamics have not been well analysed. In this study, the focused ion beam/scanning electron microscopy (FIB/SEM) analysis was performed to explore the ultra-structures of the ER in the somata of motor neuron with axon regenerative injury models. In normal motor neurons, ER in the somata is abundantly localised near the perinucleus and represents lamella-like structures. After injury, analysis of the ER volume and ER branching points indicated a collapse of the normal distribution and a transformation from lamella-like structures to mesh-like structures. Furthermore, accompanied by ER accumulation near the plasma membrane (PM), the contact between the ER and PM (ER-PM contacts) significantly increased after injury. The accumulation of extended-synaptotagmin 1 (E-Syt1), a tethering protein of the ER and PM that regulates Ca2+-dependent lipid transfer, was also identified by immunohistochemistry and quantitative Real-time PCR after injury. These morphological alterations of ER and the increase in ER-PM contacts may be crucial events that occur in motor neurons as a resilient response for the survival after axonal injury.
Collapse
Affiliation(s)
- Mahmoud Elgendy
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Takaya Taira
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuma Iio
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Akinobu Kawamura
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Ayusa Kunogi
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuka Mizutani
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Kiyama
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
20
|
Wan N, Hong Z, Parson MAH, Korfhage JL, Burke JE, Melia TJ, Reinisch KM. Spartin-mediated lipid transfer facilitates lipid droplet turnover. Proc Natl Acad Sci U S A 2024; 121:e2314093121. [PMID: 38190532 PMCID: PMC10801920 DOI: 10.1073/pnas.2314093121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.
Collapse
Affiliation(s)
- Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Matthew A. H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W2Y2, Canada
| | - Justin L. Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W2Y2, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
21
|
Benavides N, Giraudo CG. Extended-Synaptotagmin-1 and -2 control T cell signaling and function. EMBO Rep 2024; 25:286-303. [PMID: 38177911 PMCID: PMC10897422 DOI: 10.1038/s44319-023-00011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state T cells, while E-Syt1 and E-Syt2 negatively control T-cell receptor signaling upon stimulation. These results reveal a previously underappreciated role of E-Syts in regulating DAG dynamics in T-cell signaling.
Collapse
Affiliation(s)
- Nathalia Benavides
- Department of Microbiology and Immunology-Sidney Kimmel Medical College-Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudio G Giraudo
- Department of Microbiology and Immunology-Sidney Kimmel Medical College-Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Janer A, Morris JL, Krols M, Antonicka H, Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J, Shoubridge EA. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance 2024; 7:e202302335. [PMID: 37931956 PMCID: PMC10627786 DOI: 10.26508/lsa.202302335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michiel Krols
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari J Aaltonen
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
23
|
Wan N, Hong Z, Parson MAH, Korfhage J, Burke JE, Melia TJ, Reinisch KM. Spartin-mediated lipid transfer facilitates lipid droplet turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569220. [PMID: 38076959 PMCID: PMC10705495 DOI: 10.1101/2023.11.29.569220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin co-purifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.
Collapse
Affiliation(s)
- Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew A. H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W2Y2
| | - Justin Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W2Y2
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Ma Y, Zhao R, Guo H, Tong Q, Langdon WY, Liu W, Zhang J, Zhang J. Cytosolic LPS-induced caspase-11 oligomerization and activation is regulated by extended synaptotagmin 1. Cell Rep 2023; 42:112726. [PMID: 37393619 PMCID: PMC10528594 DOI: 10.1016/j.celrep.2023.112726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
Caspase-11 (Casp-11) is known to induce pyroptosis and defends against cytosol-invading bacterial pathogens, but its regulation remains poorly defined. Here, we identified extended synaptotagmin 1 (E-Syt1), an endoplasmic reticulum protein, as a key regulator of Casp-11 oligomerization and activation. Macrophages lacking E-Syt1 exhibited reduced production of interleukin-1β (IL-1β) and impaired pyroptosis upon cytosolic lipopolysaccharide (LPS) delivery and cytosol-invasive bacterial infection. Moreover, cleavage of Casp-11 and its downstream substrate gasdermin D were significantly diminished in ESyt1-/- macrophages. Upon LPS stimulation, E-Syt1 underwent oligomerization and bound to the p30 domain of Casp-11 via its synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. E-Syt1 oligomerization and its interaction with Casp-11 facilitated Casp-11 oligomerization and activation. Notably, ESyt1-/- mice were susceptible to infection by cytosol-invading bacteria Burkholderia thailandensis while being resistant to LPS-induced endotoxemia. These findings collectively suggest that E-Syt1 may serve as a platform for Casp-11 oligomerization and activation upon cytosolic LPS sensing.
Collapse
Affiliation(s)
- Yilei Ma
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| | - Ru Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Hui Guo
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| | - Jian Zhang
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548446. [PMID: 37503265 PMCID: PMC10369868 DOI: 10.1101/2023.07.10.548446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
|
26
|
Ivanova A, Atakpa-Adaji P. Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions - Complex interplay of simple messengers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119475. [PMID: 37098393 DOI: 10.1016/j.bbamcr.2023.119475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Endoplasmic reticulum-plasma membrane contact sites (ER-PM MCS) are a specialised domain involved in the control of Ca2+ dynamics and various Ca2+-dependent cellular processes. Intracellular Ca2+ signals are broadly supported by Ca2+ release from intracellular Ca2+ channels such as inositol 1,4,5-trisphosphate receptors (IP3Rs) and subsequent store-operated Ca2+ entry (SOCE) across the PM to replenish store content. IP3Rs sit in close proximity to the PM where they can easily access newly synthesised IP3, interact with binding partners such as actin, and localise adjacent to ER-PM MCS populated by the SOCE machinery, STIM1-2 and Orai1-3, to possibly form a locally regulated unit of Ca2+ influx. PtdIns(4,5)P2 is a multiplex regulator of Ca2+ signalling at the ER-PM MCS interacting with multiple proteins at these junctions such as actin and STIM1, whilst also being consumed as a substrate for phospholipase C to produce IP3 in response to extracellular stimuli. In this review, we consider the mechanisms regulating the synthesis and turnover of PtdIns(4,5)P2 via the phosphoinositide cycle and its significance for sustained signalling at the ER-PM MCS. Furthermore, we highlight recent insights into the role of PtdIns(4,5)P2 in the spatiotemporal organization of signalling at ER-PM junctions and raise outstanding questions on how this multi-faceted regulation occurs.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
27
|
Wang Y, Li Z, Wang X, Zhao Z, Jiao L, Liu R, Wang K, Ma R, Yang Y, Chen G, Wang Y, Bian X. Insights into membrane association of the SMP domain of extended synaptotagmin. Nat Commun 2023; 14:1504. [PMID: 36932127 PMCID: PMC10023780 DOI: 10.1038/s41467-023-37202-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
The Synaptotagmin-like Mitochondrial-lipid-binding Protein (SMP) domain is a newly identified lipid transfer module present in proteins that regulate lipid homeostasis at membrane contact sites (MCSs). However, how the SMP domain associates with the membrane to extract and unload lipids is unclear. Here, we performed in vitro DNA brick-assisted lipid transfer assays and in silico molecular dynamics simulations to investigate the molecular basis of the membrane association by the SMP domain of extended synaptotagmin (E-Syt), which tethers the tubular endoplasmic reticulum (ER) to the plasma membrane (PM). We demonstrate that the SMP domain uses its tip region to recognize the extremely curved subdomain of tubular ER and the acidic-lipid-enriched PM for highly efficient lipid transfer. Supporting these findings, disruption of these mechanisms results in a defect in autophagosome biogenesis contributed by E-Syt. Our results suggest a model that provides a coherent picture of the action of the SMP domain at MCSs.
Collapse
Affiliation(s)
- Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhenni Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Xinyu Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyuan Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Li Jiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ruming Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Keying Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ma
- College of Physical Science and Technology, Xiamen University, Xiamen, China
| | - Yang Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China.
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
| |
Collapse
|
28
|
Leterme S, Michaud M. Mitochondrial membrane biogenesis: A new pathway for lipid transport mediated by PERK/E-Syt1 complex. J Cell Biol 2023; 222:e202301132. [PMID: 36821089 PMCID: PMC9998955 DOI: 10.1083/jcb.202301132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Despite decades of extensive research, mitochondrial lipid transport is a process far from fully understood. In this issue, Sassano et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202206008) identified a new complex, composed of E-Syt1 and PERK, which mediates lipid transport at ER-mitochondria contact sites and regulates mitochondrial functions in human cells.
Collapse
Affiliation(s)
- Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Université Grenoble Alpes, INRAE, CEA, IRIG, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Université Grenoble Alpes, INRAE, CEA, IRIG, Grenoble, France
| |
Collapse
|
29
|
Sassano ML, van Vliet AR, Vervoort E, Van Eygen S, Van den Haute C, Pavie B, Roels J, Swinnen JV, Spinazzi M, Moens L, Casteels K, Meyts I, Pinton P, Marchi S, Rochin L, Giordano F, Felipe-Abrio B, Agostinis P. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J Cell Biol 2023; 222:e202206008. [PMID: 36821088 PMCID: PMC9998969 DOI: 10.1083/jcb.202206008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Sofie Van Eygen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Chris Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neuroscience, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Joris Roels
- VIB-bioimaging Center UGent, Ghent, Belgium
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marco Spinazzi
- Neuromuscular Reference Center, CHU Angers, Angers, France
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department for Development and Regeneration, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | | | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
30
|
He R, Liu F, Wang H, Huang S, Xu K, Zhang C, Liu Y, Yu H. ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites. Cell Mol Life Sci 2023; 80:77. [PMID: 36853333 PMCID: PMC11072704 DOI: 10.1007/s00018-023-04728-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.
Collapse
Affiliation(s)
- Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hui Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Stephan G, Erdjument-Bromage H, Liu W, Frenster JD, Ravn-Boess N, Bready D, Cai J, Fenyo D, Neubert T, Placantonakis DG. Modulation of GPR133 (ADGRD1) Signaling by its Intracellular Interaction Partner Extended Synaptotagmin 1 (ESYT1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527921. [PMID: 36798364 PMCID: PMC9934660 DOI: 10.1101/2023.02.09.527921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
GPR133 (ADGRD1) is an adhesion G protein-coupled receptor that signals through Gαs and is required for growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM impairs tumor growth in vitro, suggesting functions of ESYT1 beyond the interaction with GPR133. Our findings suggest a novel mechanism for modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joshua D. Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
32
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Du Y, Chang W, Gao L, Deng L, Ji WK. Tex2 is required for lysosomal functions at TMEM55-dependent ER membrane contact sites. J Cell Biol 2023; 222:213838. [PMID: 36705603 PMCID: PMC9930140 DOI: 10.1083/jcb.202205133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/17/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
ER tubules form and maintain membrane contact sites (MCSs) with late endosomes/lysosomes (LE/lys). The molecular composition and cellular functions of these MCSs are poorly understood. Here, we find that Tex2, an SMP domain-containing lipid transfer protein conserved in metazoan and yeast, is a tubular ER protein and is recruited to ER-LE/lys MCSs by TMEM55, phosphatases that convert PI(4,5)P2 to PI5P on LE/lys. We show that the Tex2-TMEM55 interaction occurs between an N-terminal region of Tex2 and a catalytic motif in the PTase domain of TMEM55. The Tex2-TMEM55 interaction can be regulated by endosome-resident type 2 PI4K activities. Functionally, Tex2 knockout results in defects in lysosomal trafficking, digestive capacity, and lipid composition of LE/lys membranes. Together, our data identify Tex2 as a tubular ER protein that resides at TMEM55-dependent ER-LE/lys MCSs required for lysosomal functions.
Collapse
Affiliation(s)
- Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Wuhan, China,https://ror.org/00p991c53Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China
| | - Weiping Chang
- https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China
| | - Lei Gao
- https://ror.org/05hfa4n20Microscopy Core Facility, Westlake University, Hangzhou, Zhejiang, China
| | - Lin Deng
- https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Wuhan, China,https://ror.org/00p991c53Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China,Correspondence to Wei-Ke Ji:
| |
Collapse
|
34
|
Mao R, Tong C, Liu JJ. E-Syt1 Regulates Neuronal Activity-Dependent Endoplasmic Reticulum-Plasma Membrane Junctions and Surface Expression of AMPA Receptors. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231185011. [PMID: 37484831 PMCID: PMC10359807 DOI: 10.1177/25152564231185011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites/junctions play important roles in cell physiology including signal transduction, ion and lipid transfer, and membrane dynamics. However, little is known about the dynamic regulation and functional roles of ER-PM junctions in neurons. Using a split green fluorescent protein-based membrane contact probe, we find that the density of ER-PM contact sites changes dynamically in the dendrites of hippocampal neurons undergoing long-term synaptic potentiation (LTP). We show that the Ca2±-sensing membrane tethering protein Extended Synaptotagmin 1 (E-Syt1) mediates the formation of ER-PM contact sites during LTP. We also show that E-Syt1 is required for neuronal activity-dependent surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptors. These findings implicate ER-PM junctions in the regulation of neurotransmitter receptor trafficking and synaptic plasticity.
Collapse
Affiliation(s)
- Ranran Mao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Clausmeyer L, Fröhlich F. Mechanisms of Nonvesicular Ceramide Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231208250. [PMID: 37859671 PMCID: PMC10583516 DOI: 10.1177/25152564231208250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Ceramides, as key components of cellular membranes, play essential roles in various cellular processes, including apoptosis, cell proliferation, and cell signaling. Ceramides are the precursors of all complex sphingolipids in eukaryotic cells. They are synthesized in the endoplasmic reticulum and are further processed at the Golgi apparatus. Therefore, ceramides have to be transported between these two organelles. In mammalian cells, the ceramide transfer protein forms a contact site between the ER and the trans-Golgi region and transports ceramide utilizing its steroidogenic acute regulatory protein-related lipid transfer domain. In yeast, multiple mechanisms of nonvesicular ceramide transport have been described. This involves the nuclear-vacuolar junction protein Nvj2, the yeast tricalbin proteins, and the lipocalin-like protein Svf1. This review aims to provide a comprehensive overview of nonvesicular ceramide transport mechanisms and their relevance in cellular physiology. We will highlight the physiological and pathological consequences of perturbations in nonvesicular ceramide transport and discuss future challenges in identifying and analyzing ceramide transfer proteins.
Collapse
Affiliation(s)
- Lena Clausmeyer
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
37
|
Hong Z, Adlakha J, Wan N, Guinn E, Giska F, Gupta K, Melia TJ, Reinisch KM. Mitoguardin-2-mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. J Cell Biol 2022; 221:e202207022. [PMID: 36282247 PMCID: PMC9597353 DOI: 10.1083/jcb.202207022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid transport proteins at membrane contacts, where organelles are closely apposed, are critical in redistributing lipids from the endoplasmic reticulum (ER), where they are made, to other cellular membranes. Such protein-mediated transfer is especially important for maintaining organelles disconnected from secretory pathways, like mitochondria. We identify mitoguardin-2, a mitochondrial protein at contacts with the ER and/or lipid droplets (LDs), as a lipid transporter. An x-ray structure shows that the C-terminal domain of mitoguardin-2 has a hydrophobic cavity that binds lipids. Mass spectrometry analysis reveals that both glycerophospholipids and free-fatty acids co-purify with mitoguardin-2 from cells, and that each mitoguardin-2 can accommodate up to two lipids. Mitoguardin-2 transfers glycerophospholipids between membranes in vitro, and this transport ability is required for roles both in mitochondrial and LD biology. While it is not established that protein-mediated transfer at contacts plays a role in LD metabolism, our findings raise the possibility that mitoguardin-2 functions in transporting fatty acids and glycerophospholipids at mitochondria-LD contacts.
Collapse
Affiliation(s)
- Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jyoti Adlakha
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Emily Guinn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Fabian Giska
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Kallol Gupta
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
38
|
Zhang Y, Ge J, Bian X, Kumar A. Quantitative Models of Lipid Transfer and Membrane Contact Formation. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:1-21. [PMID: 36120532 DOI: 10.1177/25152564221096024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid transfer proteins (LTPs) transfer lipids between different organelles, and thus play key roles in lipid homeostasis and organelle dynamics. The lipid transfer often occurs at the membrane contact sites (MCS) where two membranes are held within 10-30 nm. While most LTPs act as a shuttle to transfer lipids, recent experiments reveal a new category of eukaryotic LTPs that may serve as a bridge to transport lipids in bulk at MCSs. However, the molecular mechanisms underlying lipid transfer and MCS formation are not well understood. Here, we first review two recent studies of extended synaptotagmin (E-Syt)-mediated membrane binding and lipid transfer using novel approaches. Then we describe mathematical models to quantify the kinetics of lipid transfer by shuttle LTPs based on a lipid exchange mechanism. We find that simple lipid mixing among membranes of similar composition and/or lipid partitioning among membranes of distinct composition can explain lipid transfer against a concentration gradient widely observed for LTPs. We predict that selective transport of lipids, but not membrane proteins, by bridge LTPs leads to osmotic membrane tension by analogy to the osmotic pressure across a semipermeable membrane. A gradient of such tension and the conventional membrane tension may drive bulk lipid flow through bridge LTPs at a speed consistent with the fast membrane expansion observed in vivo. Finally, we discuss the implications of membrane tension and lipid transfer in organelle biogenesis. Overall, the quantitative models may help clarify the mechanisms of LTP-mediated MCS formation and lipid transfer.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Present address: State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
39
|
STIM Proteins and Regulation of SOCE in ER-PM Junctions. Biomolecules 2022; 12:biom12081152. [PMID: 36009047 PMCID: PMC9405863 DOI: 10.3390/biom12081152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
ER-PM junctions are membrane contact sites formed by the endoplasmic reticulum (ER) and plasma membrane (PM) in close apposition together. The formation and stability of these junctions are dependent on constitutive and dynamic enrichment of proteins, which either contribute to junctional stability or modulate the lipid levels of both ER and plasma membranes. The ER-PM junctions have come under much scrutiny recently as they serve as hubs for assembling the Ca2+ signaling complexes. This review summarizes: (1) key findings that underlie the abilities of STIM proteins to accumulate in ER-PM junctions; (2) the modulation of Orai/STIM complexes by other components found within the same junction; and (3) how Orai1 channel activation is coordinated and coupled with downstream signaling pathways.
Collapse
|
40
|
Hanna MG, Suen PH, Wu Y, Reinisch KM, De Camilli P. SHIP164 is a chorein motif lipid transfer protein that controls endosome-Golgi membrane traffic. J Cell Biol 2022; 221:e202111018. [PMID: 35499567 PMCID: PMC9067936 DOI: 10.1083/jcb.202111018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 02/03/2023] Open
Abstract
Cellular membranes differ in protein and lipid composition as well as in the protein-lipid ratio. Thus, progression of membranous organelles along traffic routes requires mechanisms to control bilayer lipid chemistry and their abundance relative to proteins. The recent structural and functional characterization of VPS13-family proteins has suggested a mechanism through which lipids can be transferred in bulk from one membrane to another at membrane contact sites, and thus independently of vesicular traffic. Here, we show that SHIP164 (UHRF1BP1L) shares structural and lipid transfer properties with these proteins and is localized on a subpopulation of vesicle clusters in the early endocytic pathway whose membrane cargo includes the cation-independent mannose-6-phosphate receptor (MPR). Loss of SHIP164 disrupts retrograde traffic of these organelles to the Golgi complex. Our findings raise the possibility that bulk transfer of lipids to endocytic membranes may play a role in their traffic.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Patreece H. Suen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institue for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
41
|
Qian T, Li C, Liu F, Xu K, Wan C, Liu Y, Yu H. Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition-dependent manner. Traffic 2022; 23:346-356. [PMID: 35451158 DOI: 10.1111/tra.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum (ER) - plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER-anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER-PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we reported that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on PI(4,5)P2 , a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain, the efficient lipid transport requires the C2A domain-mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1-mediated lipid transport. In addition to PI(4,5)P2 , the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated it takes conserved as well as divergent mechanisms with other extend-synaptotagmins. The critical role of lipid composition and Ca2+ reveals SYT1-mediated lipid transport is highly regulated by signals in response to abiotic stresses.
Collapse
Affiliation(s)
- Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
42
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
43
|
Byrne DJ, Garcia-Pardo ME, Cole NB, Batnasan B, Heneghan S, Sohail A, Blackstone C, O'Sullivan NC. Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathol Commun 2022; 10:40. [PMID: 35346366 PMCID: PMC8961908 DOI: 10.1186/s40478-022-01343-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.
Collapse
Affiliation(s)
- Dwayne J Byrne
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Nelson B Cole
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Belguun Batnasan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sophia Heneghan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Anood Sohail
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
44
|
Xie B, Panagiotou S, Cen J, Gilon P, Bergsten P, Idevall-Hagren O. The endoplasmic reticulum-plasma membrane tethering protein TMEM24 is a regulator of cellular Ca2+ homeostasis. J Cell Sci 2022; 135:273526. [PMID: 34821358 PMCID: PMC8729788 DOI: 10.1242/jcs.259073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/13/2021] [Indexed: 11/20/2022] Open
Abstract
Endoplasmic reticulum (ER)–plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic β-cells, both lipid and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 (also known as C2CD2L) dynamically localizes to ER–PM contact sites and provides phosphatidylinositol, a precursor of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], to the PM. β-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion, but the underlying mechanism is not known. We now show that TMEM24 only weakly interacts with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production. Summary: TMEM24 reversibly localizes to ER–PM contact sites and participates in the regulation of both ER and mitochondrial Ca2+ homeostasis and in glucose-dependent ATP production in insulin-secreting cells.
Collapse
Affiliation(s)
- Beichen Xie
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Styliani Panagiotou
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Hippocrate 55, B1.55.06 B-1200 Brussels, Belgium
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
45
|
Dickson EJ. Phosphoinositide transport and metabolism at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159107. [PMID: 34995791 PMCID: PMC9662651 DOI: 10.1016/j.bbalip.2021.159107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
Phosphoinositides are a family of signaling lipids that play a profound role in regulating protein function at the membrane-cytosol interface of all cellular membranes. Underscoring their importance, mutations or alterations in phosphoinositide metabolizing enzymes lead to host of developmental, neurodegenerative, and metabolic disorders that are devastating for human health. In addition to lipid enzymes, phosphoinositide metabolism is regulated and controlled at membrane contact sites (MCS). Regions of close opposition typically between the ER and other cellular membranes, MCS are non-vesicular lipid transport portals that engage in extensive communication to influence organelle homeostasis. This review focuses on lipid transport, specifically phosphoinositide lipid transport and metabolism at MCS.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
46
|
Wang R, Wu Y, Zhu Y, Yao S, Zhu Y. ANKRD22 is a novel therapeutic target for gastric mucosal injury. Pharmacotherapy 2022; 147:112649. [PMID: 35051858 DOI: 10.1016/j.biopha.2022.112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
47
|
Reconstitution and biochemical studies of extended synaptotagmin-mediated lipid transport. Methods Enzymol 2022; 675:33-62. [DOI: 10.1016/bs.mie.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Ge J, Bian X, Ma L, Cai Y, Li Y, Yang J, Karatekin E, De Camilli P, Zhang Y. Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers. Nat Chem Biol 2021; 18:313-320. [PMID: 34916620 DOI: 10.1038/s41589-021-00914-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Extended synaptotagmins (E-Syts) mediate lipid exchange between the endoplasmic reticulum (ER) and the plasma membrane (PM). Anchored on the ER, E-Syts bind the PM via an array of C2 domains in a Ca2+- and lipid-dependent manner, drawing the two membranes close to facilitate lipid exchange. How these C2 domains bind the PM and regulate the ER-PM distance is not well understood. Here, we applied optical tweezers to dissect PM binding by E-Syt1 and E-Syt2. We detected Ca2+- and lipid-dependent membrane-binding kinetics of both E-Syts and determined the binding energies and rates of individual C2 domains or pairs. We incorporated these parameters in a theoretical model to recapitulate salient features of E-Syt-mediated membrane contacts observed in vivo, including their equilibrium distances and probabilities. Our methods can be applied to study other proteins containing multiple membrane-binding domains linked by disordered polypeptides.
Collapse
Affiliation(s)
- Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,Nanobiology Institute, Yale University, West Haven, CT, USA.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiying Cai
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Yanghui Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,Nanobiology Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
49
|
Jeyasimman D, Ercan B, Dharmawan D, Naito T, Sun J, Saheki Y. PDZD-8 and TEX-2 regulate endosomal PI(4,5)P 2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nat Commun 2021; 12:6065. [PMID: 34663803 PMCID: PMC8523718 DOI: 10.1038/s41467-021-26177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Darshini Jeyasimman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
50
|
Benavente JL, Siliqi D, Infantes L, Lagartera L, Mills A, Gago F, Ruiz-López N, Botella MA, Sánchez-Barrena MJ, Albert A. The structure and flexibility analysis of the Arabidopsis synaptotagmin 1 reveal the basis of its regulation at membrane contact sites. Life Sci Alliance 2021; 4:e202101152. [PMID: 34408000 PMCID: PMC8380656 DOI: 10.26508/lsa.202101152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Non-vesicular lipid transfer at ER and plasma membrane (PM) contact sites (CS) is crucial for the maintenance of membrane lipid homeostasis. Extended synaptotagmins (E-Syts) play a central role in this process as they act as molecular tethers of ER and PM and as lipid transfer proteins between these organelles. E-Syts are proteins constitutively anchored to the ER through an N-terminal hydrophobic segment and bind the PM via a variable number of C-terminal C2 domains. Synaptotagmins (SYTs) are the plant orthologous of E-Syts and regulate the ER-PM communication in response to abiotic stress. Combining different structural and biochemical techniques, we demonstrate that the binding of SYT1 to lipids occurs through a Ca2+-dependent lipid-binding site and by a site for phosphorylated forms of phosphatidylinositol, thus integrating two different molecular signals in response to stress. In addition, we show that SYT1 displays three highly flexible hinge points that provide conformational freedom to facilitate lipid extraction, protein loading, and subsequent transfer between PM and ER.
Collapse
Affiliation(s)
- Juan L Benavente
- Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - Lourdes Infantes
- Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Alberto Mills
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Madrid, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Madrid, Spain
| | - Noemí Ruiz-López
- Departamento de Biología Molecular y Bioquímica. Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica. Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - María J Sánchez-Barrena
- Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Armando Albert
- Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|