1
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. Nat Commun 2025; 16:2636. [PMID: 40097414 PMCID: PMC11914476 DOI: 10.1038/s41467-025-57819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA.
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Delgado ME, Naranjo-Suarez S, Ramírez-Pedraza M, Cárdenas BI, Gallardo-Martínez C, Balvey A, Belloc E, Martín J, Boyle M, Méndez R, Fernandez M. CPEB4 modulates liver cancer progression by translationally regulating hepcidin expression and sensitivity to ferroptosis. JHEP Rep 2025; 7:101296. [PMID: 39980747 PMCID: PMC11840500 DOI: 10.1016/j.jhepr.2024.101296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/22/2025] Open
Abstract
Background & Aims Liver cancer is a significant global health issue, with its incidence rising in parallel with the obesity epidemic. The limited therapeutic options available emphasize the need for a better understanding of the molecular pathways involved in its pathogenesis. While much of the previous research has focused on transcriptional changes, this study examines translational alterations, specifically the role of cytoplasmic polyadenylation element binding protein 4 (CPEB4), a key regulator of translation. Methods We analyzed publicly available patient databases and conducted studies using human and mouse liver cancer cells, xenograft and allograft models, mouse models of high-fat diet-related liver cancer, and CPEB4 knockout and knockdown mice and cell lines. Results Patient data analysis (n = 87) showed a strong correlation between low CPEB4 levels and reduced survival rates (p <0.001). In mouse models of diet-induced liver cancer (n = 10-15 per group), both systemic and hepatocyte-specific CPEB4 knockout mice exhibited significantly increased tumor burden compared with wild-type controls (p <0.05). In vitro studies using human and murine liver cancer cells (n = 3 biological replicates) demonstrated reduced sensitivity to ferroptosis upon CPEB4 depletion when induced by erastin or RSL3 (p <0.01). Mechanistically, CPEB4 deficiency suppressed hepcidin expression, leading to elevated ferroportin levels, decreased intracellular iron accumulation, and reduced lipid peroxidation (p <0.05). Conclusions This study uncovers a novel CPEB4-dependent mechanism linking translational control to liver cancer progression and ferroptosis regulation. Therapeutic strategies targeting CPEB4-mediated pathways hold promise for advancing treatment options in liver cancer. Impact and implications This study addresses the pressing need for improved therapies in liver cancer, particularly given its increasing prevalence linked to obesity and metabolic-associated fatty liver disease. By uncovering the role of the RNA-binding protein cytoplasmic polyadenylation element binding protein 4 (CPEB4) in modulating iron regulation and cancer cell sensitivity to ferroptosis, our research highlights a new translational mechanism with potential therapeutic relevance. These findings are particularly significant for clinicians, researchers, and policymakers focused on advancing targeted treatments for hepatocellular carcinoma. If further validated in human clinical studies, targeting CPEB4-mediated pathways could help develop treatments that enhance cancer cell susceptibility to ferroptosis, offering a promising strategy for improving outcomes in patients with advanced liver cancer. Limitations of the study include the need for further clinical validation to confirm these preclinical findings in human disease contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eulalia Belloc
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mark Boyle
- FRCB-IDIBAPS Biomedical Research Institute; Barcelona, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| | | |
Collapse
|
3
|
Fernandez M, Mendez R. Cytoplasmic regulation of the poly(A) tail length as a potential therapeutic target. RNA (NEW YORK, N.Y.) 2025; 31:402-415. [PMID: 39805658 PMCID: PMC11874964 DOI: 10.1261/rna.080333.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Virtually all mRNAs acquire a poly(A) tail cotranscriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create posttranscriptional gene expression programs, allowing for precise temporal and spatial control. Dysregulation of poly(A) tail length has been linked to various diseases, including cancers, inflammatory and cardiovascular disorders, and neurological syndromes. Cytoplasmic poly(A) tail length is maintained by a dynamic equilibrium between cis-acting elements and cognate factors that promote deadenylation or polyadenylation, enabling rapid gene expression reprogramming in response to internal and external cellular cues. While cytoplasmic deadenylation and its pathophysiological implications have been extensively studied, cytoplasmic polyadenylation and its therapeutic potential remain less explored. This review discusses the distribution, regulation, and mechanisms of cytoplasmic polyadenylation element-binding proteins(CPEBs), highlighting their dual roles in either promoting or repressing gene expression depending on cellular context. We also explore their involvement in diseases such as tumor progression and metastasis, along with their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
4
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634376. [PMID: 39896548 PMCID: PMC11785196 DOI: 10.1101/2025.01.22.634376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
6
|
Correa-Medero LO, Jankowski SE, Hong HS, Armas ND, Vijendra AI, Reynolds MB, Fogo GM, Awad D, Dils AT, Inoki KA, Williams RG, Ye AM, Svezhova N, Gomez-Rivera F, Collins KL, O'Riordan MX, Sanderson TH, Lyssiotis CA, Carty SA. ER-associated degradation adapter Sel1L is required for CD8 + T cell function and memory formation following acute viral infection. Cell Rep 2024; 43:114156. [PMID: 38687642 PMCID: PMC11194752 DOI: 10.1016/j.celrep.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
The maintenance of antigen-specific CD8+ T cells underlies the efficacy of vaccines and immunotherapies. Pathways contributing to CD8+ T cell loss are not completely understood. Uncovering the pathways underlying the limited persistence of CD8+ T cells would be of significant benefit for developing novel strategies of promoting T cell persistence. Here, we demonstrate that murine CD8+ T cells experience endoplasmic reticulum (ER) stress following activation and that the ER-associated degradation (ERAD) adapter Sel1L is induced in activated CD8+ T cells. Sel1L loss limits CD8+ T cell function and memory formation following acute viral infection. Mechanistically, Sel1L is required for optimal bioenergetics and c-Myc expression. Finally, we demonstrate that human CD8+ T cells experience ER stress upon activation and that ER stress is negatively associated with improved T cell functionality in T cell-redirecting therapies. Together, these results demonstrate that ER stress and ERAD are important regulators of T cell function and persistence.
Collapse
Affiliation(s)
- Luis O Correa-Medero
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas D Armas
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mack B Reynolds
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Garrett M Fogo
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander T Dils
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Reid G Williams
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nadezhda Svezhova
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Kathleen L Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H Sanderson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shannon A Carty
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Chen H, Wen J, Zhang W, Ma W, Guo Y, Shen L, Zhang Z, Yang F, Zhang Y, Gao Y, Xu T, Yan Y, Li W, Zhang J, Mao S, Yao X. circKDM1A suppresses bladder cancer progression by sponging miR-889-3p/CPEB3 and stabilizing p53 mRNA. iScience 2024; 27:109624. [PMID: 38632984 PMCID: PMC11022052 DOI: 10.1016/j.isci.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Circular RNAs (circRNAs) play crucial biological functions in various tumors, including bladder cancer (BCa). However, the roles and underlying molecular mechanisms of circRNAs in the malignant proliferation of BCa are yet unknown. CircKDM1A was observed to be downregulated in BCa tissues and cells. Knockdown of circKDM1A promoted the proliferation of BCa cells and bladder xenograft growth, while the overexpression of circKDM1A exerts the opposite effect. The dual-luciferase reporter assay revealed that circKDM1A was directly bound to miR-889-3p, acting as its molecular sponge to downregulate CPEB3. In turn, the CPEB3 was bound to the CPE signal in p53 mRNA 3'UTR to stabilize its expression. Thus, circKDM1A-mediated CPEB3 downregulation inhibits the stability of p53 mRNA and promotes BCa malignant progression. In conclusion, circKDM1A functions as a tumor suppressor in the malignant proliferation of BCa via the miR-889-3p/CPEB3/p53 axis. CircKDM1A may be a potential prognostic biomarker and therapeutic target of BCa.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wen
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine Shanghai, Shanghai 200072, P.R. China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wenchao Ma
- Department of Reproduction, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Liliang Shen
- Department of Urology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Zhijin Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Shanghai 200435, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|