1
|
Zellag RM, Poupart V, Negishi T, Labbé JC, Gerhold AR. The spatiotemporal distribution of LIN-5/NuMA regulates spindle orientation in the C. elegans germ line. Cell Rep 2025; 44:115296. [PMID: 39946234 DOI: 10.1016/j.celrep.2025.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Mitotic spindle orientation contributes to tissue organization and shape by setting the cell division plane. How spindle orientation is coupled to diverse tissue architectures is incompletely understood. The C. elegans gonad is a tube-shaped organ with germ cells forming a circumferential monolayer around a common cytoplasmic lumen. How this organization is maintained during development is unclear, as germ cells lack the canonical cell-cell junctions that ensure spindle orientation in other tissue types. Here, we show that the microtubule force generator dynein and its conserved regulator LIN-5/NuMA regulate germ cell spindle orientation and are required for germline tissue organization. We uncover a cyclic, polarized pattern of LIN-5/NuMA cortical localization that predicts centrosome positioning throughout the cell cycle, providing a means to align spindle orientation with the tissue plane. This work reveals a new mechanism by which oriented cell division can be achieved to maintain tissue organization during animal development.
Collapse
Affiliation(s)
- Réda M Zellag
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada
| | - Takefumi Negishi
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.
| | - Abigail R Gerhold
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada.
| |
Collapse
|
2
|
Islam ST, Cheheltani S, Cheng C, Fowler VM. Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton (Hoboken) 2024; 81:789-805. [PMID: 38516850 PMCID: PMC11416570 DOI: 10.1002/cm.21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sepideh Cheheltani
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
3
|
Du W, Verma A, Ye Q, Du W, Lin S, Yamanaka A, Klein OD, Hu JK. Myosin II mediates Shh signals to shape dental epithelia via control of cell adhesion and movement. PLoS Genet 2024; 20:e1011326. [PMID: 38857279 PMCID: PMC11192418 DOI: 10.1371/journal.pgen.1011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Adya Verma
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wen Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sandy Lin
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Blanchard GB, Scarpa E, Muresan L, Sanson B. Mechanical stress combines with planar polarised patterning during metaphase to orient embryonic epithelial cell divisions. Development 2024; 151:dev202862. [PMID: 38639390 PMCID: PMC11165716 DOI: 10.1242/dev.202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
5
|
Adelmann JA, Vetter R, Iber D. The impact of cell size on morphogen gradient precision. Development 2023; 150:dev201702. [PMID: 37249125 PMCID: PMC10281552 DOI: 10.1242/dev.201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Tissue patterning during embryonic development is remarkably precise. Here, we numerically determine the impact of the cell diameter, gradient length and the morphogen source on the variability of morphogen gradients. We show that the positional error increases with the gradient length relative to the size of the morphogen source, and with the square root of the cell diameter and the readout position. We provide theoretical explanations for these relationships, and show that they enable high patterning precision over developmental time for readouts that scale with expanding tissue domains, as observed in the Drosophila wing disc. Our analysis suggests that epithelial tissues generally achieve higher patterning precision with small cross-sectional cell areas. An extensive survey of measured apical cell areas shows that they are indeed small in developing tissues that are patterned by morphogen gradients. Enhanced precision may thus have led to the emergence of pseudostratification in epithelia, a phenomenon for which the evolutionary benefit had so far remained elusive.
Collapse
Affiliation(s)
- Jan A. Adelmann
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Combe L, Durande M, Delanoë-Ayari H, Cochet-Escartin O. Small hand-designed convolutional neural networks outperform transfer learning in automated cell shape detection in confluent tissues. PLoS One 2023; 18:e0281931. [PMID: 36795738 PMCID: PMC9934364 DOI: 10.1371/journal.pone.0281931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanical cues such as stresses and strains are now recognized as essential regulators in many biological processes like cell division, gene expression or morphogenesis. Studying the interplay between these mechanical cues and biological responses requires experimental tools to measure these cues. In the context of large scale tissues, this can be achieved by segmenting individual cells to extract their shapes and deformations which in turn inform on their mechanical environment. Historically, this has been done by segmentation methods which are well known to be time consuming and error prone. In this context however, one doesn't necessarily require a cell-level description and a coarse-grained approach can be more efficient while using tools different from segmentation. The advent of machine learning and deep neural networks has revolutionized the field of image analysis in recent years, including in biomedical research. With the democratization of these techniques, more and more researchers are trying to apply them to their own biological systems. In this paper, we tackle a problem of cell shape measurement thanks to a large annotated dataset. We develop simple Convolutional Neural Networks (CNNs) which we thoroughly optimize in terms of architecture and complexity to question construction rules usually applied. We find that increasing the complexity of the networks rapidly no longer yields improvements in performance and that the number of kernels in each convolutional layer is the most important parameter to achieve good results. In addition, we compare our step-by-step approach with transfer learning and find that our simple, optimized CNNs give better predictions, are faster in training and analysis and don't require more technical knowledge to be implemented. Overall, we offer a roadmap to develop optimized models and argue that we should limit the complexity of such models. We conclude by illustrating this strategy on a similar problem and dataset.
Collapse
Affiliation(s)
- Louis Combe
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
| | - Mélina Durande
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
- Laboratoire Matière et Systèmes Complexes, UMR7057, Université Paris Cité-CNRS, Paris, France
| | - Hélène Delanoë-Ayari
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
| | - Olivier Cochet-Escartin
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
| |
Collapse
|
7
|
Osswald M, Barros-Carvalho A, Carmo AM, Loyer N, Gracio PC, Sunkel CE, Homem CCF, Januschke J, Morais-de-Sá E. aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium. Curr Biol 2022; 32:4411-4427.e8. [PMID: 36113470 PMCID: PMC9632327 DOI: 10.1016/j.cub.2022.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.
Collapse
Affiliation(s)
- Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Claudio E Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
8
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
9
|
Tarannum N, Singh R, Woolner S. Sculpting an Embryo: The Interplay between Mechanical Force and Cell Division. J Dev Biol 2022; 10:37. [PMID: 36135370 PMCID: PMC9502278 DOI: 10.3390/jdb10030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
The journey from a single fertilised cell to a multicellular organism is, at the most fundamental level, orchestrated by mitotic cell divisions. Both the rate and the orientation of cell divisions are important in ensuring the proper development of an embryo. Simultaneous with cell proliferation, embryonic cells constantly experience a wide range of mechanical forces from their surrounding tissue environment. Cells must be able to read and respond correctly to these forces since they are known to affect a multitude of biological functions, including cell divisions. The interplay between the mechanical environment and cell divisions is particularly crucial during embryogenesis when tissues undergo dynamic changes in their shape, architecture, and overall organisation to generate functional tissues and organs. Here we review our current understanding of the cellular mechanisms by which mechanical force regulates cell division and place this knowledge within the context of embryogenesis and tissue morphogenesis.
Collapse
Affiliation(s)
- Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Gupta VK, Chaudhuri O. Mechanical regulation of cell-cycle progression and division. Trends Cell Biol 2022; 32:773-785. [PMID: 35491306 PMCID: PMC9378598 DOI: 10.1016/j.tcb.2022.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Cell-cycle progression and division are fundamental biological processes in animal cells, and their biochemical regulation has been extensively studied. An emerging body of work has revealed how mechanical interactions of cells with their microenvironment in tissues, including with the extracellular matrix (ECM) and neighboring cells, also plays a crucial role in regulating cell-cycle progression and division. We review recent work on how cells interpret physical cues and alter their mechanics to promote cell-cycle progression and initiate cell division, and then on how dividing cells generate forces on their surrounding microenvironment to successfully divide. Finally, the article ends by discussing how force generation during division potentially contributes to larger tissue-scale processes involved in development and homeostasis.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA..
| |
Collapse
|
11
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
12
|
Donà F, Eli S, Mapelli M. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Front Cell Dev Biol 2022; 10:847801. [PMID: 35356279 PMCID: PMC8959941 DOI: 10.3389/fcell.2022.847801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.
Collapse
Affiliation(s)
- Federico Donà
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
13
|
Royer C, Sandham E, Slee E, Schneider F, Lagerholm CB, Godwin J, Veits N, Hathrell H, Zhou F, Leonavicius K, Garratt J, Narendra T, Vincent A, Jones C, Child T, Coward K, Graham C, Fritzsche M, Lu X, Srinivas S. ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis. Nat Commun 2022; 13:941. [PMID: 35177595 PMCID: PMC8854694 DOI: 10.1038/s41467-022-28590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress. The early embryo maintains its structure in the face of large mechanical stresses during morphogenesis. Here they show that ASPP2 acts to preserve epithelial integrity in regions of high apical tension during early development.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Elizabeth Sandham
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Christoffer B Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nisha Veits
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Holly Hathrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Jemma Garratt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tanaya Narendra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK.,Rosalind Franklin Institute, Didcot, OX11 0QS, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
14
|
Paci G, Mao Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin Cell Dev Biol 2021; 120:160-170. [PMID: 34092509 PMCID: PMC8681862 DOI: 10.1016/j.semcdb.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.
Collapse
Affiliation(s)
- Giulia Paci
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
15
|
Establishment of an immortalized cell line derived from the pupal ovary of Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell source. Cell Tissue Res 2021; 386:661-677. [PMID: 34599689 DOI: 10.1007/s00441-021-03528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Determining the source of primary cells is conductive to enriching sufficient cells with immortal potential thereby improving the success rate of establishing cell lines. However, most of the existing insect cell lines are established by mixing and fragmentation of explants. At present, the origin of cell lines can only be determined according to the cultured tissues, so it is impossible to determine which cell types they come from. In this study, a new cell line designated IOZCAS-Myse-1 was generated from pupal ovaries of the migratory pest Mythimna separata by explant tissues to derive adherent cultures. This paper mainly shows the further descriptive information on the origin of primary cells in the process of ovarian tissue isolation and culture. Phospho-histone H3 antibody-labeled cells with mitotic activity showed that the rapidly developing somatic cells in vivo gradually stopped proliferation when cultured ex vivo. The primary cells dissociated outside the tissue originated from the lumen cells, rather than the germ cells or the follicular epithelium cells. The results suggest that the newly established cell line IOZCAS-Myse-1 had two possible sources. One is the mutation of lumen cells in the vitellarium, and the other is the stem cells with differentiation potential in the germarium of the ovarioles. Moreover, the newly established cell line is sensitive to the infection of Autographa californica multiple nucleopolyhedrovirus, responds to 20-hydroxyecdysone and has weak encapsulation ability. Therefore, the new cell line can be a useful platform for replication of viral insecticides, screening of hormone-based insecticides and immunology research.
Collapse
|
16
|
Abstract
Cell packing - the spatial arrangement of cells - determines the shapes of organs. Recently, investigations of organ development in a variety of model organisms have uncovered cellular mechanisms that are used by epithelial tissues to change cell packing, and thereby their shapes, to generate functional architectures. Here, we review these cellular mechanisms across a wide variety of developmental processes in vertebrates and invertebrates and identify a set of common motifs in the morphogenesis toolbox that, in combination, appear to allow any change in tissue shape. We focus on tissue elongation, folding and invagination, and branching. We also highlight how these morphogenetic processes are achieved by cell-shape changes, cell rearrangements, and oriented cell division. Finally, we describe approaches that have the potential to engineer three-dimensional tissues for both basic science and translational purposes. This review provides a framework for future analyses of how tissues are shaped by the dynamics of epithelial cell packing.
Collapse
Affiliation(s)
- Sandra B Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Moruzzi M, Nestor-Bergmann A, Goddard GK, Tarannum N, Brennan K, Woolner S. Generation of anisotropic strain dysregulates wild-type cell division at the interface between host and oncogenic tissue. Curr Biol 2021; 31:3409-3418.e6. [PMID: 34111402 PMCID: PMC8360906 DOI: 10.1016/j.cub.2021.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Epithelial tissues are highly sensitive to anisotropies in mechanical force, with cells altering fundamental behaviors, such as cell adhesion, migration, and cell division.1-5 It is well known that, in the later stages of carcinoma (epithelial cancer), the presence of tumors alters the mechanical properties of a host tissue and that these changes contribute to disease progression.6-9 However, in the earliest stages of carcinoma, when a clonal cluster of oncogene-expressing cells first establishes in the epithelium, the extent to which mechanical changes alter cell behavior in the tissue as a whole remains unclear. This is despite knowledge that many common oncogenes, such as oncogenic Ras, alter cell stiffness and contractility.10-13 Here, we investigate how mechanical changes at the cellular level of an oncogenic cluster can translate into the generation of anisotropic strain across an epithelium, altering cell behavior in neighboring host tissue. We generated clusters of oncogene-expressing cells within otherwise normal in vivo epithelium, using Xenopus laevis embryos. We find that cells in kRasV12, but not cMYC, clusters have increased contractility, which introduces radial stress in the tissue and deforms surrounding host cells. The strain imposed by kRasV12 clusters leads to increased cell division and altered division orientation in neighboring host tissue, effects that can be rescued by reducing actomyosin contractility specifically in the kRasV12 cells. Our findings indicate that some oncogenes can alter the mechanical and proliferative properties of host tissue from the earliest stages of cancer development, changes that have the potential to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Megan Moruzzi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alexander Nestor-Bergmann
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK; School of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Georgina K Goddard
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Keith Brennan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
18
|
Holcomb MC, Gao GJJ, Servati M, Schneider D, McNeely PK, Thomas JH, Blawzdziewicz J. Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation. PLoS Comput Biol 2021; 17:e1009173. [PMID: 34228708 PMCID: PMC8284804 DOI: 10.1371/journal.pcbi.1009173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Formation of the ventral furrow in the Drosophila embryo relies on the apical constriction of cells in the ventral region to produce bending forces that drive tissue invagination. In our recent paper we observed that apical constrictions during the initial phase of ventral furrow formation produce elongated patterns of cellular constriction chains prior to invagination and argued that these are indicative of tensile stress feedback. Here, we quantitatively analyze the constriction patterns preceding ventral furrow formation and find that they are consistent with the predictions of our active-granular-fluid model of a monolayer of mechanically coupled stress-sensitive constricting particles. Our model shows that tensile feedback causes constriction chains to develop along underlying precursor tensile stress chains that gradually strengthen with subsequent cellular constrictions. As seen in both our model and available optogenetic experiments, this mechanism allows constriction chains to penetrate or circumvent zones of reduced cell contractility, thus increasing the robustness of ventral furrow formation to spatial variation of cell contractility by rescuing cellular constrictions in the disrupted regions.
Collapse
Affiliation(s)
- Michael C. Holcomb
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Guo-Jie Jason Gao
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Japan
| | - Mahsa Servati
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Dylan Schneider
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| | - Presley K. McNeely
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeffrey H. Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jerzy Blawzdziewicz
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
19
|
Dias Gomes M, Iden S. Orchestration of tissue-scale mechanics and fate decisions by polarity signalling. EMBO J 2021; 40:e106787. [PMID: 33998017 PMCID: PMC8204866 DOI: 10.15252/embj.2020106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic development relies on dynamic cell shape changes and segregation of fate determinants to achieve coordinated compartmentalization at larger scale. Studies in invertebrates have identified polarity programmes essential for morphogenesis; however, less is known about their contribution to adult tissue maintenance. While polarity-dependent fate decisions in mammals utilize molecular machineries similar to invertebrates, the hierarchies and effectors can differ widely. Recent studies in epithelial systems disclosed an intriguing interplay of polarity proteins, adhesion molecules and mechanochemical pathways in tissue organization. Based on major advances in biophysics, genome editing, high-resolution imaging and mathematical modelling, the cell polarity field has evolved to a remarkably multidisciplinary ground. Here, we review emerging concepts how polarity and cell fate are coupled, with emphasis on tissue-scale mechanisms, mechanobiology and mammalian models. Recent findings on the role of polarity signalling for tissue mechanics, micro-environmental functions and fate choices in health and disease will be summarized.
Collapse
Affiliation(s)
- Martim Dias Gomes
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
| | - Sandra Iden
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
- CMMCUniversity of CologneCologneGermany
| |
Collapse
|
20
|
Godard BG, Dumollard R, Munro E, Chenevert J, Hebras C, McDougall A, Heisenberg CP. Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division. Dev Cell 2020; 55:695-706.e4. [PMID: 33207225 DOI: 10.1016/j.devcel.2020.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.
Collapse
Affiliation(s)
- Benoit G Godard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Janet Chenevert
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | | |
Collapse
|
21
|
Cammarota C, Finegan TM, Wilson TJ, Yang S, Bergstralh DT. An Axon-Pathfinding Mechanism Preserves Epithelial Tissue Integrity. Curr Biol 2020; 30:5049-5057.e3. [PMID: 33065006 DOI: 10.1016/j.cub.2020.09.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
Epithelial tissues form the boundaries of organs, where they perform a range of functions, including secretion, absorption, and protection. These tissues are commonly composed of discrete cell layers-sheets of cells that are one-cell thick. In multiple systems examined, epithelial cells round up and move in the apical direction before dividing, likely in response to neighbor-cell crowding [1-6]. Because of this movement, daughter cells may be born displaced from the tissue layer. Reintegration of these displaced cells supports tissue growth and maintains tissue architecture [4]. Two conserved IgCAMs (immunoglobulin superfamily cell adhesion molecules), neuroglian (Nrg) and fasciclin 2 (Fas2), participate in cell reintegration in the Drosophila follicular epithelium [4]. Like their vertebrate orthologs L1CAM and NCAM1/2, respectively, Nrg and Fas2 are cell adhesion molecules primarily studied in the context of nervous system development [7-10]. Consistent with this, we identify another neural IgCAM, Fasciclin 3 (Fas3), as a reintegration factor. Nrg, Fas2, and Fas3 are components of the insect septate junction, the functional equivalent of the vertebrate tight junction, but proliferating follicle cells do not have mature septate junctions, and we find that the septate junction protein neurexin IV does not participate in reintegration [11, 12]. Here, we show that epithelial reintegration works in the same way as IgCAM-mediated axon growth and pathfinding; it relies not only on extracellular adhesion but also mechanical coupling between IgCAMs and the lateral spectrin-based membrane skeleton. Our work indicates that reintegration is mediated by a distinct epithelial adhesion assembly that is compositionally and functionally equivalent to junctions made between axons.
Collapse
Affiliation(s)
- Christian Cammarota
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Tara M Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Tyler J Wilson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sifan Yang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Dan T Bergstralh
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
22
|
Lam MSY, Lisica A, Ramkumar N, Hunter G, Mao Y, Charras G, Baum B. Isotropic myosin-generated tissue tension is required for the dynamic orientation of the mitotic spindle. Mol Biol Cell 2020; 31:1370-1379. [PMID: 32320325 PMCID: PMC7353144 DOI: 10.1091/mbc.e19-09-0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The ability of cells to divide along their longest axis has been proposed to play an important role in maintaining epithelial tissue homeostasis in many systems. Because the division plane is largely set by the position of the anaphase spindle, it is important to understand how spindles become oriented. While several molecules have been identified that play key roles in spindle orientation across systems, most notably Mud/NuMA and cortical dynein, the precise mechanism by which spindles detect and align with the long cell axis remain poorly understood. Here, in exploring the dynamics of spindle orientation in mechanically distinct regions of the fly notum, we find that the ability of cells to properly reorient their divisions depends on local tissue tension. Thus, spindles reorient to align with the long cell axis in regions where isotropic tension is elevated, but fail to do so in elongated cells within the crowded midline, where tension is low, or in regions that have been mechanically isolated from the rest of the tissue via laser ablation. Importantly, these differences in spindle behavior outside and inside the midline can be recapitulated by corresponding changes in tension induced by perturbations that alter nonmuscle myosin II activity. These data lead us to propose that isotropic tension within an epithelium provides cells with a mechanically stable substrate upon which localized cortical motor complexes can act on astral microtubules to orient the spindle.
Collapse
Affiliation(s)
| | - Ana Lisica
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
| | | | | | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| | - Guillaume Charras
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| |
Collapse
|
23
|
Decoupling the Roles of Cell Shape and Mechanical Stress in Orienting and Cueing Epithelial Mitosis. Cell Rep 2020; 26:2088-2100.e4. [PMID: 30784591 PMCID: PMC6381790 DOI: 10.1016/j.celrep.2019.01.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Distinct mechanisms involving cell shape and mechanical force are known to influence the rate and orientation of division in cultured cells. However, uncoupling the impact of shape and force in tissues remains challenging. Combining stretching of Xenopus tissue with mathematical methods of inferring relative mechanical stress, we find separate roles for cell shape and mechanical stress in orienting and cueing division. We demonstrate that division orientation is best predicted by an axis of cell shape defined by the position of tricellular junctions (TCJs), which align with local cell stress rather than tissue-level stress. The alignment of division to cell shape requires functional cadherin and the localization of the spindle orientation protein, LGN, to TCJs but is not sensitive to relative cell stress magnitude. In contrast, proliferation rate is more directly regulated by mechanical stress, being correlated with relative isotropic stress and decoupled from cell shape when myosin II is depleted. Tissue stretching increases division rate and reorients divisions with stretch Division orientation is regulated by cell shape defined by tricellular junctions Cadherin and LGN localize to tricellular junctions aligning division to cell shape Division rate is linked to mechanical stress and can be decoupled from cell shape
Collapse
|
24
|
Lovegrove HE, Bergstralh DT, St Johnston D. The role of integrins in Drosophila egg chamber morphogenesis. Development 2019; 146:dev.182774. [PMID: 31784458 PMCID: PMC6918751 DOI: 10.1242/dev.182774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
The Drosophila egg chamber comprises a germline cyst surrounded by a tightly organised epithelial monolayer, the follicular epithelium (FE). Loss of integrin function from the FE disrupts epithelial organisation at egg chamber termini, but the cause of this phenotype remains unclear. Here, we show that the β-integrin Myospheroid (Mys) is only required during early oogenesis when the pre-follicle cells form the FE. Mutation of mys disrupts both the formation of a monolayered epithelium at egg chamber termini and the morphogenesis of the stalk between adjacent egg chambers, which develops through the intercalation of two rows of cells into a single-cell-wide stalk. Secondary epithelia, like the FE, have been proposed to require adhesion to the basement membrane to polarise. However, Mys is not required for pre-follicle cell polarisation, as both follicle and stalk cells localise polarity factors correctly, despite being mispositioned. Instead, loss of integrins causes pre-follicle cells to constrict basally, detach from the basement membrane and become internalised. Thus, integrin function is dispensable for pre-follicle cell polarity but is required to maintain cellular organisation and cell shape during morphogenesis.
Collapse
Affiliation(s)
| | | | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
25
|
Guerrero P, Perez-Carrasco R, Zagorski M, Page D, Kicheva A, Briscoe J, Page KM. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development 2019; 146:dev.176297. [PMID: 31784457 PMCID: PMC6918779 DOI: 10.1242/dev.176297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
Abstract
Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. Summary: A mechanical model of the vertebrate neuroepithelium, based on experimental observations, suggests that the rate of neuronal differentiation influences tissue growth and the shape of lineage-related clones.
Collapse
Affiliation(s)
- Pilar Guerrero
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | | | - David Page
- Myrtle Software, Second Floor, 50 St. Andrew's Street, Cambridge CB2 3AH, UK
| | - Anna Kicheva
- IST Austria, Am Campus 1, A - 3400 Klosterneuburg, Austria
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
26
|
Niwayama R, Moghe P, Liu YJ, Fabrèges D, Buchholz F, Piel M, Hiiragi T. A Tug-of-War between Cell Shape and Polarity Controls Division Orientation to Ensure Robust Patterning in the Mouse Blastocyst. Dev Cell 2019; 51:564-574.e6. [PMID: 31735668 PMCID: PMC6892278 DOI: 10.1016/j.devcel.2019.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/04/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Oriented cell division patterns tissues by modulating cell position and fate. While cell geometry, junctions, cortical tension, and polarity are known to control division orientation, relatively little is known about how these are coordinated to ensure robust patterning. Here, we systematically characterize cell division, volume, and shape changes during mouse pre-implantation development by in toto live imaging. The analysis leads us to a model in which the apical domain competes with cell shape to determine division orientation. Two key predictions of the model are verified experimentally: when outside cells of the 16-cell embryo are released from cell shape asymmetry, the axis of division is guided by the apical domain. Conversely, orientation cues from the apical domain can be overcome by applied shape asymmetry in the 8-cell embryo. We propose that such interplay between cell shape and polarity in controlling division orientation ensures robust patterning of the blastocyst and possibly other tissues. Cell division, volume, and shape changes are characterized by in toto embryo imaging Cell shape and the apical domain compete to determine division orientation Two key predictions of the model are verified experimentally The tug-of-war mechanism ensures robust cell allocation and patterning
Collapse
Affiliation(s)
- Ritsuya Niwayama
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Prachiti Moghe
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yan-Jun Liu
- UMR 144 Institut Curie, Institut Pierre Gilles de Gennes for Microfluidics, Paris, France
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Matthieu Piel
- UMR 144 Institut Curie, Institut Pierre Gilles de Gennes for Microfluidics, Paris, France
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
van Leen EV, di Pietro F, Bellaïche Y. Oriented cell divisions in epithelia: from force generation to force anisotropy by tension, shape and vertices. Curr Opin Cell Biol 2019; 62:9-16. [PMID: 31509787 DOI: 10.1016/j.ceb.2019.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Mitotic spindle orientation has been linked to asymmetric cell divisions, tissue morphogenesis and homeostasis. The canonical pathway to orient the mitotic spindle is composed of the cortical recruitment factor NuMA and the molecular motor dynein, which exerts pulling forces on astral microtubules to orient the spindle. Recent work has defined a novel role for NuMA as a direct contributor to force generation. In addition, the exploration of geometrical and physical cues combined with the study of classical polarity pathways has led to deeper insights into the upstream regulation of spindle orientation. Here, we focus on how cell shape, junctions and mechanical tension act to orient spindle pulling forces in epithelia, and discuss different roles for spindle orientation in epithelia.
Collapse
Affiliation(s)
- Eric Victor van Leen
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Florencia di Pietro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France.
| |
Collapse
|
28
|
Li J, Cheng L, Jiang H. Cell shape and intercellular adhesion regulate mitotic spindle orientation. Mol Biol Cell 2019; 30:2458-2468. [PMID: 31411941 PMCID: PMC6743358 DOI: 10.1091/mbc.e19-04-0227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell division orientation plays an essential role in tissue morphogenesis and cell fate decision. Recent studies showed that either cell shape or adhesion geometry can regulate the orientation of mitotic spindles and thereby the cell division orientation. However, how they together regulate the spindle orientation remains largely unclear. In this work, we use a general computational model to investigate the competitive mechanism of determining the spindle orientation between cell shape and intercellular adhesion in epithelial cells. We find the spindle orientation is dominated by the intercellular adhesion when the cell shape anisotropy is small, but dominated by the cell shape when the shape anisotropy is large. A strong adhesion and moderate adhesive size can ensure the planar division of epithelial cells with large apico-basal elongation. We also find the spindle orientation could be perpendicular to the adhesive region when only one side of the cell is adhered to an E-cadherin-coated matrix. But after the cell is compressed, the spindle orientation is governed by the cell shape and the spindle will be parallel to the adhesive region when the cell shape anisotropy is large. Finally, we demonstrate the competition between cell shape and tricellular junctions can also effectively regulate the spindle orientation.
Collapse
Affiliation(s)
- Jingchen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longcan Cheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation. Nat Commun 2019; 10:3339. [PMID: 31350387 PMCID: PMC6659696 DOI: 10.1038/s41467-019-10874-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 05/25/2019] [Indexed: 12/12/2022] Open
Abstract
Organs are sculpted by extracellular as well as cell-intrinsic forces, but how collective cell dynamics are orchestrated in response to environmental cues is poorly understood. Here we apply advanced image analysis to reveal extracellular matrix-responsive cell behaviors that drive elongation of the Drosophila follicle, a model system in which basement membrane stiffness instructs three-dimensional tissue morphogenesis. Through in toto morphometric analyses of wild type and round egg mutants, we find that neither changes in average cell shape nor oriented cell division are required for appropriate organ shape. Instead, a major element is the reorientation of elongated cells at the follicle anterior. Polarized reorientation is regulated by mechanical cues from the basement membrane, which are transduced by the Src tyrosine kinase to alter junctional E-cadherin trafficking. This mechanosensitive cellular behavior represents a conserved mechanism that can elongate edgeless tubular epithelia in a process distinct from those that elongate bounded, planar epithelia. The extracellular matrix can shape developing organs, but how external forces direct intercellular morphogenesis is unclear. Here, the authors use 3D imaging to show that elongation of the Drosophila egg chamber involves polarized cell reorientation signalled by changes in stiffness of the surrounding extracellular matrix.
Collapse
|
30
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Finegan TM, Bergstralh DT. Division orientation: disentangling shape and mechanical forces. Cell Cycle 2019; 18:1187-1198. [PMID: 31068057 PMCID: PMC6592245 DOI: 10.1080/15384101.2019.1617006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Oriented cell divisions are essential for the generation of cell diversity and for tissue shaping during morphogenesis. Cells in tissues are mechanically linked to their neighbors, upon which they impose, and from which they experience, physical force. Recent work in multiple systems has revealed that tissue-level physical forces can influence the orientation of cell division. A long-standing question is whether forces are communicated to the spindle orienting machinery via cell shape or directly via mechanosensing intracellular machinery. In this article, we review the current evidence from diverse model systems that show spindles are oriented by tissue-level physical forces and evaluate current models and molecular mechanisms proposed to explain how the spindle orientation machinery responds to extrinsic force.
Collapse
Affiliation(s)
- Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
32
|
Kiyomitsu T. The cortical force-generating machinery: how cortical spindle-pulling forces are generated. Curr Opin Cell Biol 2019; 60:1-8. [PMID: 30954860 DOI: 10.1016/j.ceb.2019.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/12/2022]
Abstract
The cortical force-generating machinery pulls on dynamic plus-ends of astral microtubules to control spindle position and orientation, which underlie division type specification and cellular patterning in many eukaryotic cells. A prior work identified cytoplasmic dynein, a minus-end directed microtubule motor, as a key conserved unit of the cortical force-generating machinery. Here, I summarize recent structural, biophysical, and cell-biological studies that advance our understanding of how dynein is activated and organized at the mitotic cell cortex to generate functional spindle-pulling forces. In addition, I introduce recent findings of dynein-independent or parallel mechanisms for achieving oriented cell division.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
33
|
Manning LA, Peifer M. Getting into shape: tissue tension drives oriented cell divisions during organogenesis. EMBO J 2019; 38:e101246. [PMID: 30679198 PMCID: PMC6356058 DOI: 10.15252/embj.2018101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The shapes and architecture of the organs in the animal body develop through complex coordination of cell shape change, cell migration, and cell proliferation. Finegan et al (2019 ) use the simple model of the Drosophila ovary and elongation of each egg chamber to explore this process. They find that a gradient of myosin‐driven tension exists along the axis of organ elongation and that this orients the division of the constituent cells. This and other recent work highlight how tissue‐level tension plays a key role in regulating tissue architecture.
Collapse
Affiliation(s)
- Lathiena A Manning
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Mark Peifer
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|