1
|
Sun C, Gao X, Sha S, Wang S, Shan Y, Li L, Xing C, Guan H, Du H. Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway. Int Immunopharmacol 2025; 155:114550. [PMID: 40215776 DOI: 10.1016/j.intimp.2025.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid beta (Aβ) deposition, phosphorylated Tau protein aggregation, inflammation, and neuronal damage. Neuronal autophagy plays an important role in ameliorating central nervous system diseases such as AD. As an emerging form of iron-dependent cell death, ferroptosis has attracted great attention in the field of neurodegenerative diseases. Berberine (BBR), a natural alkaloid, has demonstrated excellent in inflammation reduction, inhibition of Aβ production, and neuroprotection, making it a potential candidate for AD treatment. However, the mechanisms of autophagy and ferroptosis in BBR treatment of AD have not been elucidated. OBJECTIVES This study aimed to investigate the potential of BBR in alleviating AD and evaluate its molecular mechanism through a combination of network pharmacology and biological experiments. METHODS We assessed alterations in Aβ plaques, neurons, neuroinflammation, and autophagy-related markers in the mice brain using immunofluorescence staining. Network pharmacology and molecular docking were used to analyze the potential targets and signaling pathways of BBR in the treatment of AD. Morris Water Maze (MWM) and new object recognition (NOR) experiments were used to test the spatial memory ability of mice. In addition, we validated the relationship between JNK-P38MAPK, autophagy, ferroptosis, and BBR treatment in 5xFAD mice and A β-induced SH-SY5Y cell models. RESULTS The results of immunofluorescence staining showed that BBR effectively mitigated Aβ plaque deposition, ameliorated neuronal damage and neuroinflammation. The autophagy-related markers Beclin1 and LC3B were upregulated and P62 was downregulated after BBR treatment. The expression levels of ROS and lipid peroxide MDA decreased significantly after BBR treatment. qPCR results showed that the expression levels of ferroptosis-related genes TFR1, ASCL4, DMT1, and IREB2 were decreased, while the expression levels of FTH1 and SLC7A11 increased after BBR treatment. Behavioral experiments showed that BBR treatment enhanced spatial memory impairment in 5xFAD mice. Network pharmacological and in vitro analyses demonstrated that BBR activated autophagy and inhibited ferroptosis by inhibiting the JNK-P38MAPK signaling pathway. Following treatment with an autophagy inhibitor on SH-SY5Y cells, autophagy was markedly suppressed, and ferroptosis was induced. CONCLUSION In summary, we found that BBR alleviates AD by inhibiting the JNK-P38MAPK pathway to enhance autophagy and inhibit ferroptosis, further reducing Aβ plaque deposition, inhibiting inflammatory response, and improving neuronal damage.
Collapse
Affiliation(s)
- Chunbin Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Gao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuang Sha
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Si Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yubang Shan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083,China.
| | - Hongyan Guan
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083,China.
| |
Collapse
|
2
|
Acharya N, Daniel EA, Dao TP, Niblo JK, Mulvey E, Sukenik S, Kraut DA, Roelofs J, Castañeda CA. STI1 domain dynamically engages transient helices in disordered regions to drive self-association and phase separation of yeast ubiquilin Dsk2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643327. [PMID: 40161686 PMCID: PMC11952510 DOI: 10.1101/2025.03.14.643327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ubiquitin-binding shuttle proteins are important components of stress-induced biomolecular condensates in cells. Yeast Dsk2 scaffolds proteasome-containing condensates via multivalent interactions with proteasomes and ubiquitinated substrates under azide-induced mitochondrial stress or extended growth conditions. However, the molecular mechanisms underlying how these shuttle proteins work are unknown. Here, we identify that the middle chaperone-binding STI1 domain is the main driver of Dsk2 self-association and phase separation in vitro . Using NMR spectroscopy and computational simulations, we find that the STI1 domain interacts with three transient amphipathic helices within the intrinsically-disordered regions of Dsk2. Removal of either the STI1 domain or these helices significantly reduces the propensity for Dsk2 to phase separate. In vivo , removal of the STI1 domain in Dsk2 has the opposite effect, resulting in an increase of proteasome-containing condensates due to an accumulation of polyubiquitinated substrates. Modeling of STI1-helix interactions reveals a binding mode that is reminiscent of interactions between chaperone STI1/DP2 domains and client proteins containing amphipathic or transmembrane helices. Our findings support a model whereby STI1-helix interactions important for Dsk2 condensate formation can be replaced by STI1-client interactions for downstream chaperone or other protein quality control outcomes. Highlights The intrinsically disordered regions of Dsk2 harbor transient helices that regulate protein properties via interactions with the STI1 domain. The STI1 domain is a significant driver of Dsk2 self-association and phase separation in vitro . Dsk2 colocalizes with ubiquitinated substrates and proteasome in reconstituted condensates.Absence of Dsk2 STI1 domain in stressed yeast cells promotes formation of proteasome condensates coupled with upregulation of polyubiquitinated substrates.
Collapse
|
3
|
Chen L, Wang X, Wang Y, Yao Q, Liu Y, Zhu Y, Huang H, Yang H, Yang Y, He Y, Qiang L. SQSTM1/p62 Orchestrates Skin Aging via USP7 Degradation. Aging Cell 2025:e70078. [PMID: 40344296 DOI: 10.1111/acel.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Skin aging is a complex process driven by intrinsic genetic factors and extrinsic environmental influences. In this study, sequestosome1 (SQSTM1/p62) was identified as a key regulator of senescence, the senescence-associated secretory phenotype (SASP), and skin aging. Notably, p62 expression is reduced in senescent cells and aging skin of both humans and mice. The depletion of p62 in the epidermis was found to be positively associated with accelerated aging and the initiation of SASP. Mechanistically, p62 inhibits the accumulation of ubiquitin-specific protease 7 (USP7) during senescence induction by orchestrating its degradation through specific binding interactions. In particular, the Tyr-67 residue within the PB1 domain or Gln-418 within the UBA domain of p62 forms a hydrogen bond with Ala-993 in the Ubl5 domain of USP7. Mutations in either Tyr-67 or Gln-418 of p62, or Ala-993 of USP7, resulted in the induction of cellular senescence, highlighting the critical role of these molecular interactions in the regulation of aging processes.
Collapse
Affiliation(s)
- Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuchen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qingxin Yao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Global Platform One Vision, WuXi AppTec, Shanghai, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hedan Yang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yin Yang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
4
|
Raja R, Biswas B, Abraham R, Wang Y, Chang CY, Hendriks IA, Buch-Larsen SC, Liu H, Yang X, Wang C, Vu H, Hamacher-Brady A, Cai D, Leung AKL. Interferon-induced PARP14-mediated ADP-ribosylation in p62 bodies requires the ubiquitin-proteasome system. EMBO J 2025; 44:2741-2773. [PMID: 40195501 DOI: 10.1038/s44318-025-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Biomolecular condensates are cellular compartments without enveloping membranes, enabling them to dynamically adjust their composition in response to environmental changes through post-translational modifications. Recent work has revealed that interferon-induced ADP-ribosylation (ADPr), which can be reversed by a SARS-CoV-2-encoded hydrolase, is enriched within a condensate. However, the identity of the condensate and the responsible host ADP-ribosyltransferase remain elusive. Here, we demonstrate that interferon induces ADPr through transcriptional activation of PARP14, requiring both the physical presence and catalytic activity of PARP14 for condensate formation. Interferon-induced ADPr colocalizes with PARP14 and its associated E3 ligase, DTX3L. These PARP14/ADPr condensates contain key components of p62 bodies-including the selective autophagy receptor p62, its binding partner NBR1 and the associated protein TAX1BP1, along with K48-linked and K63-linked polyubiquitin chains-but lack the autophagosome marker LC3B. Knockdown of p62 disrupts the formation of these ADPr condensates. Importantly, these structures are unaffected by autophagy inhibition, but depend on ubiquitination and proteasome activity. Taken together, these findings demonstrate that interferon triggers PARP14-mediated ADP-ribosylation in p62 bodies, which requires an active ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Rameez Raja
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Banhi Biswas
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Rachy Abraham
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yiran Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ivo A Hendriks
- NNF Center for Protein Research, Copenhagen N, DK-2200, Denmark
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- XDBio Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chenyao Wang
- BeiGene Institute, Shanghai R&D Center, Shanghai, 200131, China
| | - Hien Vu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anne Hamacher-Brady
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21205, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Basak B, Holzbaur ELF. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J Mol Biol 2025:169161. [PMID: 40268233 DOI: 10.1016/j.jmb.2025.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Mitochondrial quality control is instrumental in regulating neuronal health and survival. The receptor-mediated clearance of damaged mitochondria by autophagy, known as mitophagy, plays a key role in controlling mitochondrial homeostasis. Mutations in genes that regulate mitophagy are causative for familial forms of neurological disorders including Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). PINK1/Parkin-dependent mitophagy is the best studied mitophagy pathway, while more recent work has brought to light additional mitochondrial quality control mechanisms that operate either in parallel to or independent of PINK1/Parkin mitophagy. Here, we discuss our current understanding of mitophagy mechanisms operating in neurons to govern mitochondrial homeostasis. We also summarize progress in our understanding of the links between mitophagic dysfunction and neurodegeneration, and highlight the potential for therapeutic interventions to maintain mitochondrial health and neuronal function.
Collapse
Affiliation(s)
- Bishal Basak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
6
|
Sampaio Cruz M, Manso AM, Soto-Hermida A, Bushway P, Silver E, Gunes BB, Tang Z, Gonzalez G, Lau S, Arbayo J, Najor RH, Chi L, Gu Y, Feng W, Cowling RT, Gustafsson AB, Chen J, Adler ED. Overlapping functions between Lamp2a and Lamp2b in cardiac autophagy. Autophagy 2025:1-12. [PMID: 40202173 DOI: 10.1080/15548627.2025.2484620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
LAMP2 is a ubiquitously expressed protein critical for autophagy. Alternative splicing gives rise to three isoforms. However, the roles of major LAMP2 isoforms in the heart are not known. To address this knowledge gap, we generated lamp2a and lamp2b knockout (KO) mice to investigate the role of these isoforms in heart function and autophagy. Deletion of either Lamp2a or Lamp2b did not alter cardiac structure or function. Lack of all LAMP2 isoforms led to increased cardiac fibrosis and reduced survival during pressure overload, which were not observed in lamp2a or lamp2b KO mice. Also, LAMP2B loss did not affect levels of the autophagy markers LC3-II and SQSTM1/p62. Conversely, LAMP2A was upregulated in hearts lacking LAMP2B, potentially preserving autophagy and cardiac function. Reintroducing LAMP2A in lamp2 KO mice effectively reduced autophagosome accumulation and improved cardiac function. Overall, these data support LAMP2 isoform functional redundancy in the myocardium under pathological conditions.Abbreviations: AAV: adeno-associated virus; ACTA2: actin alpha 2, smooth muscle, aorta; CMA: chaperone-mediated autophagy; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; LV: Left ventricle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; SQSTM1/p62: sequestosome 1; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; TAC: transverse aortic constriction; WT: wild type.
Collapse
Affiliation(s)
- Marina Sampaio Cruz
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Angel Soto-Hermida
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Paul Bushway
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth Silver
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Betul Beyza Gunes
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Zhiyuan Tang
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Giovanni Gonzalez
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Sharon Lau
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Jordan Arbayo
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Rita H Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Liguo Chi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Wei Feng
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Randy T Cowling
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ju Chen
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Eric D Adler
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
North BJ, Ohnstad AE, Ragusa MJ, Shoemaker CJ. The LC3-interacting region of NBR1 is a protein interaction hub enabling optimal flux. J Cell Biol 2025; 224:e202407105. [PMID: 39928048 PMCID: PMC11809422 DOI: 10.1083/jcb.202407105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
During autophagy, toxic cargo is encapsulated by autophagosomes and trafficked to lysosomes for degradation. NBR1, an autophagy receptor targeting ubiquitinated aggregates, serves as a model for studying the multivalent, heterotypic interactions of cargo-bound receptors. Here, we find that three critical NBR1 partners-ATG8-family proteins, FIP200, and TAX1BP1-each bind to distinct, overlapping determinants within a short linear interaction motif (SLiM). To explore whether overlapping SLiMs extend beyond NBR1, we analyzed >100 LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Phosphomimetic peptides demonstrate that phosphorylation generally enhances FIP200 and ATG8-family binding but not TAX1BP1, indicating differential regulation. In vivo, LIR-mediated interactions with TAX1BP1 promote optimal NBR1 flux by leveraging additional functionalities from TAX1BP1. These findings reveal a one-to-many binding modality in the LIR motif of NBR1, illustrating the cooperative mechanisms of autophagy receptors and the regulatory potential of multifunctional SLiMs.
Collapse
Affiliation(s)
- Brian J. North
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Amelia E. Ohnstad
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Christopher J. Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
8
|
Kiss L, James LC, Schulman BA. UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains. Mol Cell 2025; 85:1467-1476.e6. [PMID: 40132582 DOI: 10.1016/j.molcel.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Ubiquitin chains define the fates of their modified proteins, often mediating proteasomal degradation in eukaryotes. Yet heterogeneity of intracellular ubiquitination has precluded systematically comparing the degradation capacities of different ubiquitin chains. We developed ubiquitinated reporter evaluation after intracellular delivery (UbiREAD), a technology that monitors cellular degradation and deubiquitination at high temporal resolution after bespoke ubiquitinated proteins are delivered into human cells. Comparing the degradation of a model substrate modified with various K48, K63, or K48/K63-branched ubiquitin chains revealed fundamental differences in their intracellular degradation capacities. K48 chains with three or more ubiquitins triggered degradation within minutes. K63-ubiquitinated substrate was rapidly deubiquitinated rather than degraded. Surprisingly, in K48/K63-branched chains, substrate-anchored chain identity determined the degradation and deubiquitination behavior, establishing that branched chains are not the sum of their parts. UbiREAD reveals a degradation code for ubiquitin chains varying by linkage, length, and topology and a functional hierarchy within branched ubiquitin chains.
Collapse
Affiliation(s)
- Leo Kiss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
9
|
Scavone F, Lian S, Eskelinen EL, Cohen RE, Yao T. Trafficking of K63-polyubiquitin-modified membrane proteins in a macroautophagy-independent pathway is linked to ATG9A. Mol Biol Cell 2025; 36:ar42. [PMID: 39969968 PMCID: PMC12005115 DOI: 10.1091/mbc.e24-12-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Cytoplasmic K63-linked polyubiquitin signals have well-established roles in endocytosis and selective autophagy. However, how these signals help to direct different cargos to different intracellular trafficking routes is unclear. Here we report that, when the K63-polyubiquitin signal is blocked by intracellular expression of a high-affinity sensor (named Vx3), many proteins originating from the plasma membrane are found trapped in clusters of small vesicles that colocalize with ATG9A, a transmembrane protein that plays an essential role in autophagy. Importantly, whereas ATG9A is required for cluster formation, other core autophagy machinery as well as selective autophagy cargo receptors are not required. Although the cargos are sequestered in the vesicular clusters in an ATG9-dependent manner, additional signals are needed to induce LC3 conjugation. Upon removal of the Vx3 block, K63-polyubiquitylated cargos are rapidly delivered to lysosomes. These observations suggest that ATG9A plays an unexpected role in the trafficking of K63-polyubiquitin-modified membrane proteins.
Collapse
Affiliation(s)
- Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sharon Lian
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eeva-Liisa Eskelinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, 00014, Finland
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
10
|
Sandhof CA, Murray HFB, Silva MC, Haggarty SJ. Targeted protein degradation with bifunctional molecules as a novel therapeutic modality for Alzheimer's disease & beyond. Neurotherapeutics 2025; 22:e00499. [PMID: 39638711 PMCID: PMC12047403 DOI: 10.1016/j.neurot.2024.e00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is associated with memory and cognitive impairment caused by progressive degeneration of neurons. The events leading to neuronal death are associated with the accumulation of aggregating proteins in neurons and glia of the affected brain regions, in particular extracellular deposition of amyloid plaques and intracellular formation of tau neurofibrillary tangles. Moreover, the accumulation of pathological tau proteoforms in the brain concurring with disease progression is a key feature of multiple neurodegenerative diseases, called tauopathies, like frontotemporal dementia (FTD) where autosomal dominant mutations in the tau encoding MAPT gene provide clear evidence of a causal role for tau dysfunction. Observations from disease models, post-mortem histology, and clinical evidence have demonstrated that pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization, changes in solubility, mislocalization, and intercellular spreading. Despite extensive research, there are few disease-modifying or preventative therapeutics for AD and none for other tauopathies. Challenges faced in tauopathy drug development include an insufficient understanding of pathogenic mechanisms of tau proteoforms, limited specificity of agents tested, and inadequate levels of brain exposure, altogether underscoring the need for innovative therapeutic modalities. In recent years, the development of experimental therapeutic modalities, such as targeted protein degradation (TPD) strategies, has shown significant and promising potential to promote the degradation of disease-causing proteins, thereby reducing accumulation and aggregation. Here, we review all modalities of TPD that have been developed to target tau in the context of AD and FTD, as well as other approaches that with innovation could be adapted for tau-specific TPD.
Collapse
Affiliation(s)
- C Alexander Sandhof
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Heide F B Murray
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - M Catarina Silva
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Stephen J Haggarty
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Wakita M, Yaguchi H, Otuski M, Tanikawa S, Miki Y, Aiba I, Yoshida M, Nomura T, Uwatoko H, Mito Y, Sinpo K, Ikeuchi T, Tanaka S, Wakabayashi K, Yabe I. Pathological study of progressive supranuclear palsy the cases with mutations in Bassoon. Neuropathology 2025; 45:140-152. [PMID: 39478416 DOI: 10.1111/neup.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 04/03/2025]
Abstract
Clinical diagnosis of progressive supranuclear palsy (PSP) is difficult due to various phenotypes. Neuropathologically, PSP is defined by neuronal loss in the basal ganglia and brainstem with widespread occurrence of neurofibrillary tangles (NFTs) and accumulation of phosphorylated tau protein in neurons and glial cells in the brain. We previously identified the point mutation p.Pro3866Ala in the Bassoon (BSN) gene in a Japanese family with PSP-like syndrome. We newly detected BSN mutations in two autopsied PSP cases carrying p.Thr2542Met and p.Glu2759Gly, respectively. The case with p.Thr2542Met mutation showed neurological symptoms including behavioral abnormalities, cognitive dysfunction, and parkinsonism. Brain magnetic resonance imaging (MRI) showed atrophy of the midbrain tegmentum and hippocampus. Pathologically, moderate to severe loss of neurons with gliosis was also found in the substantia nigra, and there was an almost complete loss of neurons with gliosis in the transitional zone of the cornu ammonis (CA) 1 region to the subiculum. NFTs were observed in the globus pallidus, subthalamic nucleus, substantia nigra, and CA1. 4R tau-dominant tauopathy was detected. The case with p.Glu2759Gly mutation showed neurological symptoms, including right-dominant motor impairment, right limping gait, postural instability, and cognitive dysfunction. Brain MRI showed mild atrophy of the midbrain tegmentum and left-dominant parietal lobe atrophy. Pathologically, NFTs were detected in the globus pallidus, subthalamic nucleus, substantia nigra, thalamus, putamen, and brainstem tegmentum. Most neurons were immunopositive for four-repeat tau, whereas only a few of them harbored three-repeat tau-positive NFTs in the hippocampus. We showed the results of a pathological study of PSP cases with BSN mutations; these were two new cases. The clinical phenotypes were similar to the first case in the point of neurological symptoms. Accumulation of four-repeat tau was dominant. Further autopsies of BSN mutation cases and further elucidation of the molecular biological mechanism are desirable.
Collapse
Affiliation(s)
- Masahiro Wakita
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Otuski
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Taichi Nomura
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisashi Uwatoko
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasunori Mito
- Department of Neurology, Brain Science Center, Sapporo City General Hospital, Sapporo, Japan
| | - Kazuyoshi Sinpo
- Department of Neurology, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Li C, Ma A, Bai Y, Liu Z, Tian L, Wang Z, Ma H, Chen Z, Gao Z, Feng S, Fu P. TRIM21 promotes type I interferon by inhibiting the autophagic degradation of STING via p62/SQSTM1 ubiquitination in systemic lupus erythematosus. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40165656 DOI: 10.3724/abbs.2025046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a pivotal surveillance mechanism for cytosolic double-stranded DNA (dsDNA) detection in mammalian systems. While STING-mediated type I interferon production is crucial for host defense, sustained activation of this pathway contributes to autoimmune pathologies, including systemic lupus erythematosus (SLE). Maintaining immune homeostasis requires precise regulation of STING activity to prevent hyperactivation. Our study identifies TRIM21 as a novel positive regulator of cGAS-STING signaling in SLE pathogenesis. Our results demonstrate that TRIM21 overexpression stabilizes STING by suppressing autophagic degradation, whereas TRIM21 depletion accelerates this clearance process. Mechanistically, TRIM21 catalyzes the K63-linked polyubiquitylation of the selective autophagy receptor p62/SQSTM1, disrupting its interaction with STING. This post-translational modification prevents the sequestration of STING into autophagosomes, thereby stabilizing the adaptor protein and amplifying downstream type I interferon responses. Our findings reveal a previously unrecognized regulatory circuit in which TRIM21 orchestrates cross-talk between ubiquitin signaling and autophagy to control STING turnover. The TRIM21-p62 axis represents a potential therapeutic target for attenuating pathological interferon production in STING-dependent autoimmune disorders. This work advances our understanding of immune regulation by demonstrating how E3 ligase-mediated ubiquitin modifications modulate cargo recognition in selective autophagy pathways. The identified mechanism provides new insights into the molecular interplay between protein ubiquitylation and autophagic degradation in maintaining the innate immune balance, offering novel perspectives for developing targeted therapies against interferonopathies associated with cGAS-STING hyperactivity.
Collapse
Affiliation(s)
- Chen Li
- Department of Rheumatology and Clinical Immunology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
- Department of Scientific Research, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Ang Ma
- Department of Rheumatology and Clinical Immunology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yu Bai
- Department of Urology, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Zitao Liu
- Department of Scientific Research, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Linghan Tian
- Department of Scientific Research, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Ziyuan Wang
- Cancer Institute, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital, Kunming 650118, China
| | - Huaishun Ma
- Department of Scientific Research, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Zhengpu Chen
- Department of Scientific Research, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Zhengheng Gao
- Department of Health Management and Tumor Screening Center, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Shijie Feng
- Department of Rheumatology and Clinical Immunology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ping Fu
- Department of Rheumatology and Clinical Immunology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
13
|
Torun A, Tuğral H, Banerjee S. Crosstalk Between Phase-Separated Membraneless Condensates and Membrane-Bound Organelles in Cellular Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095243 DOI: 10.1007/5584_2025_852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Compartmentalization in eukaryotic cells allows the spatiotemporal regulation of biochemical processes, in addition to allowing specific sets of proteins to interact in a regulated as well as stochastic manner. Although membrane-bound organelles are thought to be the key players of cellular compartmentalization, membraneless biomolecular condensates such as stress granules, P bodies, and many others have recently emerged as key players that are also thought to bring order to a highly chaotic environment. Here, we have evaluated the latest studies on biomolecular condensates, specifically focusing on how they interact with membrane-bound organelles and modulate each other's functions. We also highlight the importance of this interaction in neurodegenerative and cardiovascular diseases as well as in cancer.
Collapse
Affiliation(s)
- Aydan Torun
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Hoşnaz Tuğral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye.
| |
Collapse
|
14
|
Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. The predominant role of p62/SQSTM1 over NBR1 in methylmercury-induced cytotoxicity and cellular defense. Biochem Biophys Res Commun 2025; 752:151461. [PMID: 39946983 DOI: 10.1016/j.bbrc.2025.151461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
p62/SQSTM1 (p62) and neighbor of BRCA1 gene 1 (NBR1) are two important cargo receptors involved in selective autophagy. While p62 is known to safeguard cells against the toxic effects of the environmental toxicant methylmercury (MeHg), the specific functions of p62 and NBR1 in MeHg-exposed cells remain unclear. In this study, we aimed to elucidate the distinct roles of p62 and NBR1 in conferring protection against cytotoxicity induced by MeHg. We found that MeHg increased both the mRNA and protein levels of p62 while decreasing those of NBR1. Upon exposure to MeHg, p62-knockout (KO) cells exhibited an approximately 30 % reduction in cell viability compared to wild-type (WT) cells; however, no such reduction was observed in NBR1KO cells. Additionally, p62KO cells exhibited a 1.5-fold increase in intracellular mercury (Hg) concentration compared to the WT following MeHg exposure, whereas NBR1KO cells had Hg levels comparable to those of WT cells. Upon exposure to MeHg, Nrf2 signaling activation was significantly reduced in p62KO cells compared to that in WT cells, whereas NBR1KO cells displayed Nrf2 activation levels similar to those of WT cells. Overall, these results suggest that p62, rather than NBR1, plays a crucial role in mitigating MeHg-induced cytotoxicity by reducing intracellular Hg levels through the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kazuma Sakai
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
15
|
Cooper KF. Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast. Autophagy 2025; 21:500-512. [PMID: 39757721 PMCID: PMC11849947 DOI: 10.1080/15548627.2024.2447207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025] Open
Abstract
Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, Saccharomyces cerevisiae is a valuable model organism for deciphering molecular details that define macroautophagy pathways. In yeast, macroautophagic pathways fall into two subclasses: selective and nonselective (bulk) autophagy. Bulk autophagy is predominantly upregulated following TORC1 inhibition, triggered by nutrient stress, and degrades superfluous random cytosolic proteins and organelles. In contrast, selective autophagy pathways maintain cellular homeostasis when TORC1 is active by degrading damaged organelles and dysfunctional proteins. Here, selective autophagy receptors mediate cargo delivery to the vacuole. Now, two groups have discovered a new hybrid autophagy mechanism, coined cargo hitchhiking autophagy (CHA), that uses autophagic receptor proteins to deliver selected cargo to phagophores built in response to nutrient stress for the random destruction of cytosolic contents. In CHA, various autophagic receptors link their cargos to lipidated Atg8, located on growing phagophores. In addition, the sorting nexin heterodimer Snx4-Atg20 assists in the degradation of cargo during CHA, possibly by aiding the delivery of cytoplasmic cargos to phagophores and/or by delaying the closure of expanding phagophores. This review will outline this new mechanism, also known as Snx4-assisted autophagy, that degrades an assortment of cargos in yeast, including transcription factors, glycogen, and a subset of ribosomal proteins.
Collapse
Affiliation(s)
- Katrina F. Cooper
- Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| |
Collapse
|
16
|
Huang X, Zhang J, Yao J, Mi N, Yang A. Phase separation of p62: roles and regulations in autophagy. Trends Cell Biol 2025:S0962-8924(25)00033-9. [PMID: 40011090 DOI: 10.1016/j.tcb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
The phase separation of the cargo receptor sequestome-1/p62 (SQSTM1/p62) is a critical mechanism for assembling signaling complexes in autophagy. During this process, p62 undergoes phase separation upon binding to polyubiquitin chains, concentrating ubiquitinated substrates within p62 droplets. These droplets further gather membrane sources and core autophagy machineries to facilitate autophagosome formation. The dynamics of p62 droplets are finely tuned in response to autophagy signals triggered by cellular stresses. Recent studies have revealed new regulatory mechanisms that highlight the significance of p62 phase separation in regulating autophagy. This review summarizes and discusses the molecular mechanisms of p62 phase separation and its roles in autophagy, with particular emphasis on the regulation of p62 droplets and their interaction modes with autophagic membranes.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jinpei Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Na Mi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China; Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830011, Xinjiang, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
17
|
Rajendran A, Castañeda CA. Protein quality control machinery: regulators of condensate architecture and functionality. Trends Biochem Sci 2025; 50:106-120. [PMID: 39755440 PMCID: PMC11805624 DOI: 10.1016/j.tibs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates. Here, we discuss how the PQC machinery can form their own condensates and also be recruited to known condensates under physiological or stress-induced conditions. We present molecular insights into how the multivalent architecture of polyUb chains, Ub-binding adaptor proteins, and other PQC machinery contribute to condensate assembly, leading to the regulation of downstream PQC outcomes and therapeutic potential.
Collapse
Affiliation(s)
- Anitha Rajendran
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
18
|
Broadbent DG, McEwan CM, Jayatunge D, Kaminsky EG, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. Ubiquitin-mediated recruitment of the ATG9A-ATG2 lipid transfer complex drives clearance of phosphorylated p62 aggregates. Mol Biol Cell 2025; 36:ar20. [PMID: 39718773 PMCID: PMC11809316 DOI: 10.1091/mbc.e24-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced nonselective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A, or the lipid transfer protein ATG2, leads to the accumulation of phosphorylated p62 aggregates in nutrient replete conditions. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Last, we present evidence that polyubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- David G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Colten M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Dasun Jayatunge
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Emily G Kaminsky
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
| | - Tsz-Min Tsang
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Daniel M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Bradley C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI 48824
| | - Josh L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
19
|
Oskomić M, Tomić A, Barbarić L, Matić A, Kindl DC, Matovina M. KEAP1-NRF2 Interaction in Cancer: Competitive Interactors and Their Role in Carcinogenesis. Cancers (Basel) 2025; 17:447. [PMID: 39941813 PMCID: PMC11816071 DOI: 10.3390/cancers17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
An American Cancer Society report estimates the emergence of around 2 million new cancer cases in the US in 2024 [...].
Collapse
Affiliation(s)
| | | | | | | | | | - Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.O.); (A.T.); (L.B.); (A.M.); (D.C.K.)
| |
Collapse
|
20
|
Luan L, Cao X, Baskin JM. Inhibition of SQSTM1/p62 oligomerization and Keap1 sequestration by the Cullin-3 adaptor SHKBP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634088. [PMID: 39896619 PMCID: PMC11785107 DOI: 10.1101/2025.01.21.634088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
SQSTM1/p62 is a master regulator of the autophagic and ubiquitination pathways of protein degradation and the antioxidant response. p62 functions in these pathways via reversible assembly and sequestration of additional factors into cytoplasmic phase-separated structures termed p62 bodies. The physiological roles of p62 in these various pathways depends on numerous mechanisms for regulating p62 body formation and dynamics that are incompletely understood. Here, we identify a new mechanism for regulation of p62 oligomerization and incorporation into p62 bodies by SHKBP1, a Cullin-3 E3 ubiquitin ligase adaptor, that is independent of its potential functions in ubiquitination. We map a SHKBP1-p62 protein-protein interaction outside of p62 bodies that limits p62 assembly into p62 bodies and affects the antioxidant response by preventing sequestration and degradation of Keap1. These studies provide a non-ubiquitination-based mechanism for an E3 ligase adaptor in regulating p62 phase separation and cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lin Luan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Xiaofu Cao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Jeremy M. Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
21
|
Dang Y, Zhao Z, Wang B, Du A, Li S, Yuan G, Pan Y. Polymeric Polylactic Acid-Glycolic Acid-Based Nanoparticles Deliver Nintedanib Across the Blood-Brain Barrier to Inhibit Glioblastoma Growth. Int J Mol Sci 2025; 26:443. [PMID: 39859159 PMCID: PMC11765036 DOI: 10.3390/ijms26020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells. Molecular docking and surface plasmon resonance (SPR) experiments indicated that BIBF specifically binds to the autophagy-associated protein VPS18, interfering with its function and inhibiting the normal progression of autophagy. However, the application of BIBF in GBM therapy is limited due to restricted drug penetration across the BBB. Therefore, this study utilized poly-lactic-co-glycolic acid (PLGA) nanocarriers as a drug delivery system to significantly enhance the delivery efficiency of BIBF in vivo. In vitro cellular experiments and in vivo animal model validation demonstrated that PLGA-BIBF NPs effectively overcame the limitations of the BBB, significantly enhanced the antitumor activity of BIBF, and improved therapeutic efficacy in a GBM BALB/c-Nude model. This study demonstrated that BIBF exerted significant inhibitory effects on GBM cells by binding to VPS18 and inhibiting the autophagy pathway. Combined with the PLGA nanocarrier delivery system, the blood-brain barrier permeability and anti-tumor effect of BIBF were significantly enhanced. Targeting the BIBF-VPS18 pathway and optimizing drug delivery through nanotechnology may represent a new strategy for GBM treatment, providing innovative clinical treatment ideas and a theoretical basis for patients with GBM.
Collapse
Affiliation(s)
- Ying Dang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zhiwen Zhao
- The College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730030, China;
| | - Bo Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Aichao Du
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Shuangyi Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
| | - Guoqiang Yuan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (Y.D.); (B.W.); (A.D.); (S.L.)
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
22
|
Geng W, Li P, Zhang G, Zhong R, Xu L, Kang L, Liu X, Wu M, Ji M, Guan H. Targeted Activation of OGG1 Inhibits Paraptosis in Lens Epithelial Cells of Early Age-Related Cortical Cataract. Invest Ophthalmol Vis Sci 2025; 66:29. [PMID: 39804629 PMCID: PMC11734758 DOI: 10.1167/iovs.66.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies. Methods Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy. Cell death-associated protein markers were quantified via Western blot analysis, including those for paraptosis (ALIX, GRP78), apoptosis (cleaved caspase 3 and caspase 9), pyroptosis (N-GSDMD), and ferroptosis (GPX4). Intracellular vesicle-organelle colocalization was assessed through immunofluorescence. OGG1 protein expression and activity were evaluated through multiple methods, including Western blot, laser micro-irradiation, and immunofluorescence. The therapeutic potential of the OGG1 activator TH10785 on paraptosis was investigated using an ex vivo rat lens model. Results Morphologic changes revealed significant endoplasmic reticulum (ER) swelling in ARCC patient LECs, with no characteristic apoptotic features. Paraptosis-related proteins exhibited significant alterations, while other cell death pathway markers (apoptosis, pyroptosis, and ferroptosis) remained unchanged. In the reactive oxygen species-induced paraptosis model, vesicular structures showed exclusive colocalization with ER-specific fluorescence. Elevated levels of the DNA damage marker 7,8-dihydro-8-oxoguanine were observed concurrent with decreased OGG1 activity. The OGG1 activator TH10785 showed efficacy in suppressing LECs paraptosis in ex vivo rat lens cultures. Conclusions Paraptosis was identified in the LECs of patients with early ARCC. TH10785 activates OGG1 to suppress paraptosis in LECs, suggesting a novel therapeutic approach for early ARCC intervention.
Collapse
Affiliation(s)
- Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Linhui Xu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Scholl D, Boyd T, Latham AP, Salazar A, Khan A, Boeynaems S, Holehouse AS, Lander GC, Sali A, Park D, Deniz AA, Lasker K. Cellular Function of a Biomolecular Condensate Is Determined by Its Ultrastructure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630454. [PMID: 39763716 PMCID: PMC11703246 DOI: 10.1101/2024.12.27.630454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure. We revealed PopZ's hierarchical assembly into a filamentous condensate by integrating cryo-electron tomography, biochemistry, single-molecule techniques, and molecular dynamics simulations. The helical domain drives filamentation and condensation, while the disordered domain inhibits them. Phase-dependent conformational changes prevent interfilament contacts in the dilute phase and expose client binding sites in the dense phase. These findings establish a multiscale framework that links molecular interactions and condensate ultrastructure to macroscopic material properties that drive cellular function.
Collapse
Affiliation(s)
- Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew P. Latham
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexandra Salazar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Asma Khan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for Infectious Disease Imaging, National Institutes of Health, Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
24
|
Gallagher ER, Oloko PT, Fitch TC, Brown EM, Spruce LA, Holzbaur ELF. Lysosomal damage triggers a p38 MAPK-dependent phosphorylation cascade to promote lysophagy via the small heat shock protein HSP27. Curr Biol 2024; 34:5739-5757.e8. [PMID: 39541976 DOI: 10.1016/j.cub.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Maintenance of lysosomal integrity is essential for cell viability. Upon injury, lysosomes may be targeted for degradation via a selective form of autophagy known as lysophagy. The engulfment of a damaged lysosome by an autophagosome is mediated by the recruitment of adaptor proteins, including SQSTM1/p62. p62 promotes lysophagy via the formation of phase-separated condensates in a mechanism that is regulated by the heat shock protein HSP27. Here, we demonstrate a direct interaction between HSP27 and p62. We used structural modeling to predict the binding interface between HSP27 and p62 and identify several disease-associated mutations that map to this interface. We used proteomics to identify post-translational modifications of HSP27 that regulate HSP27 recruitment to stressed lysosomes, finding robust phosphorylation at several serine residues. Next, we characterized the upstream signaling mechanism leading to HSP27 phosphorylation and found that p38 mitogen-activated protein kinase (MAPK) and its effector kinase MAP kinase-activated protein kinase 2 (MK2) are activated upon lysosomal damage by the kinase mTOR and the production of intracellular reactive oxygen species (ROS). Increased ROS activates p38 MAPK, which in turn allows MK2-dependent phosphorylation of HSP27. Depletion of HSP27 or the inhibition of HSP27 phosphorylation alters the dynamics of p62 condensates on stressed lysosomes, significantly inhibiting p62-dependent lysophagy. Thus, we define a novel lysosomal quality control mechanism in which lysosomal injury triggers a p38 MAPK/MK2 signaling cascade promoting p62-dependent lysophagy. Further, this signaling cascade is activated by many cellular stressors, including oxidative and heat stress, suggesting that other forms of selective autophagy may be regulated by p38 MAPK/MK2/HSP27.
Collapse
Affiliation(s)
- Elizabeth R Gallagher
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peace T Oloko
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tessa C Fitch
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth M Brown
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
26
|
Yan H, Qi A, Lu Z, You Z, Wang Z, Tang H, Li X, Xu Q, Weng X, Du X, Zhao L, Wang H. Dual roles of AtNBR1 in regulating selective autophagy via liquid-liquid phase separation and recognition of non-ubiquitinated substrates in Arabidopsis. Autophagy 2024; 20:2804-2815. [PMID: 39162855 PMCID: PMC11587852 DOI: 10.1080/15548627.2024.2391725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Selective macroautophagy/autophagy in metazoans involves the conserved receptors NBR1 and SQSTM1/p62. Both autophagy receptors manage ubiquitinated cargo recognition, while SQSTM1 has an additional, distinct role of facilitating liquid-liquid phase separation (LLPS) during autophagy. Given that plants lack SQSTM1, it is postulated that plant NBR1 may combine activities of both metazoan NBR1 and SQSTM1. However, the precise mechanism by which plant NBR1 recognizes non-ubiquitinated substrates and its ability to undergo LLPS during selective autophagy remain elusive. Here, we implicate both the ZZ-type zinc finger motif and the four-tryptophan domain of Arabidopsis NBR1 (AtNBR1) in the recognition of non-ubiquitinated cargo proteins. Additionally, we reveal that AtNBR1 indeed undergoes LLPS prior to ATG8-mediated autophagosome formation, crucial for heat stress resistance in Arabidopsis. Our findings unveil the dual roles of AtNBR1 in both cargo recognition and LLPS during plant autophagy and advance our understanding of NBR1-mediated autophagy in plants compared to metazoans.Abbreviations: ATG8: autophagy 8; Co-IP: co-immunoprecipitation; EXO70E2: exocyst subunit EXO70 family protein E2; FRAP: fluorescence recovery after photobleaching; FW domain: four-tryptophan domain; GFP: green fluorescent protein; HS: heat stress; LLPS: liquid-liquid phase separation; LIR: LC3-interacting region; NBR1: next to BRCA1 gene 1; PAS: phagophore assembly site; PB1 domain: Phox and Bem1 domain; RFP: red fluorescent protein; ROF1: rotamase FKBP 1; SARs: selective autophagy receptors; UBA domain: ubiquitin-associated domain; Y2H: yeast two-hybrid; ZZ domain: ZZ-type zinc finger motif domain.
Collapse
Affiliation(s)
- He Yan
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong Province, China
| | - Ao Qi
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Zhen Lu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Zhengtao You
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Ziheng Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Haiying Tang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xinghai Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Qiao Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xun Weng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for the Developmental Biology and Environmental Adaption of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
27
|
Bauer B, Idinger J, Schuschnig M, Ferrari L, Martens S. Recruitment of autophagy initiator TAX1BP1 advances aggrephagy from cargo collection to sequestration. EMBO J 2024; 43:5910-5940. [PMID: 39448883 PMCID: PMC11611905 DOI: 10.1038/s44318-024-00280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.
Collapse
Affiliation(s)
- Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical, University of Vienna, A-1030, Vienna, Austria
| | - Jonas Idinger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
28
|
Duan J, Guan X, Xue J, Wang J, Wang Z, Chen X, Jiang W, Sui W, Song Y, Li T, Rao D, Wu X, Lu M. RAB37 suppresses the EMT, migration and invasion of gastric cancer cells by mediating autophagic degradation of β-catenin. Cell Oncol (Dordr) 2024; 47:2407-2421. [PMID: 39699800 DOI: 10.1007/s13402-024-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gastric cancer, characterized by its high morbidity and mortality rates, exhibits low levels of RAB37. The role and molecular mechanisms of RAB37, a small GTPase, in the pathogenesis of gastric cancer are still unclear. METHODS We assessed RAB37 expression in gastric cancer cells using quantitative Polymerase Chain Reaction (qPCR), Western blot, and immunohistochemical staining (IHC), and analyzed EMT marker proteins and autophagy changes via Western blot, immunofluorescence (IF), and transmission electron microscopy (TEM). Co-immunoprecipitation (co-IP) was used to identify protein-protein interactions. We studied the migration and invasion of gastric cancer cells using wound healing and transwell assays in vitro and a mouse pulmonary metastasis model in vivo. RESULTS Overexpression of RAB37 suppressed EMT, invasion, and migration while enhancing autophagy in gastric cancer cells, which was dependent on its GTPase activity. However, all these effects could be reversed by the autophagy inhibitor chloroquine. Regarding the molecular mechanism, RAB37 strengthened the interaction between p62 and β-catenin, which consequently enhanced the p62-mediated autophagic degradation of β-catenin. Furthermore, RAB37 curbed the pulmonary metastasis of both general and cisplatin-resistant gastric cancer cells. CONCLUSION The low level of RAB37 reduces interaction between p62 and β-catenin and then the autophagic degradation of β-catenin, thereby promoting the EMT, invasion, and migration in gastric cancer cells. The low expression of RAB37 in gastric cancer suggests a potential therapeutic target, especially for cisplatin-resistant gastric cancer.
Collapse
Affiliation(s)
- Jiangling Duan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiuyin Guan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxin Xue
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiayu Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xuan Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wen Jiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wannian Sui
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yongfang Song
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tianshu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Dewang Rao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xueyan Wu
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
29
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
30
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
31
|
Volik PI, Zamaraev AV, Egorshina AY, Pervushin NV, Kapusta AA, Tyurin-Kuzmin PA, Lipatova AV, Kaehne T, Lavrik IN, Zhivotovsky B, Kopeina GS. Ally or traitor: the dual role of p62 in caspase-2 regulation. Cell Death Dis 2024; 15:827. [PMID: 39543123 PMCID: PMC11564777 DOI: 10.1038/s41419-024-07230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Caspase-2 is a unique and conserved cysteine protease that is involved in several cellular processes, including different forms of cell death, maintenance of genomic stability, and the response to reactive oxygen species. Despite advances in caspase-2 research in recent years, the mechanisms underlying its activation remain largely unclear. Although caspase-2 is activated in the PIDDosome complex, its processing could occur even in the absence of PIDD1 and/or RAIDD, suggesting the existence of an alternative platform for caspase-2 activation. Here, we show that caspase-2 undergoes ubiquitination and interacts with scaffolding protein p62/sequestosome-1 (SQSTM1) under normal conditions and in response to DNA damage. p62 promotes proteasomal but not autophagic caspase-2 degradation as well as its dimerization and activation that triggers the caspase cascade and, subsequently, cell death. Inhibition of p62 expression attenuates cisplatin-induced caspase-2 processing and apoptosis. Notably, the ZZ domain of p62 is critical for caspase-2 binding, whereas the UBA domain is seemingly required to stabilize the p62-caspase-2 complex. Thus, we have uncovered the dual role of p62 in regulating caspase-2 activity: it can foster the degradation of caspase-2 in the proteasome or facilitate its activation by acting as a scaffold platform.
Collapse
Affiliation(s)
- Pavel I Volik
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Zamaraev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | - Nikolay V Pervushin
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Thilo Kaehne
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
32
|
Ho HH, Wing SS. α-Synuclein ubiquitination - functions in proteostasis and development of Lewy bodies. Front Mol Neurosci 2024; 17:1498459. [PMID: 39600913 PMCID: PMC11588729 DOI: 10.3389/fnmol.2024.1498459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by the accumulation of α-synuclein containing Lewy bodies. Ubiquitination, a key post-translational modification, has been recognized as a pivotal regulator of α-synuclein's cellular dynamics, influencing its degradation, aggregation, and associated neurotoxicity. This review examines comprehensively the current understanding of α-synuclein ubiquitination and its role in the pathogenesis of synucleinopathies, particularly in the context of Parkinson's disease. We explore the molecular mechanisms responsible for α-synuclein ubiquitination, with a focus on the roles of E3 ligases and deubiquitinases implicated in the degradation process which occurs primarily through the endosomal lysosomal pathway. The review further discusses how the dysregulation of these mechanisms contributes to α-synuclein aggregation and LB formation and offers suggestions for future investigations into the role of α-synuclein ubiquitination. Understanding these processes may shed light on potential therapeutic avenues that can modulate α-synuclein ubiquitination to alleviate its pathological impact in synucleinopathies.
Collapse
Affiliation(s)
- Hung-Hsiang Ho
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Endo A, Komada M, Yoshida Y. Ubiquitin-mediated endosomal stress: A novel organelle stress of early endosomes that initiates cellular signaling pathways: USP8 serves as a gatekeeper of ubiquitin-mediated endosomal stress to counteract the activation of cellular signaling pathways. Bioessays 2024; 46:e2400127. [PMID: 39194376 DOI: 10.1002/bies.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Cells utilize diverse organelles to maintain homeostasis and to respond to extracellular stimuli. Recently, multifaceted aspects of organelle stress caused by various factors have been emerging. The endosome is an essential organelle, functioning as the central hub for membrane trafficking in cooperation with the ubiquitin system. However, knowledge regarding endosomal stress, which refers to organelle stress of the endosome, is currently limited. We recently revealed ubiquitin-mediated endosomal stress of early endosomes (EEs) and its responsive signaling pathways. These findings shed light on the relevance of ubiquitin-mediated endosomal stress to physiological and pathological processes. Here, we present a hypothesis that ubiquitin-mediated endosomal stress may have significant roles in biological contexts and that ubiquitin-specific protease 8 is a key regulator of ubiquitin clearance from EEs.
Collapse
Affiliation(s)
- Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukiko Yoshida
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
34
|
Yang Z, Yoshii SR, Sakai Y, Zhang J, Chino H, Knorr RL, Mizushima N. Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates. EMBO J 2024; 43:5613-5634. [PMID: 39420095 PMCID: PMC11574277 DOI: 10.1038/s44318-024-00272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria. The dynamic and liquid-like nature of OPTN condensates is important for mitophagy activity, because reducing the fluidity of OPTN-ubiquitin condensates suppresses the recruitment of ATG9 vesicles and impairs mitophagy. Based on these results, we propose a dynamic liquid-like, rather than a stoichiometric, model of autophagy adaptors to explain the interactions between autophagic membranes (i.e., ATG9 vesicles and isolation membranes) and mitochondrial membranes during Parkin-mediated mitophagy. This model underscores the importance of liquid-liquid phase separation in facilitating membrane-membrane contacts, likely through the generation of capillary forces.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Saori R Yoshii
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama, Japan
- School of Science/Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Chino
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Harvard Medical school, Boston, MA, USA
| | - Roland L Knorr
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
35
|
Fu A, Luo Z, Ziv T, Bi X, Lulu-Shimron C, Cohen-Kaplan V, Ciechanover A. Nuclear p62 condensates stabilize the promyelocytic leukemia nuclear bodies by sequestering their ubiquitin ligase RNF4. Proc Natl Acad Sci U S A 2024; 121:e2414377121. [PMID: 39418304 PMCID: PMC11513912 DOI: 10.1073/pnas.2414377121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liquid-liquid phase separation has emerged as a crucial mechanism driving the formation of membraneless biomolecular condensates, which play important roles in numerous cellular processes. These condensates, found both in the nucleus and cytoplasm, are formed through multivalent, low-affinity interactions between various molecules. P62-containing condensates serve, among other functions, as proteolytic hubs for the ubiquitin-proteasome system. In this study, we investigated the dynamic interplay between nuclear p62 condensates and promyelocytic nuclear bodies (PML-NBs). We show that p62 condensates stabilize PML-NBs under both basal conditions and following exposure to arsenic trioxide which stimulates their degradation. We further show that this effect on the stability of PML-NBs is due to sequestration of their ubiquitin E3 ligase RNF4 in the p62 condensates with subsequent rapid degradation of the ligase. The sequestration of the ligase is made possible by association between the proline-rich domain of the PML protein and the PB1 domain of p62, which results in the formation of a PML-NB shell around the p62 condensates. Importantly, these hybrid structures do not undergo fusion and mixing of their contents which leaves unsolved the mechanism of sequestration of RNF4 in the condensates. These findings suggest an additional possible mechanism of PML-NB as a tumor suppressor which is mediated via interactions between different biomolecular condensates.
Collapse
Affiliation(s)
- Afu Fu
- Rappaport-Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa3109602, Israel
| | - Zhiwen Luo
- Rappaport-Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa3109602, Israel
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Tamar Ziv
- Smoler Proteomic Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa3200003, Israel
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Chen Lulu-Shimron
- Rappaport-Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa3109602, Israel
| | - Victoria Cohen-Kaplan
- Rappaport-Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa3109602, Israel
| | - Aaron Ciechanover
- Rappaport-Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa3109602, Israel
| |
Collapse
|
36
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
37
|
Tyrna P, Procyk G, Szeleszczuk Ł, Młynarczuk-Biały I. Different Strategies to Overcome Resistance to Proteasome Inhibitors-A Summary 20 Years after Their Introduction. Int J Mol Sci 2024; 25:8949. [PMID: 39201634 PMCID: PMC11354503 DOI: 10.3390/ijms25168949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite being a breakthrough in MM therapy, malignant cells develop resistance to PIs via different mechanisms. Understanding these mechanisms drives research toward new anticancer agents to overcome PI resistance. In this review, we summarize the mechanism of action of PIs and how MM cells adapt to these drugs to develop resistance. Finally, we explore these mechanisms to present strategies to interfere with PI resistance. The strategies include new inhibitors of the ubiquitin-proteasome system, drug efflux inhibitors, autophagy disruption, targeting stress response mechanisms, affecting survival and cell cycle regulators, bone marrow microenvironment modulation, and immunotherapy. We list potential pharmacological targets examined in in vitro, in vivo, and clinical studies. Some of these strategies have already provided clinicians with new anti-MM medications, such as panobinostat and selinexor. We hope that further exploration of the subject will broaden the range of therapeutic options and improve patient outcomes.
Collapse
Affiliation(s)
- Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| | - Izabela Młynarczuk-Biały
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
38
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
39
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
40
|
Zhang J, Pan X, Ji W, Zhou J. Autophagy mediated targeting degradation, a promising strategy in drug development. Bioorg Chem 2024; 149:107466. [PMID: 38843684 DOI: 10.1016/j.bioorg.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/17/2024]
Abstract
Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.
Collapse
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Xiangyi Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Wenshu Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| |
Collapse
|
41
|
Ravindran R, Michnick SW. Biomolecular condensates as drivers of membrane trafficking and remodelling. Curr Opin Cell Biol 2024; 89:102393. [PMID: 38936257 DOI: 10.1016/j.ceb.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Membrane remodelling is essential for the trafficking of macromolecules throughout the cell, a process that regulates various aspects of cellular health and pathology. Recent studies implicate the role of biomolecular condensates in regulating multiple steps of the membrane trafficking pathway including but not limited to the organization of the trafficking machinery, dynamic remodeling of membranes, spatial and functional regulation, and response to cellular signals. The implicated proteins contain key structural elements, most notably prion-like domains within intrinsically disordered regions that are necessary for biomolecular condensate formation at fusion sites in processes like endocytic assembly, autophagy, organelle biosynthesis and synaptic vesicle fusion. Experimental and theoretical advances in the field continue to demonstrate that protein condensates can perform mechanical work, the implications of which can be extrapolated to diverse areas of membrane biology.
Collapse
Affiliation(s)
- Rini Ravindran
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Pino-Belmar C, Aguilar R, Valenzuela-Nieto GE, Cavieres VA, Cerda-Troncoso C, Navarrete VC, Salazar P, Burgos PV, Otth C, Bustamante HA. An Intrinsic Host Defense against HSV-1 Relies on the Activation of Xenophagy with the Active Clearance of Autophagic Receptors. Cells 2024; 13:1256. [PMID: 39120287 PMCID: PMC11311385 DOI: 10.3390/cells13151256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown. Nevertheless, autophagy can carry out a dual role since numerous viruses including members of the Orthoherpesviridae family can either inhibit or exploit autophagy for its own benefit and to replicate within host cells. There is growing evidence that Herpes simplex virus type 1 (HSV-1), a highly prevalent human pathogen that infects epidermal keratinocytes and sensitive neurons, is capable of negatively modulating autophagy. Since the effects of HSV-1 infection on autophagic receptors have been poorly explored, this study aims to understand the consequences of HSV-1 productive infection on the levels of the major autophagic receptors involved in xenophagy, key proteins in the recruitment of intracellular pathogens into autophagosomes. We found that productive HSV-1 infection in human neuroglioma cells and keratinocytes causes a reduction in the total levels of Ub conjugates and decreases protein levels of autophagic receptors, including SQSTM1/p62, OPTN1, NBR1, and NDP52, a phenotype that is also accompanied by reduced levels of LC3-I and LC3-II, which interact directly with autophagic receptors. Mechanistically, we show these phenotypes are the result of xenophagy activation in the early stages of productive HSV-1 infection to limit virus replication, thereby reducing progeny HSV-1 yield. Additionally, we found that the removal of the tegument HSV-1 protein US11, a recognized viral factor that counteracts autophagy in host cells, enhances the clearance of autophagic receptors, with a significant reduction in the progeny HSV-1 yield. Moreover, the removal of US11 increases the ubiquitination of SQSTM1/p62, indicating that US11 slows down the autophagy turnover of autophagy receptors. Overall, our findings suggest that xenophagy is a potent host defense against HSV-1 replication and reveals the role of the autophagic receptors in the delivery of HSV-1 to clearance via xenophagy.
Collapse
Affiliation(s)
- Camila Pino-Belmar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Rayén Aguilar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Guillermo E. Valenzuela-Nieto
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cristóbal Cerda-Troncoso
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Valentina C. Navarrete
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Paula Salazar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Hianara A. Bustamante
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| |
Collapse
|
43
|
Masato A, Andolfo A, Favetta G, Bellini EN, Cogo S, Dalla Valle L, Boassa D, Greggio E, Plotegher N, Bubacco L. Sequestosome-1 (SQSTM1/p62) as a target in dopamine catabolite-mediated cellular dyshomeostasis. Cell Death Dis 2024; 15:424. [PMID: 38890356 PMCID: PMC11189528 DOI: 10.1038/s41419-024-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Alterations in the dopamine catabolic pathway are known to contribute to the degeneration of nigrostriatal neurons in Parkinson's disease (PD). The progressive cellular buildup of the highly reactive intermediate 3,4-dihydroxyphenylacetaldehye (DOPAL) generates protein cross-linking, oligomerization of the PD-linked αSynuclein (αSyn) and imbalance in protein quality control. In this scenario, the autophagic cargo sequestome-1 (SQSTM1/p62) emerges as a target of DOPAL-dependent oligomerization and accumulation in cytosolic clusters. Although DOPAL-induced oxidative stress and activation of the Nrf2 pathway promote p62 expression, p62 oligomerization rather seems to be a consequence of direct DOPAL modification. DOPAL-induced p62 clusters are positive for ubiquitin and accumulate within lysosomal-related structures, likely affecting the autophagy-lysosomal functionality. Finally, p62 oligomerization and clustering is synergistically augmented by DOPAL-induced αSyn buildup. Hence, the substantial impact on p62 proteostasis caused by DOPAL appears of relevance for dopaminergic neurodegeneration, in which the progressive failure of degradative pathways and the deposition of proteins like αSyn, ubiquitin and p62 in inclusion bodies represent a major trait of PD pathology.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, Italy
- UK Dementia Research Institute at University College London, London, UK
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Favetta
- Department of Biology, University of Padova, Padova, Italy
| | - Edoardo Niccolò Bellini
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Daniela Boassa
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
44
|
Ferrari L, Bauer B, Qiu Y, Schuschnig M, Klotz S, Anrather D, Juretschke T, Beli P, Gelpi E, Martens S. Tau fibrils evade autophagy by excessive p62 coating and TAX1BP1 exclusion. SCIENCE ADVANCES 2024; 10:eadm8449. [PMID: 38865459 PMCID: PMC11168460 DOI: 10.1126/sciadv.adm8449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.
Collapse
Affiliation(s)
- Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Yue Qiu
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | | | - Petra Beli
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
45
|
Choi CH, Lee DSW, Sanders DW, Brangwynne CP. Condensate interfaces can accelerate protein aggregation. Biophys J 2024; 123:1404-1413. [PMID: 37837191 PMCID: PMC11163288 DOI: 10.1016/j.bpj.2023.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Protein aggregates, formed from the assembly of aberrant, misfolded proteins, are a hallmark of neurodegenerative diseases. Disease-associated aggregates such as mutant Huntingtin polyQ inclusions, are typically enriched in p62/SQSTM1, an oligomeric protein that binds to and sequesters aberrant proteins. p62 has been suggested to sequester proteins through formation of liquid-like biomolecular condensates, but the physical mechanisms by which p62 condensates may regulate pathological protein aggregation remain unclear. Here, we use a light-inducible biomimetic condensate system to show that p62 condensates enhance coarsening of mutant polyQ aggregates through interface-mediated sequestration, which accelerates polyQ accumulation into larger aggregates. However, the resulting large aggregates accumulate polyubiquitinated proteins, which depletes free p62, ultimately suppressing further p62 condensation. This dynamic interplay between interface-mediated coarsening of solid aggregates and downstream consequences on the phase behavior of associated regulatory proteins could contribute to the onset and progression of protein aggregation diseases.
Collapse
Affiliation(s)
- Chang-Hyun Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Daniel S W Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey; Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
46
|
Wang B, Pareek G, Kundu M. ULK/Atg1: phasing in and out of autophagy. Trends Biochem Sci 2024; 49:494-505. [PMID: 38565496 PMCID: PMC11162330 DOI: 10.1016/j.tibs.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Zhao DY, Bäuerlein FJB, Saha I, Hartl FU, Baumeister W, Wilfling F. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol Cell 2024; 84:1980-1994.e8. [PMID: 38759629 DOI: 10.1016/j.molcel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.
Collapse
Affiliation(s)
- Dorothy Y Zhao
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; University Medical Center Göttingen, Institute of Neuropathology, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Itika Saha
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
48
|
North BJ, Ohnstad AE, Ragusa MJ, Shoemaker CJ. The LC3-interacting region of NBR1 is a protein interaction hub enabling optimal flux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593318. [PMID: 38766171 PMCID: PMC11100792 DOI: 10.1101/2024.05.09.593318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
During autophagy, potentially toxic cargo is enveloped by a newly formed autophagosome and trafficked to the lysosome for degradation. Ubiquitinated protein aggregates, a key target for autophagy, are identified by multiple autophagy receptors. NBR1 is an archetypal autophagy receptor and an excellent model for deciphering the role of the multivalent, heterotypic interactions made by cargo-bound receptors. Using NBR1 as a model, we find that three critical binding partners - ATG8-family proteins, FIP200, and TAX1BP1 - each bind to a short linear interaction motif (SLiM) within NBR1. Mutational peptide arrays indicate that these binding events are mediated by distinct overlapping determinants, rather than a single, convergent, SLiM. AlphaFold modeling underlines the need for conformational flexibility within the NBR1 SLiM, as distinct conformations mediate each binding event. To test the extent to which overlapping SLiMs exist beyond NBR1, we performed peptide binding arrays on >100 established LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Comparative analysis of phosphomimetic peptides highlights that while FIP200 and Atg8-family binding are generally augmented by phosphorylation, TAX1BP1 binding is nonresponsive, suggesting differential regulation of these binding events. In vivo studies confirm that LIR-mediated interactions with TAX1BP1 enhance NBR1 activity, increasing autophagosomal delivery by leveraging an additional LIR from TAX1BP1. In sum, these results reveal a one-to-many binding modality in NBR1, providing key insights into the cooperative mechanisms among autophagy receptors. Furthermore, these findings underscore the pervasive role of multifunctional SLiMs in autophagy, offering substantial avenues for further exploration into their regulatory functions.
Collapse
Affiliation(s)
- Brian J North
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Amelia E Ohnstad
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
49
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
50
|
Barrow ER, Valionyte E, Baxter CR, Yang Y, Herath S, O'Connell WA, Lopatecka J, Strachan A, Woznica W, Stephenson HN, Fejer G, Sharma V, Lu B, Luo S. Discovery of SQSTM1/p62-dependent P-bodies that regulate the NLRP3 inflammasome. Cell Rep 2024; 43:113935. [PMID: 38460129 DOI: 10.1016/j.celrep.2024.113935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
Autophagy and ribonucleoprotein granules, such as P-bodies (PBs) and stress granules, represent vital stress responses to maintain cellular homeostasis. SQSTM1/p62 phase-separated droplets are known to play critical roles in selective autophagy; however, it is unknown whether p62 can exist as another form in addition to its autophagic droplets. Here, we found that, under stress conditions, including proteotoxicity, endotoxicity, and oxidation, autophagic p62 droplets are transformed to a type of enlarged PBs, termed p62-dependent P-bodies (pd-PBs). p62 phase separation is essential for the nucleation of pd-PBs. Mechanistically, pd-PBs are triggered by enhanced p62 droplet formation upon stress stimulation through the interactions between p62 and DDX6, a DEAD-box ATPase. Functionally, pd-PBs recruit the NLRP3 inflammasome adaptor ASC to assemble the NLRP3 inflammasome and induce inflammation-associated cytotoxicity. Our study shows that p62 droplet-to-PB transformation acts as a stress response to activate the NLRP3 inflammasome process, suggesting that persistent pd-PBs lead to NLRP3-dependent inflammation toxicity.
Collapse
Affiliation(s)
- Elizabeth R Barrow
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Evelina Valionyte
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Chris R Baxter
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Yi Yang
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Sharon Herath
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - William A O'Connell
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Justyna Lopatecka
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, PL4 8AA Plymouth, UK
| | - Alexander Strachan
- Plymouth Electron Microscopy Centre, University of Plymouth, Drake Circus, PL4 8AA Plymouth, UK
| | - Waldemar Woznica
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Holly N Stephenson
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, PL4 8AA Plymouth, UK
| | - Vikram Sharma
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, PL4 8AA Plymouth, UK
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shouqing Luo
- Peninsula Medical School, Faculty of Health, University of Plymouth, Research Way, PL6 8BU Plymouth, UK.
| |
Collapse
|