1
|
Zhao S, Zhang Y, Zhao Y, Lu X. Cellular senescence as a key player in chronic heart failure pathogenesis: Unraveling mechanisms and therapeutic opportunities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:8-18. [PMID: 39961550 DOI: 10.1016/j.pbiomolbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Chronic heart failure (CHF) is the final stage of heart disease and is caused by various factors. Unfortunately, CHF has a poor prognosis and a high mortality rate. Recent studies have found that aging is a significant risk factor for the development of CHF and that cellular senescence plays a vital role in its development. This article reviews different types of cellular senescence, mitochondrial dysfunction in senescent cells, autophagy in senescent cells, and senescence-associated secretory phenotype (SASP), and epigenetic regulation, to provide new perspectives on the research and treatment of CHF.
Collapse
Affiliation(s)
- Shuqing Zhao
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiaohui Lu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Engels P, Szolek A, Hörner S, Syrigos GV, Hebbel K, Schmidtke M, Zhou M, Mateo-Tortola M, Schönfeld C, Stefanczyk SA, Wolter K, Babaei S, Schindler M, Claassen M, Dauch D, Zender L, Tapía-Abellán A, Weber ANR. Actionable heterogeneity of hepatocellular carcinoma therapy-induced senescence. Cancer Immunol Immunother 2025; 74:207. [PMID: 40374812 DOI: 10.1007/s00262-025-04060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Therapy-induced senescence (TIS) is a stable cell cycle arrest in cancerous cells favoring immune control upon immune cell recruitment and activation via a senescence-associated secretory phenotype (SASP). Numerous studies have investigated the therapeutic applicability of TIS in hepatocellular carcinoma (HCC), a frequent cancer with high morbidity and mortality. Despite these efforts, a comprehensive understanding of how TIS may expose vulnerabilities specifically for immunotherapies, a potent means of cancer therapy, in HCC remains incomplete. Therefore, we conducted systematic studies to carefully characterize actionable and shared SASP- or other senescence-associated molecular parameters of TIS. We systematically compared the TIS inducers, etoposide and alisertib with a novel TIS inducer, CX5461, for their effects on SASP, surfaceome and innate immune clearance of representative human HCC cell lines. Surprisingly, all three compounds induced both metastasis surface antigens but also immunotherapeutically tractable antigens like CD95 (Fas), CD276 (B7-H3) and CD340 (Her2). This was verified in four representative HCC cell lines and publicly available datasets of HCC. Interestingly, alisertib, etoposide and CX5461 rendered senescent HCC vulnerable to be targeted by either T-cell-engaging bispecific antibodies or CAR NK cells. Collectively, our study indicates that heterogenous, but selective features of HCC senescence may be exploited by different immunotherapeutic approaches.
Collapse
Affiliation(s)
- Pujan Engels
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Andras Szolek
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Sebastian Hörner
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Georgios Vavouras Syrigos
- Department of Medical Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- DZIF Partner Site Tübingen, Tübingen, Germany
| | - Kim Hebbel
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Michelle Schmidtke
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Min Zhou
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Caroline Schönfeld
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Sylwia Anna Stefanczyk
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Katharina Wolter
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sepideh Babaei
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Michael Schindler
- Department of Medical Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- DZIF Partner Site Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Daniel Dauch
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lars Zender
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ana Tapía-Abellán
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Cluster of Excellence 2124 CMFI, Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Xie Y, Wang S, Cha X, Li F, Xu Z, Wu J, Liu H, Ren W. Aging and chronic inflammation: impacts on olfactory dysfunction-a comprehensive review. Cell Mol Life Sci 2025; 82:199. [PMID: 40355677 PMCID: PMC12069206 DOI: 10.1007/s00018-025-05637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 05/14/2025]
Abstract
Olfactory dysfunction (OD) is a common nasal disease, particularly prevalent among the elderly population, significantly impacting the affected individuals' quality of life. This review focuses on the influence of aging and chronic inflammation on olfactory dysfunction, presenting insights from both the peripheral and central olfactory systems. By exploring the molecular mechanisms and pathological changes underlying the occurrence of olfactory dysfunction in relation to age-related diseases and chronic inflammation conditions, we aim to provide a comprehensive theoretical foundation for further research and offer valuable insights for more effective treatment of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingqi Xie
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Shenglei Wang
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Xudong Cha
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Fengzhen Li
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Zengyi Xu
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China
| | - Jian Wu
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China.
| | - Huanhai Liu
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China.
| | - Wenwen Ren
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Medical University, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
4
|
Xiong J, Guo Q, Luo X. Cellular senescence in age-related musculoskeletal diseases. Front Med 2025:10.1007/s11684-025-1125-7. [PMID: 40314896 DOI: 10.1007/s11684-025-1125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/16/2024] [Indexed: 05/03/2025]
Abstract
Aging is typically associated with decreased musculoskeletal function, leading to reduced mobility and increased frailty. As a hallmark of aging, cellular senescence plays a crucial role in various age-related musculoskeletal diseases, including osteoporosis, osteoarthritis, intervertebral disc degeneration, and sarcopenia. The detrimental effects of senescence are primarily due to impaired regenerative capacity of stem cells and the pro-inflammatory environment created by accumulated senescent cells. The secreted senescence-associated secretory phenotype (SASP) can induce senescence in neighboring cells, further amplifying senescent signals. Although the removal of senescent cells and the suppression of SASP factors have shown promise in alleviating disease progression and restoring musculoskeletal health in mouse models, clinical trials have yet to demonstrate significant efficacy. This review summarizes the mechanisms of cellular senescence in age-related musculoskeletal diseases and discusses potential therapeutic strategies targeting cellular senescence.
Collapse
Affiliation(s)
- Jinming Xiong
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
7
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
8
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
9
|
Gao X, Lu C, Wang K, Zheng C, Li L, Zhang X, Sun B. Ceramide Complex Ameliorates Metabolically Driven Neutrophil Senescence by Regulating Apoptosis via the cGAS-STING Pathway. Int J Med Sci 2025; 22:1124-1137. [PMID: 40027178 PMCID: PMC11866534 DOI: 10.7150/ijms.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/17/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Population aging is increasingly recognized as a major global challenge. Researchers have identified a correlation between aging and immunosenescence, leading to dysfunction of the immune system. As a crucial component of the innate immune system, age-related changes in neutrophils have garnered significant attention from researchers, but the underlying mechanisms remain unclear. This study aims to comprehensively evaluate the senescence status and potential mechanisms of neutrophils, and to identify targets for delaying or even reversing senescence. Methods: Blood routine tests and Luminex Multiplex Cytokine Analysis were employed to assess inflammation levels in mice. Flow cytometry and an agarose chemotaxis model were used to evaluate baseline biological functions and stress responses of neutrophils. Transmission electron microscopy and flow cytometry were utilized to compare mitochondrial ultrastructure and function. Metabolomic analysis was performed to examine metabolic patterns. qPCR, Western blotting, and flow cytometry were used to investigate the potential mechanisms of ceramide intervention on neutrophils. Results: Our findings indicate that aged mice exhibit considerable variability in delayed apoptosis among bone marrow neutrophils, alongside a notable reduction in baseline functionality and stress response capabilities. Metabolomic analysis revealed a marked decrease in ceramide levels within aged neutrophils. In vitro ceramide intervention revitalized neutrophil functionality and partially inhibited delayed apoptosis, facilitating the efficient elimination of senescent neutrophils. The underlying mechanism behind these effects might be attributed to ceramide's modulation of mitochondrial permeability, which in turn influences the activation of the cGAS-STING pathway, as well as its regulatory role in maintaining the equilibrium of pro-apoptotic Bcl-2 protein levels. Conclusions: This investigation proficiently assessed neutrophil senescence in terms of both biological functionalities and intrinsic diversity, while concurrently exploring the feasibility and primary mechanisms through which ceramide intervention impacts neutrophil senescence at the levels of signaling pathways, protein expression, and cellular microarchitecture. These findings provide novel insights into evaluating and potentially intervening in immune senescence, with implications for organismal aging.
Collapse
Affiliation(s)
- Xi Gao
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Cheng Lu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Kaixuan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Chunfang Zheng
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Xin Zhang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| |
Collapse
|
10
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
11
|
De Rosa M, Barnes RP, Detwiler AC, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts. Nat Commun 2025; 16:893. [PMID: 39837827 PMCID: PMC11751180 DOI: 10.1038/s41467-024-55638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.
Collapse
Affiliation(s)
| | - Ryan P Barnes
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ariana C Detwiler
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Xiong L, Wu C, Chen S, Zhang Y, Wang L, Li Y, Li G. Proteomics analysis reveals age-related proteins in the urine of chronic kidney disease patients. Front Med (Lausanne) 2025; 11:1506134. [PMID: 39835101 PMCID: PMC11743183 DOI: 10.3389/fmed.2024.1506134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic kidney disease (CKD) is closely linked to the aging process, making the identification of protein biomarkers that reflect aging in specific organs and tissues crucial for a deeper understanding of this phenomenon. This study aimed to identify potential aging-related proteins present in the urine of CKD patients. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis, we identified a total of 1,712 proteins in the urine samples from both healthy controls and CKD patients in our discovery cohort. Among the 845 proteins that overlapped, we found that 161 proteins were associated with aging. By applying a threshold of p < 0.05 and |log2 (fold change) | > 1.5, we classified 114 proteins as differentially expressed proteins (DEPs). The analyzes conducted using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that DEPs were significantly enriched in several clusters related to aging. In the validation cohort, we demonstrated that patients with CKD exhibited lower urinary levels of L-selectin (SELL), uromodulin (UMOD), and epidermal growth factor (EGF). Additionally, a significant negative correlation was found between age and EGF levels. The estimated glomerular filtration rate (eGFR) showed a significant positive correlation with SELL, UMOD, and EGF, while 24-h proteinuria showed a significant negative correlation with both UMOD and EGF. Furthermore, both UMOD and EGF were significantly negatively correlated with tubulointerstitial fibrosis, and EGF was significantly negatively correlated with glomerulosclerosis. In conclusion, this study emphasizes the promise of LC-MS/MS-based urine proteomics analysis in identifying aging-related protein markers. Specifically, SELL, UMOD, and EGF have been recognized as promising indicators of aging in patients with CKD.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Changwei Wu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Sipei Chen
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Guisen Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| |
Collapse
|
13
|
Gadd VL, Ferreira-Gonzalez S, Man TY, Kilpatrick AM, Aird RE, Smith IP, Rodrigo-Torres D, Kurian D, Hallett JM, Ashmore-Harris C, Esser H, Ferreira MF, Macmillan MT, Lu WY, Forbes SJ. Host hepatocyte senescence determines the success of hepatocyte transplantation in a mouse model of liver injury. J Hepatol 2025:S0168-8278(24)02830-7. [PMID: 39755157 DOI: 10.1016/j.jhep.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND & AIMS Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood. We explored this in a liver injury model, where predictable levels of injury and hepatocyte senescence were induced in AhCreMdm2fl/fl mice through genetic excision of hepatocyte Mdm2. METHODS Freshly isolated mouse or human cryopreserved hepatocytes were delivered via intrasplenic injection into AhCreMdm2fl/fl (immune competent and deficient strains) mice. Engraftment kinetics, donor cell engraftment and host liver function were assessed. Paired transcriptomic and proteomic analyses were performed on healthy vs. senescent mouse hepatocytes. RESULTS We found inhibition of host hepatocyte proliferation and liver injury is a requirement for donor hepatocyte engraftment and long-term repopulation, improving liver repair and function, but excessive senescence inhibited this process, causing a decline in graft function due to transmission of senescence from host to donor cells. Paired proteomic and transcriptomic analyses of healthy vs. senescent hepatocytes reveal a unique senescent signature associated with paracrine senescence. Modification of the host niche prior to transplantation with the senotherapeutic drug ABT737 improved donor cell proliferative capacity. CONCLUSIONS The host niche impacts the initial engraftment and long-term function of transplanted hepatocytes. Targeting paracrine senescence may be a way to improve donor hepatocyte function, optimise therapy and guide translation into the clinic. IMPACT AND IMPLICATIONS Hepatocyte transplantation has shown promise for genetic diseases but has limited efficacy for acute and severe liver injury. Poor engraftment and functionality have prevented large-scale clinical application. We show that host senescence provides the required non-competitive niche for donor hepatocytes to repopulate the recipient liver, but can, paradoxically, negatively impact donor function. These findings demonstrate a requirement for a clear understanding of the host niche prior to cell transfusion. This has significant implications not only for hepatocellular therapies, but also when developing and optimising any preclinical and clinical cell therapies.
Collapse
Affiliation(s)
- Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Ian P Smith
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Daniel Rodrigo-Torres
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Dominic Kurian
- Proteomic and Metabolomics Unit, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - John M Hallett
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Marisa F Ferreira
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Mark T Macmillan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Wei-Yu Lu
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom.
| |
Collapse
|
14
|
Yang Y, Fan L, Li M, Wang Z. Immune senescence: A key player in cancer biology. Semin Cancer Biol 2025; 108:71-82. [PMID: 39675646 DOI: 10.1016/j.semcancer.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
With the rapid development of immunological techniques in recent years, our understanding of immune senescence has gradually deepened, but the role of immune senescence in cancer biology remains incompletely elucidated. Understanding these mechanisms and interactions is crucial for the development of tumor biology. This review examines five key areas: the classification and main features of immune senescence, factors influencing immune cell senescence in cancer, the reciprocal causal cycle between immune senescence and malignancy, and the potential of immune senescence as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Lv J, Wei Q, Gong X, Du E, Zhang S. Simultaneously monitoring ATP and neutrophil elastase to assess inflammation progression. SENSORS AND ACTUATORS B: CHEMICAL 2025; 422:136676. [DOI: 10.1016/j.snb.2024.136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Li M, Liu Z, Cao X, Xiao W, Wang S, Zhao C, Zhao Y, Xie Y. [Gly14]-Humanin ameliorates high glucose-induced endothelial senescence via SIRT6. Sci Rep 2024; 14:30924. [PMID: 39730568 DOI: 10.1038/s41598-024-81878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
High glucose (HG) induced endothelial senescence is related to endothelial dysfunction and cardiovascular complications in diabetic patients. Humanin, a member of mitochondrial derived peptides (MDPs), is thought to contribute to aging-related cardiovascular protection. The goal of the study is to explore the pathogenesis of HG-induced endothelial senescence and potential anti-senescent effects of Humanin. Human umbilical vein endothelial cells (HUVECs) were exposed to glucose to induce senescence, determined by β-galactosidase staining and the expressions of p21, p53, and p16. A clinically relevant dose of HG (15 mM, HG) induced endothelial senescence after 72 h incubation without elevated apoptosis. HG-induced senescence was attributed to the induction of reactive oxygen species (ROS) caused by SIRT6 downregulation, as ROS inhibitor N-acetyl cysteine blocked HG-induced senescence, while inactivation of SIRT6 increased ROS levels and promoted senescence. Strikingly. pretreatment with [Gly14]-Humanin (HNG) antagonized the downregulation of SIRT6 in response to HG and alleviated ROS production and cell senescence. HG-induced reduction of SIRT6 results in ROS overproduction and endothelial senescence. Humanin protects against HG-induced endothelial senescence via SIRT6. This study provides new directions for biological products related to Humanin to be a potential candidate for the prevention of vascular aging in diabetes.
Collapse
Affiliation(s)
- Muqin Li
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Endocrinology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222061, JiangSu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215004, China
| | - Zhihua Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xueqin Cao
- Department of Endocrinology, The Fourth Affiliated Hospital of Soochow University, Chongwen Road No. 9, Suzhou, 215000, Jiangsu, China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shurong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chengyuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of endocrinology, Taizhou school of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Soochow Medical College of Soochow University, Suzhou, 215123, China.
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
17
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024; 137:3010-3049. [PMID: 39679477 PMCID: PMC11706578 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
18
|
Yakubo S, Abe H, Li Y, Kudo M, Kimura A, Wakabayashi T, Watanabe Y, Kimura N, Setsu T, Yokoo T, Sakamaki A, Kamimura H, Tsuchiya A, Kamimura K, Terai S. Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model. Diseases 2024; 12:317. [PMID: 39727647 PMCID: PMC11727104 DOI: 10.3390/diseases12120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) causes cellular senescence due to oxidative stress, endoplasmic reticulum stress, and ectopic fat deposition in the liver. Recently, dasatinib, an antitumor agent, and quercetin, a dietary supplement, were combined as a senolytic drug to eliminate senescent cells. Thus, this study aimed to examine the effects of dasatinib and quercetin administration on removing senescent cells and their therapeutic effects on MASLD in a medaka MASLD model. Dasatinib and quercetin were administered to a medaka MASLD model, which was fed a high-fat diet by dissolving them in aquarium water. The results revealed that senescent cells in the liver were increased in the HFD group but improved in the treatment group. Hematoxylin and eosin staining also showed that treatment improved fat deposition in hepatocytes. In addition, TGFβ1, a driver factor of fibrosis, was reduced in the treatment group. Dasatinib and quercetin eliminated senescent cells in MASLD, attenuated fat deposition, and suppressed fibrosis gene expression. The results indicate that dasatinib and quercetin as senolytic drugs are novel therapeutic agents that reduce MASLD.
Collapse
Affiliation(s)
- Shunta Yakubo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Yawen Li
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Marina Kudo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Takuya Wakabayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan;
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| |
Collapse
|
19
|
He K, Wei D, Liu Q, Liu X, Zhou D, Chen S, Zhu D, Xu X. Identification of stable housekeeping genes in mouse liver for studying carbon tetrachloride-induced injury and cellular senescence. Sci Rep 2024; 14:26544. [PMID: 39489763 PMCID: PMC11532458 DOI: 10.1038/s41598-024-78183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Acute liver injury (ALI) presents a challenging problem worldwide, prompting extensive research efforts. Cellular senescence has been found to be induced following ALI, and targeting cellular senescence has shown therapeutic potential. Therefore, understanding the expression of senescence-related genes in ALI can help to explore pathogenesis and treatment of this common disease. Carbon tetrachloride (CCl4) is commonly used to study ALI. Although polymerase chain reaction (PCR) is a convenient and economical molecular biology technique widely used in basic medicine, research on selecting suitable reference genes to obtain objective and reproducible PCR data is scarce. Moreover, evidence supporting the choice of reference genes for experimental studies of CCl4-induced ALI and hepatic senescence in mice is limited. In this study, we obtained murine livers at four time points (0, 12, 24, and 48 h) following CCl4 treatment. We used five algorithms (geNorm, BestKeeper, NormFinder, delta Ct, and RefFinder) to rank 12 candidate genes in real-time reverse-transcription quantitative PCR (RT-qPCR) experiments. Focusing on cellular senescence in this model, we adopted four senescence-associated secretory phenotype (SASP) genes (Il6, Il1b, Ccl2, and Ccl5) as target genes. Our results confirmed Gapdh and Tbp as suitable reference genes in murine CCl4-induced ALI models. Furthermore, we provide a table of published studies recommending reference genes for various liver disease models. This study provides a valuable reference for enhancing the reliability and reproducibility of ALI molecular findings.
Collapse
Affiliation(s)
- Keting He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China
| | - Dongfan Wei
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China
| | - Diwenxin Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China
| | - Shangci Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China.
| | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China.
| |
Collapse
|
20
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
21
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
22
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
23
|
Zhu S, Zheng W, Rao D, Tang Z, Liao X. Leukocyte telomere length and lung function: a mendelian randomization study in European population. Front Physiol 2024; 15:1373064. [PMID: 39512472 PMCID: PMC11540648 DOI: 10.3389/fphys.2024.1373064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Background The telomere has long been regarded as a dependable biomarker for cellular senescence. The lung function can reflect the function and status of the lungs. As individuals age beyond adulthood, there is a gradual decline in lung function. However, the existence of a associated between leukocyte telomere length (LTL) and lung function remains uncertain. Methods A two-sample Mendelian randomization (MR) analysis was used. The Single-nucleotide polymorphisms (SNPs) of LTL from the genome-wide association (GWAS) study were used as exposure instruments variable, and the lung function indicator including Forced expiratory volume in 1-s (FEV1), FEV1 Best measure, FEV1 predicted and Forced vital capacity (FVC) from the Neale Lab and MRC-IEU were used as outcomes. The associated between the exposures and outcomes was assessed using inverse-variance weighted (IVW), MR-Egger, and weighted median methods. Sensitivity analysis was conducted using Cochran's Q-test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and Steriger test. Results Using the IVW method, a significant association was identified between genetically determined telomere length extension and enhanced lung function in FEV1, with ukb-a-336 (P = 0.127, OR = 1.028,95CI% = 1.003-1.042) and ukb-b-19657 (P = 7.26E-05, OR = 1.051,95CI% = 1.025-1.077),in FEV1 predicted, ukb-a-234 (P = 0.013, OR = 1.029,95CI% = 1.003-1.042), ukb-b-8428 (P = 0.001, OR = 1.032,95CI% = 1.012-1.052), in FEV1 best measure, ukb-a-231 (P = 7.24E-05, OR = 1.050,95CI% = 1.025-1.075), ukb-b-11141 (P = 1.40E-09, OR = 1.067,95CI% = 1.045-1.090).The sensitivity analysis did not reveal heterogeneity or horizontal pleiotropy.Meanwhile, the Steriger test results also indicate that the directionality between exposure and outcome is correct. Therefore, the results indicated robustness. Conclusion There is a correlation between longer LTL and better lung function in the European dataset.
Collapse
Affiliation(s)
- Shenyu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Cardiothoracic Surgery Brain injury and brain protection key laboratory of Ganzhou, Jiangxi, China
| | - Wenlong Zheng
- Department of Respiratory, Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Dingyu Rao
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Cardiothoracic Surgery Brain injury and brain protection key laboratory of Ganzhou, Jiangxi, China
| | - Zhixian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Cardiothoracic Surgery Brain injury and brain protection key laboratory of Ganzhou, Jiangxi, China
| | - Xinhui Liao
- Department of Respiratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
24
|
Wrona MV, Ghosh R, Coll K, Chun C, Yousefzadeh MJ. The 3 I's of immunity and aging: immunosenescence, inflammaging, and immune resilience. FRONTIERS IN AGING 2024; 5:1490302. [PMID: 39478807 PMCID: PMC11521913 DOI: 10.3389/fragi.2024.1490302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
As we age, our immune system's ability to effectively respond to pathogens declines, a phenomenon known as immunosenescence. This age-related deterioration affects both innate and adaptive immunity, compromising immune function and leading to chronic inflammation that accelerates aging. Immunosenescence is characterized by alterations in immune cell populations and impaired functionality, resulting in increased susceptibility to infections, diminished vaccine efficacy, and higher prevalence of age-related diseases. Chronic low-grade inflammation further exacerbates these issues, contributing to a decline in overall health and resilience. This review delves into the characteristics of immunosenescence and examines the various intrinsic and extrinsic factors contributing to immune aging and how the hallmarks of aging and cell fates can play a crucial role in this process. Additionally, it discusses the impact of sex, age, social determinants, and gut microbiota health on immune aging, illustrating the complex interplay of these factors in altering immune function. Furthermore, the concept of immune resilience is explored, focusing on the metrics for assessing immune health and identifying strategies to enhance immune function. These strategies include lifestyle interventions such as diet, regular physical activity, stress management, and the use of gerotherapeutics and other approaches. Understanding and mitigating the effects of immunosenescence are crucial for developing interventions that support robust immune responses in aged individuals.
Collapse
Affiliation(s)
- Marianna V. Wrona
- Columbia University in the City of New York, New York, NY, United States
| | - Rituparna Ghosh
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Kaitlyn Coll
- Florida International University, Miami, FL, United States
| | - Connor Chun
- Bronx High School of Science, New York, NY, United States
| | - Matthew J. Yousefzadeh
- Columbia University in the City of New York, New York, NY, United States
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
25
|
Zhao Q, Gu M, Ni M, Li J, Wu T, Zhu S, Zhou Y, Lu Y, Li X, Xu H, Lu M. ROS responsive hydrogel for inhibition of MUC5AC against allergic rhinitis: A new delivery strategy for Ipratropium Bromide. Colloids Surf B Biointerfaces 2024; 242:114112. [PMID: 39047643 DOI: 10.1016/j.colsurfb.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Allergic rhinitis (AR) is a chronic inflammatory disease of the nasal mucosa mediated by immunoglobulin E (IgE) after exposure to allergens. The bothersome symptoms of AR, such as runny nose and nasal congestion, affect millions of people worldwide. Ipratropium Bromide (IB), commonly used in clinical practice for treating AR, requires frequent administration through nasal spray and may cause significant irritation to the nasal mucosa. The induction of ROS is closely related to the initiation and symptoms of AR, and ROS will continue to accumulate during the onset of AR. To address these challenges, we have designed a drug delivery system that can be administered in liquid form and rapidly crosslink into a ROS-responsive gel in the nasal cavity. This system enables sustained ROS responsive release of IB in a high-concentration ROS environment at AR lesions, thereby alleviating AR symptoms. The gel demonstrated prolonged release of IB for up to 24 hours in rats. In the treatment of AR rat models, it improved their symptoms, reduced the expression of various inflammatory factors, suppressed MUC5AC protein expression, and decreased mucus secretion through a ROS responsive IB release pattern. Overall, this system holds promise as a better option for AR treatment and may inspire the design of nanogel-based nasal drug delivery systems.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Min Gu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengnan Ni
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Senlin Zhu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yupeng Zhou
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yawen Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Meiping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
26
|
Penrice DD, Jalan-Sakrikar N, Jurk D, Passos JF, Simonetto DA. Telomere dysfunction in chronic liver disease: The link from aging. Hepatology 2024; 80:951-964. [PMID: 37102475 PMCID: PMC10848919 DOI: 10.1097/hep.0000000000000426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Daniel D. Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A. Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
28
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
29
|
Wang RZ, Zhang WS, Jiang CQ, Zhu F, Jin YL, Xu L. Inflammatory age and its impact on age-related health in older Chinese adults. Arch Gerontol Geriatr 2024; 125:105476. [PMID: 38761528 DOI: 10.1016/j.archger.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION A standardized measure for inflammaging is lacking. We introduced the inflammatory age (iAge) as a quantification method and explored its associations with age-related traits and diseases in an older Chinese cohort. METHODS Inflammatory markers including white blood cell count (WBC), neutrophils, lymphocytes, monocytes, C-reactive protein, platelets and albumin were measured. Quantitative real-time polymerase chain reaction was used to measure telomere length. Traditional multivariable linear, partial least squares, and logistic regression were used. RESULTS iAge was constructed based on WBC, neutrophils, monocytes and albumin, which were associated with telomere length independently. A higher iAge indicated a heavier aging-related inflammation burden. Per 1-year increase in iAge was associated with higher body mass index (β 0.86 (95 % CI 0.67, 1.05) kg/m2), waist circumference (β 2.37 (95 % CI 1.85, 2.90) cm), glycosylated hemoglobin A1c (β 0.06 (95 % CI 0.02, 0.10) %), systolic blood pressure (β 1.06 (95 % CI 0.10, 2.03) mmHg), triglycerides (β 0.05 (95 % CI 0.01, 0.08) mmol/L), 10-year cardiovascular diseases risk (β 0.05 (95 % CI 0.02, 0.08) %), diabetes (OR 1.22 (95 % CI 1.02, 1.46)), hypertension (OR 1.21 (95 % CI 1.04, 1.42)) and metabolic syndrome risks (OR 1.25 (95 % CI 1.04, 1.51)), and lower fasting plasma glucose (β -0.016 (95 % CI -0.024, -0.007) mmol/L), total cholesterol (β -0.06 (95 % CI -0.12, -0.01) mmol/L) and high-density lipoprotein cholesterol (β -0.05 (95 % CI -0.07, -0.03) mmol/L). CONCLUSION The newly introduced iAge, derived from inflammatory markers and telomere length, aligns with various metabolic dysfunctions and age-related disease risks, underscoring its potential ability in identifying aging-related phenotypes.
Collapse
Affiliation(s)
- Rui Zhen Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wei Sen Zhang
- Guangzhou Twelfth People's Hospital, Guangzhou, China.
| | | | - Feng Zhu
- Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Ya Li Jin
- Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Lin Xu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China; School of Public Health, the University of Hong Kong, Hong Kong, China; Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
30
|
Maldonado F, Albornoz M, Enríquez I, Espinoza C, Chang H, Carrasco L, Díaz-Papapietro C, Medina F, González R, Cáceres M. Association of neutrophil-to-lymphocyte ratio with age and 180-day mortality after emergency surgery. BMC Anesthesiol 2024; 24:329. [PMID: 39289610 PMCID: PMC11406743 DOI: 10.1186/s12871-024-02718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND To examine the relationship between neutrophil-to-lymphocyte ratio (NLR), age, and mortality rates after emergency surgery. METHODS In this observational study, a total of 851 patients undergoing emergency surgery between January 2022 and January 2023 were retrospective examined. Using 30 and 180 days mortality data, NLR differences and receiver operating characteristic (ROC) curves were analyzed using a 65-year threshold. A multiple logistic regression model was constructed incorporating age and NLR. Finally, Kaplan-Meier curves were constructed for mortality. RESULTS Among 851 patients, the 30 and 180 days mortality rates were 5.2% and 10.8%, respectively. Median NLR in 30 days was 5.6 (3.1 to 9.6) in survivors and 8.7 (4.6 to 13.4) in deceased patients (p < 0.0001); in 180 days, it was 5.5 (3.1 to 9.8) and 8.8 (4.8 to 14.5), respectively (p < 0.0001). In the 30- and 180-days mortality analyses, median NLRs were 5.1 (2.9 to 8.9) and 4.9 (2.9 to 8.8) in survivors and 10.6 (6.9 to 16.6) and 9.3 (5.4 to 14.9) in deceased patients aged < 65 years, respectively. The ROC AUC in patients younger than 65 years was higher for 30 days (AUC 0.75; 95% CI 0.72 to 0.87) and 180 days (AUC 0.73; 95% CI 0.64 to 0.81). Multivariate logistic regression revealed that the NLR (odds ratio, 1.03 [95% CI 1.005 to 1.053; p = 0.0133) and age (odds ratio, 1.05 [95% CI 1.034 to 1.064; p < 0.0001) significantly contributed to the model. Survival analysis revealed differences in the 180 days mortality (p = 0.0006). CONCLUSION We observed differences in preoperative NLR between patients who survived and those who died after emergency surgery. Age impacts the use of NLR as a mortality risk factor. TRIAL REGISTRATION NCT06549101, retrospectively registered.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.
| | | | | | | | - Hui Chang
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Laura Carrasco
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Díaz-Papapietro
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Felipe Medina
- Instituto de Salud Poblacional, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto González
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
31
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
32
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
34
|
Zeng W, Liang Y, Huang S, Zhang J, Mai C, He B, Shi L, Liu B, Li W, Huang X, Li X. Ciprofloxacin Accelerates Angiotensin-II-Induced Vascular Smooth Muscle Cells Senescence Through Modulating AMPK/ROS pathway in Aortic Aneurysm and Dissection. Cardiovasc Toxicol 2024; 24:889-903. [PMID: 39138741 PMCID: PMC11335803 DOI: 10.1007/s12012-024-09892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Aortic aneurysm and dissection (AAD) is a cardiovascular disease that poses a severe threat to life and has high morbidity and mortality rates. Clinical and animal-based studies have irrefutably shown that fluoroquinolones, a commonly prescribed antibiotic for treating infections, significantly increase the risk of AAD. Despite this, the precise mechanism by which fluoroquinolones cause AAD remains unclear. Therefore, this study aims to investigate the molecular mechanism and role of Ciprofloxacin definitively-a type of fluoroquinolone antibiotic-in the progression of AAD. Aortic transcriptome data were collected from GEO datasets to detect the genes and pathways expressed differently between healthy donors and AAD patients. Human primary Vascular Smooth Muscle Cells (VSMCs) were isolated from the aorta. After 72 h of exposure to 110ug/ml Ciprofloxacin or 100 nmol/L AngII, either or combined, the senescent cells were identified through SA-β-gal staining. MitoTracker staining was used to examine the morphology of mitochondria in each group. Cellular Reactive Oxygen Species (ROS) levels were measured using MitoSox and DCFH-DA staining. Western blot assay was performed to detect the protein expression level. We conducted an analysis of transcriptome data from both healthy donors and patients with AAD and found that there were significant changes in cellular senescence-related signaling pathways in the latter group. We then isolated and identified human primary VSMCs from healthy donors (control-VSMCs) and patients' (AAD-VSMCs) aortic tissue, respectively. We found that VSMCs from patients exhibited senescent phenotype as compared to control-VSMCs. The higher levels of p21 and p16 and elevated SA-β-gal activity demonstrated this. We also found that pretreatment with Ciprofloxacin promoted angiotensin-II-induced cellular senescence in control-VSMCs. This was evidenced by increased SA-β-gal activity, decreased cell proliferation, and elevation of p21 and p16 protein levels. Additionally, we found that Angiotensin-II (AngII) induced VSMC senescence by promoting ROS generation. We used DCFH-DA and mitoSOX staining to identify that Ciprofloxacin and AngII pretreatment further elevated ROS levels than the vehicle or alone group. Furthermore, JC-1 staining showed that mitochondrial membrane potential significantly declined in the Ciprofloxacin and AngII combination group compared to others. Compared to the other three groups, pretreatment of Ciprofloxacin plus AngII could further induce mitochondrial fission, demonstrated by mitoTracker staining and western blotting assay. Mechanistically, we found that Ciprofloxacin impaired the balance of mitochondrial fission and fusion dynamics in VSMCs by suppressing the phosphorylation of AMPK signaling. This caused mitochondrial dysfunction and ROS generation, thereby elevating AngII-induced cellular senescence. However, treatment with the AMPK activator partially alleviated those effects. Our data indicate that Ciprofloxacin may accelerate AngII-induced VSMC senescence through modulating AMPK/ROS signaling and, subsequently, hasten the progression of AAD.
Collapse
MESH Headings
- Humans
- Cellular Senescence/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/enzymology
- Aortic Dissection/chemically induced
- Aortic Dissection/pathology
- Aortic Dissection/enzymology
- Aortic Dissection/metabolism
- Signal Transduction/drug effects
- Reactive Oxygen Species/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Angiotensin II/toxicity
- Cells, Cultured
- Ciprofloxacin/pharmacology
- AMP-Activated Protein Kinases/metabolism
- Case-Control Studies
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/pathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/enzymology
- Male
- Middle Aged
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Weiyue Zeng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaowen Liang
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shangjun Huang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiarui Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Mai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Binbin He
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linli Shi
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Baojuan Liu
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoran Huang
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Yang B, Li T, Wang Z, Zhu Y, Niu K, Hu S, Lin Z, Zheng X, Jin X, Shen C. Ruxolitinib-based senomorphic therapy mitigates cardiomyocyte senescence in septic cardiomyopathy by inhibiting the JAK2/STAT3 signaling pathway. Int J Biol Sci 2024; 20:4314-4340. [PMID: 39247818 PMCID: PMC11379065 DOI: 10.7150/ijbs.96489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. Methods: We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated β-galactosidase (SA-β-gal) assay, and other techniques were utilized to investigate underlying mechanisms. Results: Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-β-gal assay. Rux treatment attenuated SASP in vitro and in vivo, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both in vitro and in vivo. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. Conclusions: This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.
Collapse
Affiliation(s)
- Boshen Yang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taixi Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuankang Zhu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaifan Niu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sien Hu
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Zhiqi Lin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Jin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Ortega-Molina A, Lebrero-Fernández C, Sanz A, Calvo-Rubio M, Deleyto-Seldas N, de Prado-Rivas L, Plata-Gómez AB, Fernández-Florido E, González-García P, Vivas-García Y, Sánchez García E, Graña-Castro O, Price NL, Aroca-Crevillén A, Caleiras E, Monleón D, Borrás C, Casanova-Acebes M, de Cabo R, Efeyan A. A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan. NATURE AGING 2024; 4:1102-1120. [PMID: 38849535 PMCID: PMC11333293 DOI: 10.1038/s43587-024-00635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain.
| | - Cristina Lebrero-Fernández
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía de Prado-Rivas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Fernández-Florido
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Yurena Vivas-García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Sánchez García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), Department of Basic Medical Sciences, School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Institute of Health Research-INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), MiniAging Research Group, Institute of Health Research-INCLIVA, Valencia, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
37
|
Robert M, Kennedy BK, Crasta KC. Therapy-induced senescence through the redox lens. Redox Biol 2024; 74:103228. [PMID: 38865902 PMCID: PMC11215421 DOI: 10.1016/j.redox.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Therapy-induced senescent tumor cells have emerged as significant drivers of tumor recurrence and disease relapse. Interestingly, reactive oxygen species (ROS) production and its associated redox signaling networks are intertwined with initiation and establishment of therapy-induced senescence. Therapy-induced senescent cells influence neighboring cells and the tumor microenvironment via their bioactive secretome known as the senescence-associated secretory phenotype (SASP). The intracellular effects of ROS are dose and context-dependent. Under normal physiological conditions, ROS is involved in various signalling pathways and cellular processes important for maintenance of cellular homeostasis, such as redox balance, stress response, inflammatory signalling, cell proliferation and cell death among others. However excess ROS accompanied by a pro-oxidant microenvironment can engender oxidative DNA damage, triggering cellular senescence. In this review, we discuss the role of ROS and the redox state dynamics in fine-tuning homeostatic processes that drive therapy-induced cell fate towards senescence establishment, as well as their influence in stimulating inflammatory signalling and SASP production. We also offer insights into interventional strategies, specifically senotherapeutics, that could potentially leverage on modulation of redox and antioxidant pathways. Lastly, we evaluate possible implications of redox rewiring during escape from therapy-induced senescence, an emerging area of research. We envision that examining therapy-induced senescence through the redox lens, integrated with time-resolved single-cell RNA sequencing combined with spatiotemporal multi-omics, could further enhance our understanding of its functional heterogeneity. This could aid identification of targetable signalling nodes to reduce disease relapse, as well as inform strategies for development of broad-spectrum senotherapeutics. Overall, our review aims to delineate redox-driven mechanisms which contribute to the biology of therapy-induced senescence and beyond, while highlighting implications for tumor initiation and recurrence.
Collapse
Affiliation(s)
- Matius Robert
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
38
|
Hernandez-Gonzalez F, Pietrocola F, Cameli P, Bargagli E, Prieto-González S, Cruz T, Mendoza N, Rojas M, Serrano M, Agustí A, Faner R, Gómez-Puerta JA, Sellares J. Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities. Int J Mol Sci 2024; 25:7554. [PMID: 39062798 PMCID: PMC11276754 DOI: 10.3390/ijms25147554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Federico Pietrocola
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Solna, Sweden;
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Sergio Prieto-González
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Cruz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Nuria Mendoza
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Cambridge CB21 6GP, UK;
| | - Alvar Agustí
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Biomedicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Jose A. Gómez-Puerta
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Rheumatology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Jacobo Sellares
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| |
Collapse
|
39
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
40
|
Xiao R, Hu S, Du X, Wang Y, Fang K, Zhu Y, Lou N, Yuan C, Yang J. Revolutionizing Senescence Detection: Advancements from Traditional Methods to Cutting-Edge Techniques. Aging Dis 2024; 16:1285-1301. [PMID: 39012669 PMCID: PMC12096929 DOI: 10.14336/ad.202.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The accumulation of senescent cells is an important factor in the complex progression of aging, with significant implications for the development of numerous diseases. Thus, understanding the fundamental mechanisms of senescence is paramount for advancing preventive and therapeutic approaches to age-related conditions. Important to this pursuit is the precise identification and examination of senescent cells, contingent upon the recognition of specific biomarkers. Historically, detection methods relied on assessing molecular protein and mRNA levels and various staining techniques. While these conventional approaches have contributed substantially to the field, they possess limitations in capturing the dynamic evolution of cellular aging in real time. The emergence of novel technologies has led to a paradigm shift in senescence research. Gene-edited mouse models and the application of advanced probes have revolutionized our ability to detect senescent cells. These cutting-edge methodologies provide a more detailed and accurate means of dynamically monitoring, characterizing and potentially eliminating senescent cells, thus enhancing our understanding of the complex mechanisms of aging. This review comprehensively explores both traditional and innovative senescent cell detection methods, elucidating their advantages, limitations and implications for future investigations and could serve as a comprehensive guide and catalyst for further advancements in the understanding of aging and associated pathologies.
Collapse
Affiliation(s)
| | | | - Xiaohui Du
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yiwen Wang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ke Fang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yibin Zhu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chunhui Yuan
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Ogino N, Leite MF, Guerra MT, Kruglov E, Asashima H, Hafler DA, Ito T, Pereira JP, Peiffer BJ, Sun Z, Ehrlich BE, Nathanson MH. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J Clin Invest 2024; 134:e171691. [PMID: 38916955 PMCID: PMC11324315 DOI: 10.1172/jci171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, nondestructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here, we report a completely different mechanism by which neutrophils act nondestructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of Serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy individuals. This nondestructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Fatima Leite
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- INCT - NanoBiofar – Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T. Guerra
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - João P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon J. Peiffer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara E. Ehrlich
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Michael H. Nathanson
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Cunha A, Perazzio S. Effects of immune exhaustion and senescence of innate immunity in autoimmune disorders. Braz J Med Biol Res 2024; 57:e13225. [PMID: 38896644 PMCID: PMC11186593 DOI: 10.1590/1414-431x2024e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown. Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis, leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process. Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3, and senescence, including Β-galactosidase (β-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- A.L.S. Cunha
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - S.F. Perazzio
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Divisão de Imunologia, Laboratório Fleury, São Paulo, SP, Brasil
- Laboratório Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
43
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024; 16:1347-1362. [PMID: 38913043 PMCID: PMC12096906 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Thasneem A, Sif S, Rahman MM, Crovella S. Can telomeric changes orchestrate the development of autoinflammatory skin diseases? Ital J Dermatol Venerol 2024; 159:318-328. [PMID: 38502535 DOI: 10.23736/s2784-8671.23.07689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Telomeres, the safeguarding caps at the tips of chromosomes, are pivotal in the aging process of cells and have been linked to skin ailments and inflammatory conditions. Telomeres undergo a gradual reduction in length and factors such as oxidative stress hasten this diminishing process. Skin diseases including inflammatory conditions can be correlated with the shortening of telomeres and the persistent activation of DNA damage response in skin tissues. Telomere dysfunction could disrupt the balance of the skin, impairs wound healing, and may contribute to abnormal cytokine production. Skin aging and processes related to telomeres may function as one of the triggers for skin diseases. The presence of proinflammatory cytokines and dysfunctional telomeres in conditions such as Dyskeratosis Congenita implies a possible connection between the shortening of telomeres and the onset of chronic inflammatory skin disorders. In autoinflammatory skin diseases, chronic inflammation hinders wound healing thus aggravating the progression of the disease. The NF-ĸB pathway might contribute to the initiation or progression of chronic disorders by influencing mechanisms associated with telomere biology. The intricate connections between telomeres, telomerase, telomere-associated proteins, and skin diseases are still a complex puzzle to be solved. Here, we provide an overview of the impact of telomeres on both health and disease with a specific emphasis on their role in skin, inflammation and autoinflammatory skin disorders.
Collapse
Affiliation(s)
- Ayshath Thasneem
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Said Sif
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar -
| |
Collapse
|
45
|
Shi YS, Yang TN, Wang YX, Ma XY, Liu S, Zhao Y, Li JL. Melatonin Mitigates Atrazine-Induced Renal Tubular Epithelial Cell Senescence by Promoting Parkin-Mediated Mitophagy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0378. [PMID: 38766643 PMCID: PMC11098712 DOI: 10.34133/research.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The accumulation of senescent cells in kidneys is considered to contribute to age-related diseases and organismal aging. Mitochondria are considered a regulator of cell senescence process. Atrazine as a triazine herbicide poses a threat to renal health by disrupting mitochondrial homeostasis. Melatonin plays a critical role in maintaining mitochondrial homeostasis. The present study aims to explore the mechanism by which melatonin alleviates atrazine-induced renal injury and whether parkin-mediated mitophagy contributes to mitigating cell senescence. The study found that the level of parkin was decreased after atrazine exposure and negatively correlated with senescent markers. Melatonin treatment increased serum melatonin levels and mitigates atrazine-induced renal tubular epithelial cell senescence. Mechanistically, melatonin maintains the integrity of mitochondrial crista structure by increasing the levels of mitochondrial contact site and cristae organizing system, mitochondrial transcription factor A (TFAM), adenosine triphosphatase family AAA domain-containing protein 3A (ATAD3A), and sorting and assembly machinery 50 (Sam50) to prevent mitochondrial DNA release and subsequent activation of cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase pathway. Furthermore, melatonin activates Sirtuin 3-superoxide dismutase 2 axis to eliminate the accumulation of reactive oxygen species in the kidney. More importantly, the antisenescence role of melatonin is largely determined by the activation of parkin-dependent mitophagy. These results offer novel insights into measures against cell senescence. Parkin-mediated mitophagy is a promising drug target for alleviating renal tubular epithelial cell senescence.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Tian-Ning Yang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi Zhao
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
46
|
Saul D, Doolittle ML, Rowsey JL, Froemming MN, Kosinsky RL, Vos SJ, Ruan M, LeBrasseur NK, Chandra A, Pignolo RJ, Passos JF, Farr JN, Monroe DG, Khosla S. Osteochondroprogenitor cells and neutrophils expressing p21 and senescence markers modulate fracture repair. J Clin Invest 2024; 134:e179834. [PMID: 38753433 PMCID: PMC11178538 DOI: 10.1172/jci179834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ versus p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Madison L. Doolittle
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitchell N. Froemming
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Robyn L. Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Stephanie J. Vos
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Ming Ruan
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Abhishek Chandra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J. Pignolo
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Joshua N. Farr
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - David G. Monroe
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundeep Khosla
- Division of Endocrinology and
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
47
|
Jean WH, Lin YC, Ang PY, Goto K, Lin CA, Dewi L, Liao YC, Huang CY, Kuo CH. Senolytic effects of exercise in human muscles require acute inflammation. Aging (Albany NY) 2024; 16:8599-8610. [PMID: 38752873 PMCID: PMC11164480 DOI: 10.18632/aging.205827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/08/2024] [Indexed: 06/06/2024]
Abstract
Higher intensity exercise, despite causing more tissue damage, improved aging conditions. We previously observed decreased p16INK4a mRNA in human skeletal muscle after high-intensity interval exercise (HIIE), with no change following equivalent work in moderate-intensity continuous exercise. This raises the question of whether the observed senolytic effect of exercise is mediated by inflammation, an immune response induced by muscle damage. In this study, inflammation was blocked using a multiple dose of ibuprofen (total dose: 1200 mg), a commonly consumed nonsteroidal anti-inflammatory drug (NSAID), in a placebo-controlled, counterbalanced crossover trial. Twelve men aged 20-26 consumed ibuprofen or placebo before and after HIIE at 120% maximum aerobic power. Multiple muscle biopsies were taken for tissue analysis before and after HIIE. p16INK4a+ cells were located surrounding myofibers in muscle tissues. The maximum decrease in p16INK4a mRNA levels within muscle tissues occurred at 3 h post-exercise (-82%, p < 0.01), gradually recovering over the next 3-24 h. A concurrent reduction pattern in CD11b mRNA (-87%, p < 0.01) was also found within the same time frame. Ibuprofen treatment attenuated the post-exercise reduction in both p16INK4a mRNA and CD11b mRNA. The strong correlation (r = 0.88, p < 0.01) between p16INK4a mRNA and CD11b mRNA in muscle tissues suggests a connection between the markers of tissue aging and pro-inflammatory myeloid differentiation. In conclusion, our results suggest that the senolytic effect of high-intensity exercise on human skeletal muscle is mediated by acute inflammation.
Collapse
Affiliation(s)
- Wei-Horng Jean
- Department of Anesthesiology, Far East Memorial Hospital, New Taipei City 220, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Yin-Chou Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
- Department of Health Management and Enhancement, Open University of Kaohsiung, Kaohsiung 812, Taiwan
| | - Pei-Yao Ang
- Laboratory of Exercise Biochemistry, University of Taipei, New Taipei City 11153, Taiwan
| | - Kazushige Goto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Chao-An Lin
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Luthfia Dewi
- Laboratory of Exercise Biochemistry, University of Taipei, New Taipei City 11153, Taiwan
| | - Yu-Chieh Liao
- Laboratory of Exercise Biochemistry, University of Taipei, New Taipei City 11153, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, New Taipei City 11153, Taiwan
| |
Collapse
|
48
|
Meng S, Wang Z, Liu X, Shen K, Gu Y, Yu B, Wang L. Uptake of ox-LDL by binding to LRP6 mediates oxidative stress-induced BMSCs senescence promoting obesity-related bone loss. Cell Signal 2024; 117:111114. [PMID: 38387686 DOI: 10.1016/j.cellsig.2024.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Obesity has long been thought to be a main cause of hyperlipidemia. As a systemic disease, the impact of obesity on organs, tissues and cells is almost entirely negative. However, the relationship between obesity and bone loss is highly controversial. On the one hand, obesity has long been thought to have a positive effect on bone due to increased mechanical loading on the skeleton, conducive to increasing bone mass to accommodate the extra weight. On the other hand, obesity-related metabolic oxidative modification of low-density lipoprotein (LDL) in vivo causes a gradual increase of oxidized LDL (ox-LDL) in the bone marrow microenvironment. We have reported that low-density lipoprotein receptor-related protein 6 (LRP6) acts as a receptor of ox-LDL and mediates the bone marrow stromal cells (BMSCs) uptake of ox-LDL. We detected elevated serum ox-LDL in obese mice. We found that ox-LDL uptake by LRP6 led to an increase of intracellular reactive oxygen species (ROS) in BMSCs, and N-acetyl-L-cysteine (NAC) alleviated the cellular senescence and impairment of osteogenesis induced by ox-LDL. Moreover, LRP6 is a co-receptor of Wnt signaling. We found that LRP6 preferentially binds to ox-LDL rather than dickkopf-related protein 1 (DKK1), both inhibiting Wnt signaling and promoting BMSCs senescence. Mesoderm development LRP chaperone (MESD) overexpression inhibits ox-LDL binding to LRP6, attenuating oxidative stress and BMSCs senescence, eventually rescuing bone phenotype.
Collapse
Affiliation(s)
- Senxiong Meng
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhuan Wang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaonan Liu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Shen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Gu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Wang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
49
|
Yan X, Yang P, Li Y, Liu T, Zha Y, Wang T, Zhang J, Feng Z, Li M. New insights from bidirectional Mendelian randomization: causal relationships between telomere length and mitochondrial DNA copy number in aging biomarkers. Aging (Albany NY) 2024; 16:7387-7404. [PMID: 38663933 PMCID: PMC11087129 DOI: 10.18632/aging.205765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.
Collapse
Affiliation(s)
- Xinyu Yan
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Peixuan Yang
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yani Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Liu
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Yawen Zha
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Wang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Jingjing Zhang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Feng
- Department of Radiation Oncology, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, China
| | - Minying Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
50
|
Eppard M, Passos JF, Victorelli S. Telomeres, cellular senescence, and aging: past and future. Biogerontology 2024; 25:329-339. [PMID: 38150087 DOI: 10.1007/s10522-023-10085-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Over half a century has passed since Alexey Olovnikov's groundbreaking proposal of the end-replication problem in 1971, laying the foundation for our understanding of telomeres and their pivotal role in cellular senescence. This review paper delves into the intricate and multifaceted relationship between cellular senescence, the influence of telomeres in this process, and the far-reaching consequences of telomeres in the context of aging and age-related diseases. Additionally, the paper investigates the various factors that can influence telomere shortening beyond the confines of the end-replication problem and how telomeres can exert their impact on aging, even in the absence of significant shortening. Ultimately, this paper stands as a tribute to the pioneering work of Olovnikov, whose seminal contributions established the solid foundation upon which our ongoing explorations of telomeres and the aging process are based.
Collapse
Affiliation(s)
- Madeline Eppard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|