1
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liu D, Chen L, Wang Z, Li Z, Liu L, Peng L. Ubiquitination of TFEB increased intestinal permeability to aggravate metabolic dysfunction-associated steatohepatitis. Hepatology 2025:01515467-990000000-01134. [PMID: 39792087 DOI: 10.1097/hep.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND AIMS Increased intestinal permeability exacerbates the development of metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms remain unclear. Autophagy is important for maintaining normal intestinal permeability. Here, we investigated the impact of intestinal transcription factor EB (TFEB), a key regulator of autophagy, on intestinal permeability and MASH progression. APPROACH AND RESULTS TFEB expression was analyzed in the proximal colon of 45 individuals with metabolic dysfunction-associated steatotic liver disease and 23 healthy controls. We used immunoprecipitation-mass spectrometry to identify TFEB-interacting proteins. Intestine-specific Tfeb knockout mice were generated by mating Tfebfl/fl mice with Villin- Cre mice. The mice were fed a high-fat, high-sucrose diet, and assessments were performed to evaluate intestinal permeability and MASH progression. Intestinal TFEB levels were reduced in patients with MASH and negatively correlated with intestinal permeability and hepatic toxicity. Intestine-specific TFEB deficiency increased intestinal permeability and worsened MASH severity, whereas moderate TFEB overexpression conferred protective effects. Mechanistically, the E3 ligase TRIP12 promotes the ubiquitination and degradation of nuclear TFEB, thereby inhibiting autophagic flux to aggravate intestinal barrier impairment and subsequently promote MASH progression. Importantly, a peptide PT1 designed to block the TRIP12-TFEB interaction reduced MASH progression. CONCLUSIONS The ubiquitination of TFEB plays a pivotal role in increasing intestinal permeability and promoting the progression of MASH by inhibiting autophagy. Intestinal TFEB may represent a novel therapeutic target for the treatment of MASH.
Collapse
Affiliation(s)
- Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Chen
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Zai Wang
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zecheng Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Li Y, Liu X, Sun X, Li H, Wang S, Tian W, Xiang C, Zhang X, Zheng J, Wang H, Zhang L, Cao L, Wong CCL, Liu Z. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration. Protein Cell 2024; 15:818-839. [PMID: 38635907 PMCID: PMC11528516 DOI: 10.1093/procel/pwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson's disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.
Collapse
Affiliation(s)
- Yinghui Li
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Haifang Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
| | - Zhihua Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Vidana Gamage HE, Shahoei SH, Wang Y, Jacquin E, Weisser E, Bautista RO, Henn MA, Schane CP, Nelczyk AT, Ma L, Das Gupta A, Bendre SV, Nguyen T, Tiwari S, Tjoanda E, Krawczynska N, He S, Albright ST, Farmer R, Smith AJ, Fink EC, Chen H, Sverdlov M, Gann PH, Boidot R, Vegran F, Fanning SW, Hergenrother PJ, Apetoh L, Nelson ER. NR0B2 re-educates myeloid immune cells to reduce regulatory T cell expansion and progression of breast and other solid tumors. Cancer Lett 2024; 597:217042. [PMID: 38908543 PMCID: PMC11892351 DOI: 10.1016/j.canlet.2024.217042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/24/2024]
Abstract
Although survival from breast cancer has dramatically increased, many will develop recurrent, metastatic disease. Unfortunately, survival for this stage of disease remains very low. Activating the immune system has incredible promise since it has the potential to be curative. However, immune checkpoint blockade (ICB) which works through T cells has been largely disappointing for metastatic breast cancer. One reason for this is a suppressive myeloid immune compartment that is unaffected by ICB. Cholesterol metabolism and proteins involved in cholesterol homeostasis play important regulatory roles in myeloid cells. Here, we demonstrate that NR0B2, a nuclear receptor involved in negative feedback of cholesterol metabolism, works in several myeloid cell types to impair subsequent expansion of regulatory T cells (Tregs); Tregs being a subset known to be highly immune suppressive and associated with poor therapeutic response. Within myeloid cells, NR0B2 serves to decrease many aspects of the inflammasome, ultimately resulting in decreased IL1β; IL1β driving Treg expansion. Importantly, mice lacking NR0B2 exhibit accelerated tumor growth. Thus, NR0B2 represents an important node in myeloid cells dictating ensuing Treg expansion and tumor growth, thereby representing a novel therapeutic target to re-educate these cells, having impact across different solid tumor types. Indeed, a paper co-published in this issue demonstrates the therapeutic utility of targeting NR0B2.
Collapse
Affiliation(s)
- Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | | | - Erin Weisser
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rafael O Bautista
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Claire P Schane
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Adam T Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Tiffany Nguyen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Evelyn Tjoanda
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Samuel T Albright
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rachel Farmer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Amanda J Smith
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Emma C Fink
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | - Hong Chen
- Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
| | - Peter H Gann
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA; Department of Pathology, University of Illinois at Chicago, Illinois, USA
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center, Dijon, France; ICMUB UMR CNRS 6302, Dijon, France
| | | | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| | | | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA.
| |
Collapse
|
5
|
Gamage HEV, Shahoei SH, Albright ST, Wang Y, Smith AJ, Farmer R, Fink EC, Jacquin E, Weisser E, Bautista RO, Henn MA, Schane CP, Nelczyk AT, Ma L, Gupta AD, Bendre SV, Nguyen T, Tiwari S, Krawczynska N, He S, Tjoanda E, Chen H, Sverdlov M, Gann PH, Boidot R, Vegran F, Fanning SW, Apetoh L, Hergenrother PJ, Nelson ER. Re-education of myeloid immune cells to reduce regulatory T cell expansion and impede breast cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553229. [PMID: 37645737 PMCID: PMC10462080 DOI: 10.1101/2023.08.14.553229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.
Collapse
Affiliation(s)
- Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Samuel T. Albright
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Amanda J. Smith
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rachel Farmer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Emma C. Fink
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | | | - Erin Weisser
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rafael O. Bautista
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Madeline A. Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Claire P. Schane
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Adam T. Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Shruti V. Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Tiffany Nguyen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Evelyn Tjoanda
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Hong Chen
- Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
| | - Peter H. Gann
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
- Department of Pathology, University of Illinois at Chicago, Illinois, USA
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-Francois Leclerc cancer Center, Dijon, France, and ICMUB UMR CNRS 6302, Dijon, France
| | | | - Sean W. Fanning
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | | | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
6
|
Kim YC, Qi M, Dong X, Seok S, Sun H, Kemper B, Fu T, Kemper JK. Transgenic mice lacking FGF15/19-SHP phosphorylation display altered bile acids and gut bacteria, promoting nonalcoholic fatty liver disease. J Biol Chem 2023; 299:104946. [PMID: 37348559 PMCID: PMC10359637 DOI: 10.1016/j.jbc.2023.104946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with the development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylation at Thr-58 mediated by a gut hormone, fibroblast growth factor-15/19 (FGF15/19). To investigate the role of this phosphorylation in whole-body energy metabolism, we generated transgenic SHP-T58A knock-in mice. Compared with wild-type (WT) mice, the phosphorylation-defective SHP-T58A mice gained weight more rapidly with decreased energy expenditure and increased lipid/BA levels. This obesity-prone phenotype was associated with the upregulation of lipid/BA synthesis genes and downregulation of lipophagy/β-oxidation genes. Mechanistically, defective SHP phosphorylation selectively impaired its interaction with LRH-1, resulting in de-repression of SHP/LRH-1 target BA/lipid synthesis genes. Remarkably, BA composition and selective gut bacteria which are known to impact obesity, were also altered in these mice. Upon feeding a high-fat diet, fatty liver developed more severely in SHP-T58A mice compared to WT mice. Treatment with antibiotics substantially improved the fatty liver phenotypes in both groups but had greater effects in the T58A mice so that the difference between the groups was largely eliminated. These results demonstrate that defective phosphorylation at a single nuclear receptor residue can impact whole-body energy metabolism by altering BA/lipid metabolism and gut bacteria, promoting complex metabolic disorders like NAFLD. Since posttranslational modifications generally act in gene- and context-specific manners, the FGF15/19-SHP phosphorylation axis may allow more targeted therapy for NAFLD.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
7
|
Bianco V, Korbelius M, Vujic N, Akhmetshina A, Amor M, Kolb D, Pirchheim A, Bradic I, Kuentzel KB, Buerger M, Schauer S, Phan HTT, Bulfon D, Hoefler G, Zimmermann R, Kratky D. Impact of (intestinal) LAL deficiency on lipid metabolism and macrophage infiltration. Mol Metab 2023; 73:101737. [PMID: 37182562 PMCID: PMC10209539 DOI: 10.1016/j.molmet.2023.101737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVE To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. METHODS We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. RESULTS We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. CONCLUSIONS We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ivan Bradic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Huyen T T Phan
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- BioTechMed-Graz, Graz, Austria; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
Seok S, Kemper JK. Paradoxical feeding activation of gut lipophagy by FGF15/FGF19-NR0B2/SHP-TFEB. Autophagy 2023; 19:742-743. [PMID: 35913833 PMCID: PMC9851195 DOI: 10.1080/15548627.2022.2108296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/22/2023] Open
Abstract
Macroautophagic/autophagic degradation of lipid droplets, lipophagy, is activated by fasting but repressed by feeding. Surprisingly, our recent study showed that this is not the case in the gut, where feeding activates lipophagy, reducing intestinal lipid levels. Transgenic mouse studies revealed that feeding activation of gut lipophagy requires both FGF15/FGF19 (fibroblast growth factor 15/fibroblast growth factor 19) and an orphan nuclear receptor, NR0B2/SHP (nuclear receptor subfamily 0, group B, member 2). Mechanistically, feeding-induced FGF15/FGF19 activates intestinal PRKC/PKC signaling, which in turn phosphorylates NR0B2 and the autophagic activator TFEB (transcription factor EB), leading to their nuclear localization and transcriptional induction of lipophagy network genes, including Ulk1 and Pnpla2/Atgl. Given that an essential function of the gut is to distribute dietary lipids throughout the body, this study identifies a physiologically important homeostatic mechanism to maintain healthy lipid levels. The intestinal FGF15/FGF19-NR0B2/SHP-TFEB pathway that regulates postprandial lipids by lipophagic activation, thus, may provide novel targets for treating dyslipidemia and obesity.
Collapse
Affiliation(s)
- Sunmi Seok
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, ILUSA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, ILUSA
| |
Collapse
|
9
|
Hou Y, An Z, Hou X, Guan Y, Song G. A bibliometric analysis and visualization of literature on non-fasting lipid research from 2012 to 2022. Front Endocrinol (Lausanne) 2023; 14:1136048. [PMID: 37152935 PMCID: PMC10154597 DOI: 10.3389/fendo.2023.1136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Background Non-fasting lipid assessment can help predict cardiovascular disease risks and is linked to multiple diseases, particularly diabetes. The significance of non-fasting lipid levels in routine screening and postprandial lipid tests for potential dyslipidemia has not been conclusively determined. Various new lipid-lowering strategies have been developed to improve non-fasting dyslipidemia. Therefore, analysis of scientific outputs over the past decade is essential to reveal trends, hotspots, and frontier areas for future research in this field. Methods The Science Citation Index Expanded in the Web of Science Core Collection database was searched for publications related to non-fasting lipid research from 2012 to 2022. The regional distributions, authors, disciplines, journals, references, and keywords of the studies were analyzed using the bibliometric software VOSviewer and CiteSpace. Results A total of 4160 articles and reviews that met the inclusion criteria were included in this study. The output trend was established to be stable and the number of citation indices has been persistently increasing. A total of 104 countries/regions, 4668 organizations, and 20782 authors were involved in this research area. In terms of country, the United States had the largest number of publications (979). The University of Copenhagen was the most productive institution, publishing 148 papers. Professor Børge G Nordestgaard has made the most significant contribution to this field. Nutrients was the most productive journal while the American Journal of Clinical Nutrition was the highest co-cited journal. Analysis of co-cited references indicated that lipid-lowering strategies, statin therapy, high-fat meals, insulin resistance, physical exercise, and fructose were hotspots. Analysis of co-cited keywords revealed that apolipoprotein B, especially apolipoprotein B48, is becoming a key research focus. The keywords "gut microbiota" and "meal timing" were the most extensively studied. Conclusion The causal relationship between non-fasting dyslipidemia and diseases is currently being explored and the standards for non-fasting or postprandial lipid assessment are continuously being updated. Among the hotspots, lipid-lowering strategies are a potential research direction. Apolipoprotein B48, gut microbiota, and chrononutrition are the research frontiers. This initial bibliometric analysis of non-fasting lipids will enable researchers to monitor swift transformations and recognize novel concepts for upcoming research.
Collapse
Affiliation(s)
- Yilin Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zehua An
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunpeng Guan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Guangyao Song,
| |
Collapse
|
10
|
Liu Y, Chen Q, Li Y, Bi L, He Z, Shao C, Jin L, Peng R, Zhang X. Advances in FGFs for diabetes care applications. Life Sci 2022; 310:121015. [PMID: 36179818 DOI: 10.1016/j.lfs.2022.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is an endocrine and metabolic disease caused by a variety of pathogenic factors, including genetic factors, environmental factors and behavior. In recent decades, the number of cases and the prevalence of diabetes have steadily increased, and it has become one of the most threatening diseases to human health in the world. Currently, insulin is the most effective and direct way to control hyperglycemia for diabetes treatment at a low cost. However, hypoglycemia is often a common complication of insulin treatment. Moreover, with the extension of treatment time, insulin resistance, considered the typical adverse symptom, can appear. Therefore, it is urgent to develop new targets and more effective and safer drugs for diabetes treatment to avoid adverse reactions and the insulin tolerance of traditional hypoglycemic drugs. SCOPE OF REVIEW In recent years, it has been found that some fibroblast growth factors (FGFs), including FGF1, FGF19 and FGF21, can safely and effectively reduce hyperglycemia and have the potential to be developed as new drugs for the treatment of diabetes. FGF23 is also closely related to diabetes and its complications, which provides a new approach for regulating blood glucose and solving the problem of insulin tolerance. MAJOR CONCLUSIONS This article reviews the research progress on the physiology and pharmacology of fibroblast growth factor in the treatment of diabetes. We focus on the application of FGFs in diabetes care and prevention.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiying He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Raimundo N. Feeding and lipophagy: it takes guts to deliver. EMBO J 2022; 41:e112180. [PMID: 35920021 PMCID: PMC9433935 DOI: 10.15252/embj.2022112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Refeeding after a period of starvation is known to suppress autophagy in the liver. Surprising new work by Seok et al (2022) shows that refeeding activates lipophagy in the intestine, which may help fats in our diet to be efficiently processed after a meal.
Collapse
Affiliation(s)
- Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|