1
|
Sharma S, Hassan MY, Barbhuiya NH, Mansukhbhai RH, Shukla C, Singh D, Datta B. A Dataset Curated for the Assessment of G4s in the LncRNAs Dysregulated in Various Human Cancers. Sci Data 2025; 12:849. [PMID: 40410205 PMCID: PMC12102360 DOI: 10.1038/s41597-025-05176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
Dysregulated expression of long non-coding RNAs (lncRNAs) in cancer contributes to various hallmarks of the disease, presenting novel opportunities for diagnosis and therapy. G-quadruplexes (G4s) within lncRNAs have gained attention recently; however, their systematic evaluation in cancer biology is yet to be performed. In this work, we have formulated a comprehensive dataset integrating experimentally-validated associations between lncRNAs and cancer, and detailed predictions of their G4-forming potential. The dataset categorizes predicted G4-motifs into anticipated G4 types (2 G, 3 G, and 4 G) and provides information about the subcellular localization of the corresponding lncRNAs. It describes lncRNA-RNA and lncRNA-protein interactions, together with the RNA G4-binding capabilities of these proteins. The dataset facilitates the investigation of G4-mediated lncRNA functions in diverse human cancers and provides distinctive leads about G4-mediated lncRNA-protein interactions.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Muhammad Yusuf Hassan
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Noman Hanif Barbhuiya
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Ramolia Harshit Mansukhbhai
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Deepshikha Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India.
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India.
| |
Collapse
|
2
|
Glover C, Fairbanks S, Robertson CC, Richard Keene F, Green NH, Thomas JA. An optical ratiometric approach using enantiopure luminescent metal complexes indicates changes in the average quadruplex DNA content as primary cells undergo multiple divisions. Dalton Trans 2025; 54:8241-8250. [PMID: 40100080 DOI: 10.1039/d4dt03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The three stereoisomers of a previously reported dinuclear ruthenium(II) complex have been quantitatively separated using cation-exchange chromatography and the individual crystal structures of the racemic pair are reported. Cell-based studies on the three stereoisomers disclosed differences in the rate of uptake of the two chiral forms of the rac diastereoisomer with the ΛΛ-enantiomer being taken up noticeably more rapidly than the ΔΔ-form. Cell viability studies reveal that the three cations show identical cytotoxicity over 24 hours, but over more extended exposure periods, the meso-ΔΛ stereoisomer becomes slightly less active. More significantly, microscopy studies revealed that although both isomers display a near infra-red "light-switch" effect associated with binding to duplex DNA on binding to chromatin in live MCF7 and L5178-R cells, only the ΛΛ enantiomer displays a distinctive, blue-shifted component associated with binding to quadruplex DNA. An analysis of the ratio of "quadruplex emission" compared to "duplex emission" for the ΛΛ-enantiomer indicated that there was a decrease in the average quadruplex DNA content within live primary cells as they undergo multiple cell divisions.
Collapse
Affiliation(s)
- Caroline Glover
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Simon Fairbanks
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Craig C Robertson
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - F Richard Keene
- Discipline of Chemistry, School of Chemistry, Physics & Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicola H Green
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Jim A Thomas
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
3
|
Li H, Jin Z, Gao S, Kuang S, Lei C, Nie Z. Precise detection of G-quadruplexs in living systems: principles, applications, and perspectives. Chem Sci 2025:d5sc00918a. [PMID: 40417301 PMCID: PMC12096178 DOI: 10.1039/d5sc00918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that play a crucial role in regulating essential cellular processes such as replication, transcription, and translation. The formation of G4s is dynamically controlled by the physiological state of the cell. Accurate detection of G4 structures in live cells, as well as studies of their dynamic changes and the kinetics of specific G4s, are essential for understanding their biological roles, exploring potential links between aberrant G4 expression and disease, and developing G4-targeted diagnostic and therapeutic strategies. This perspective briefly overviews G4 formation mechanisms and their known biological functions. We then summarize the leading techniques and methodologies available for G4 detection, discussing the principles and applications of each approach. In addition, we outline strategies for the global detection of intracellular G4s, methods for conformational recognition, and approaches for targeting specific sequences. Finally, we discuss the technical limitations and challenges currently facing the field of G4 detection and offer perspectives on potential future directions. We hope this review will inspire further research into the biological functions of G4s and their applications in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Huanhuan Li
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Zelong Jin
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Shuxin Gao
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Shi Kuang
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
4
|
Smeds L, Kamali K, Kejnovská I, Kejnovský E, Chiaromonte F, Makova KD. Non-canonical DNA in human and other ape telomere-to-telomere genomes. Nucleic Acids Res 2025; 53:gkaf298. [PMID: 40226919 PMCID: PMC11995269 DOI: 10.1093/nar/gkaf298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Non-canonical (non-B) DNA structures-e.g. bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g. A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies and occupy 9%-15%, 9%-11%, and 12%-38% of autosomes and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, United States
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, United States
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, United States
- Center for Medical Genomics, Penn State University, University Park, PA 16802, United States
- L’EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, United States
- Center for Medical Genomics, Penn State University, University Park, PA 16802, United States
| |
Collapse
|
5
|
Thakur R, Luxami V, Paul K. Insight into Stabilization of G-Quadruplex in c-MYC Region with Phenanthroimidazoisoindol-Acrylates and their Binding Behaviour towards Human Serum Albumin. ChemMedChem 2025; 20:e202400705. [PMID: 39680447 DOI: 10.1002/cmdc.202400705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The interaction of G-quadruplex (non-canonical DNA) with suitable compounds for their stabilization at the promoter region of oncogenes has become a potential anticancer approach. We have studied the interaction of phenanthroimidazoisoindol-acrylates derivatives with c-MYC G-quadruplex. A series of 20 compounds were evaluated for their anticancer activity against human cancer cell lines, where compounds 3 fa, 3 ha, and 3 ae have shown the broad-spectrum anticancer activities against most of the cancer cell lines and inactive towards normal cell lines. Various spectroscopic techniques have been used to study the interaction of these compounds. The studies reveal the strong binding of all three compounds with c-MYC G-quadruplex with significant selectivity over dsDNA, with binding constant of the order of 106 M-1. All three compounds bind effectively with HSA, which is a carrier protein, with binding constant of the order of 105 M-1. These results show that phenanthroimidazoisoindol-acrylate derivatives exhibit specificity towards G4 DNA, highlighting their potential as effective anticancer agents targeting the c-MYC G-quadruplex.
Collapse
Affiliation(s)
- Rekha Thakur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| |
Collapse
|
6
|
Smeds L, Kamali K, Kejnovská I, Kejnovský E, Chiaromonte F, Makova KD. Non-canonical DNA in human and other ape telomere-to-telomere genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.02.610891. [PMID: 39713403 PMCID: PMC11661062 DOI: 10.1101/2024.09.02.610891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g., A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies, and occupy 9-15%, 9-11%, and 12-38% of autosomes, and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park, PA 16802 USA
- L'EMbeDS, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park, PA 16802 USA
| |
Collapse
|
7
|
Batra S, Allwein B, Kumar C, Devbhandari S, Brüning JG, Bahng S, Lee CM, Marians KJ, Hite RK, Remus D. G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation. Science 2025; 387:eadt1978. [PMID: 40048517 DOI: 10.1126/science.adt1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/15/2024] [Indexed: 03/15/2025]
Abstract
DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork collisions with preformed G4s in the parental DNA using reconstituted yeast and human replisomes. We demonstrate that a single G4 in the leading strand template is sufficient to stall replisomes by arresting the CMG helicase. Cryo-electron microscopy structures of stalled yeast and human CMG complexes reveal that the folded G4 is lodged inside the central CMG channel, arresting translocation. The G4 stabilizes the CMG at distinct translocation intermediates, suggesting an unprecedented helical inchworm mechanism for DNA translocation. These findings illuminate the eukaryotic replication fork mechanism under normal and perturbed conditions.
Collapse
Affiliation(s)
- Sahil Batra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied PhD Program, Weill Cornell Medical Graduate School, Weill Cornell Medicine, New York, NY, USA
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soon Bahng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chong M Lee
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Comptdaer T, Tardivel M, Schirmer C, Buée L, Galas M. Cell redistribution of G quadruplex-structured DNA is associated with morphological changes of nuclei and nucleoli in neurons during tau pathology progression. Brain Pathol 2025; 35:e13262. [PMID: 38649330 PMCID: PMC11835446 DOI: 10.1111/bpa.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
While the double helical structure has long been its iconic representation, DNA is structurally dynamic and can adopt alternative secondary configurations. Specifically, guanine-rich DNA sequences can fold in guanine quadruplexes (G4) structures. These G4 play pivotal roles as regulators of gene expression and genomic stability, and influence protein homeostasis. Despite their significance, the association of G4 with neurodegenerative diseases such as Alzheimer's disease (AD) has been underappreciated. Recent findings have identified DNA sequences predicted to form G4 in sarkosyl-insoluble aggregates from AD brains, questioning the involvement of G4-structured DNA (G4 DNA) in the pathology. Using immunofluorescence coupled to confocal microscopy analysis we investigated the impact of tau pathology, a hallmark of tauopathies including AD, on the distribution of G4 DNA in murine neurons and its relevance to AD brains. In healthy neurons, G4 DNA is detected in nuclei with a notable presence in nucleoli. However, in a transgenic mouse model of tau pathology (THY-Tau22), early stages of the disease exhibit an impairment in the nuclear distribution of G4 DNA. In addition, G4 DNA accumulates in the cytoplasm of neurons exhibiting oligomerized tau and oxidative DNA damage. This altered distribution persists in the later stage of the pathology when larger tau aggregates are present. Still cytoplasmic deposition of G4 DNA does not appear to be a critical factor in the tau aggregation process. Similar patterns are observed in neurons from the AD cortex. Furthermore, the disturbance in G4 DNA distribution is associated with various changes in the size of neuronal nuclei and nucleoli, indicative of responses to stress and the activation of pro-survival mechanisms. Our results shed light on a significant impact of tau pathology on the dynamics of G4 DNA and on nuclear and nucleolar mechanobiology in neurons. These findings reveal new dimensions in the etiopathogenesis of tauopathies.
Collapse
Affiliation(s)
- Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog‐Lille Neuroscience and CognitionLilleFrance
| | - Meryem Tardivel
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41‐UAR 2014‐PLBSLilleFrance
| | - Claire Schirmer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog‐Lille Neuroscience and CognitionLilleFrance
- Present address:
Eidgenössische Technische Hochschule ZürichZurichSwitzerland
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog‐Lille Neuroscience and CognitionLilleFrance
| | - Marie‐Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog‐Lille Neuroscience and CognitionLilleFrance
| |
Collapse
|
9
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Basu P, Kejnovská I, Gajarský M, Šubert D, Mikešová T, Renčiuk D, Trantírek L, Mergny JL, Vorlíčková M. RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed? Nucleic Acids Res 2024; 52:13224-13242. [PMID: 39494519 PMCID: PMC11602125 DOI: 10.1093/nar/gkae927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
Collapse
Affiliation(s)
- Pritha Basu
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Gajarský
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Denis Šubert
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Tereza Mikešová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Department of Biochemistry, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Daniel Renčiuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
11
|
Nicoletto G, Terreri M, Maurizio I, Ruggiero E, Cernilogar F, Vaine C, Cottini MV, Shcherbakova I, Penney E, Gallina I, Monchaud D, Bragg D, Schotta G, Richter S. G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res 2024; 52:11571-11586. [PMID: 39287133 PMCID: PMC12053379 DOI: 10.1093/nar/gkae797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that form in guanine (G)-rich genomic regions. X-linked dystonia parkinsonism (XDP) is an inherited neurodegenerative disease in which a SINE-VNTR-Alu (SVA) retrotransposon, characterised by amplification of a G-rich repeat, is inserted into the coding sequence of TAF1, a key partner of RNA polymerase II. XDP SVA alters TAF1 expression, but the cause of this outcome in XDP remains unknown. To assess whether G4s form in XDP SVA and affect TAF1 expression, we first characterised bioinformatically predicted XDP SVA G4s in vitro. We next showed that highly stable G4s can form and stop polymerase amplification at the SVA region from patient-derived fibroblasts and neural progenitor cells. Using chromatin immunoprecipitazion (ChIP) with an anti-G4 antibody coupled to sequencing or quantitative PCR, we showed that XDP SVA G4s are folded even when embedded in a chromatin context in patient-derived cells. Using the G4 ligands BRACO-19 and quarfloxin and total RNA-sequencing analysis, we showed that stabilisation of the XDP SVA G4s reduces TAF1 transcripts downstream and around the SVA, and increases upstream transcripts, while destabilisation using the G4 unfolder PhpC increases TAF1 transcripts. Our data indicate that G4 formation in the XDP SVA is a major cause of aberrant TAF1 expression, opening the way for the development of strategies to unfold G4s and potentially target the disease.
Collapse
Affiliation(s)
- Giulia Nicoletto
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Marianna Terreri
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Maurizio
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Filippo M Cernilogar
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Maria Vittoria Cottini
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Irina Shcherbakova
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ellen B Penney
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Irene Gallina
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne, ICMUB CNRS UMR6302, 9, Rue Alain Savary, 21078 Dijon, France
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
- Microbiology and Virology Unit, Padua University Hospital, via Giustiniani 2, 35121 Padua, Italy
| |
Collapse
|
12
|
Bohdan D, Bujnicki J, Baulin E. ARTEMIS: a method for topology-independent superposition of RNA 3D structures and structure-based sequence alignment. Nucleic Acids Res 2024; 52:10850-10861. [PMID: 39258540 PMCID: PMC11472068 DOI: 10.1093/nar/gkae758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Non-coding RNAs play a major role in diverse processes in living cells with their sequence and spatial structure serving as the principal determinants of their function. Superposition of RNA 3D structures is the most accurate method for comparative analysis of RNA molecules and for inferring structure-based sequence alignments. Topology-independent superposition is particularly relevant, as evidenced by structurally similar RNAs with sequence permutations such as tRNA and Y RNA. To date, state-of-the-art methods for RNA 3D structure superposition rely on intricate heuristics, and the potential for topology-independent superposition has not been exhausted. Recently, we introduced the ARTEM method for unrestrained pairwise superposition of RNA 3D modules and now we developed it further to solve the global RNA 3D structure alignment problem. Our new tool ARTEMIS significantly outperforms state-of-the-art tools in both sequentially-ordered and topology-independent RNA 3D structure superposition. Using ARTEMIS we discovered a helical packing motif to be preserved within different backbone topology contexts across various non-coding RNAs, including multiple ribozymes and riboswitches. We anticipate that ARTEMIS will be essential for elucidating the landscape of RNA 3D folds and motifs featuring sequence permutations that thus far remained unexplored due to limitations in previous computational approaches.
Collapse
Affiliation(s)
- Davyd R Bohdan
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eugene F Baulin
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
14
|
Michael Sabo T, Trent JO, Chaires JB, Monsen RC. Strategy for modeling higher-order G-quadruplex structures recalcitrant to NMR determination. Methods 2024; 230:9-20. [PMID: 39032720 DOI: 10.1016/j.ymeth.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.
Collapse
Affiliation(s)
- T Michael Sabo
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
15
|
De-Paula RB, Bacolla A, Syed A, Tainer JA. Enriched G4 forming repeats in the human genome are associated with robust well-coordinated transcription and reduced cancer transcriptome variation. J Biol Chem 2024; 300:107822. [PMID: 39341500 PMCID: PMC11532954 DOI: 10.1016/j.jbc.2024.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
Non-B DNA G-quadruplex (G4) structures with guanine (G) runs of 2 to 4 repeats can trigger opposing experimental transcriptional impacts. Here, we used bioinformatic algorithms to comprehensively assess correlations of steady-state RNA transcript levels with all putative G4 sequence (pG4) locations genome-wide in three mammalian genomes and in normal and tumor human tissues. The human pG4-containing gene set displays higher expression levels than the set without pG4, supporting and extending some prior observations. pG4 enrichment at transcription start sites (TSSs) in human, but not chimpanzee and mouse genomes, suggests possible positive selection pressure for pG4 at human TSS, potentially driving genome rewiring and gene expression divergence between human and chimpanzee. Comprehensive bioinformatic analyses revealed lower pG4-containing gene set variability in humans and among different pG4 genes in tumors. As G4 stabilizers are under therapeutic consideration for cancer and pathogens, such distinctions between human normal and tumor G4s along with other species merit attention. Furthermore, in germline and cancer sequences, the most mutagenic pG4 mapped to regions promoting alternative DNA structures. Overall findings establish high pG4 at TSS as a human genome attribute statistically associated with robust well-coordinated transcription and reduced cancer transcriptome variation with implications for biology, model organisms, and medicine.
Collapse
Affiliation(s)
- Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
16
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
18
|
Han J, Qin R, Zheng S, Hou X, Wang X, An H, Li Z, Li Y, Zhang H, Zhai D, Liu H, Meng J, Sun T. MSC microvesicles loaded G-quadruplex-enhanced circular single-stranded DNA-9 inhibits tumor growth by targeting MDSCs. J Nanobiotechnology 2024; 22:237. [PMID: 38735920 PMCID: PMC11089713 DOI: 10.1186/s12951-024-02504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.
Collapse
Affiliation(s)
- Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Rong Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaohui Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huihui An
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhongwei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Denghui Zhai
- College of Life Sciences, Nankai University, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
19
|
Donato L, Scimone C, Alibrandi S, Mordà D, Anchesi I, Scalinci SZ, Rinaldi C, D'Angelo R, Sidoti A. Investigating G-quadruplex structures in RPGR gene: Implications for understanding X-linked retinal degeneration. Heliyon 2024; 10:e29828. [PMID: 38699732 PMCID: PMC11063440 DOI: 10.1016/j.heliyon.2024.e29828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Aims This pilot study investigates the potential pathogenic role of G-quadruplex (G4) structures in RPGR-associated retinal degeneration, starting from a case of suspected X-linked form affected family. We hypothesize that the stabilization of these structures might alter DNA replication and transcription, inducing genetic instability and influencing gene expression. Main methods We conducted whole genome amplification experiments and next-generation sequencing to detect the blockade of polymerase activity by G4 structures. Our specific focus was the RPGR gene, which hosts a high concentration of predicted G4-forming motifs and is implicated in most X-linked retinal degeneration cases. To understand the potential interference of G4 structures, we applied computational and 3D molecular modeling to visualize interferences in DNA replication and transcription regulation. Key findings Our data confirmed the obstruction of DNA polymerase enzymes by G4 structures, particularly when stabilized by the compound pyridostatin. This obstruction was evident in the reduced amplification of RPGR gene regions and a shift in the start/end sites of putative G4 motifs. Moreover, the modeling indicated a potential disruption of critical promoter elements and RNA polymerase binding, which could drastically alter gene expression. Significance Our findings suggest that G4 formation in the RPGR gene could lead to genetic instability and affect the expression of RPGR, contributing to retinal dystrophy. Moreover, this study underscores the broader implications of G4 structures in other genetic disorders. Improved understanding of G4 structures could reveal novel therapeutic targets to combat genetic disorders, promoting the advancement of personalized medicine and precision health.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy
| | - Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | | | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
20
|
Wang Y, Wang J, Yan Z, Hou J, Wan L, Yang Y, Liu Y, Yi J, Guo P, Han D. Structural investigation of pathogenic RFC1 AAGGG pentanucleotide repeats reveals a role of G-quadruplex in dysregulated gene expression in CANVAS. Nucleic Acids Res 2024; 52:2698-2710. [PMID: 38266156 PMCID: PMC10954463 DOI: 10.1093/nar/gkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
An expansion of AAGGG pentanucleotide repeats in the replication factor C subunit 1 (RFC1) gene is the genetic cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), and it also links to several other neurodegenerative diseases including the Parkinson's disease. However, the pathogenic mechanism of RFC1 AAGGG repeat expansion remains enigmatic. Here, we report that the pathogenic RFC1 AAGGG repeats form DNA and RNA parallel G-quadruplex (G4) structures that play a role in impairing biological processes. We determine the first high-resolution nuclear magnetic resonance (NMR) structure of a bimolecular parallel G4 formed by d(AAGGG)2AA and reveal how AAGGG repeats fold into a higher-order structure composed of three G-tetrad layers, and further demonstrate the formation of intramolecular G4s in longer DNA and RNA repeats. The pathogenic AAGGG repeats, but not the nonpathogenic AAAAG repeats, form G4 structures to stall DNA replication and reduce gene expression via impairing the translation process in a repeat-length-dependent manner. Our results provide an unprecedented structural basis for understanding the pathogenic mechanism of AAGGG repeat expansion associated with CANVAS. In addition, the high-resolution structures resolved in this study will facilitate rational design of small-molecule ligands and helicases targeting G4s formed by AAGGG repeats for therapeutic interventions.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liqi Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
21
|
Kligfeld H, Han I, Abraham A, Shukla V. Alternative DNA structures in hematopoiesis and adaptive immunity. Adv Immunol 2024; 161:109-126. [PMID: 38763699 PMCID: PMC11956803 DOI: 10.1016/bs.ai.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.
Collapse
Affiliation(s)
- Heather Kligfeld
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States; Center for Human Immunobiology, Northwestern University, Chicago, IL, United States
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, United States; Center for Human Immunobiology, Northwestern University, Chicago, IL, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
22
|
Andreeva DV, Vedekhina TS, Gostev AS, Dezhenkova LG, Volodina YL, Markova AA, Nguyen MT, Ivanova OM, Dolgusheva VА, Varizhuk AM, Tikhomirov AS, Shchekotikhin AE. Thiadiazole-, selenadiazole- and triazole-fused anthraquinones as G-quadruplex targeting anticancer compounds. Eur J Med Chem 2024; 268:116222. [PMID: 38387333 DOI: 10.1016/j.ejmech.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Tatiana S Vedekhina
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571, Moscow, Russia
| | - Alexander S Gostev
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Miusskaya square, 9, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Minh Tuan Nguyen
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Olga M Ivanova
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia
| | - Vladislava А Dolgusheva
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | | | | |
Collapse
|
23
|
Kastl M, Hersperger F, Kierdorf K, Paeschke K. Detection of G-Quadruplex DNA Structures in Macrophages. Methods Mol Biol 2024; 2713:453-462. [PMID: 37639141 DOI: 10.1007/978-1-0716-3437-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In addition to the canonical B-DNA conformation, DNA can fold into different secondary structures. Among them are G-quadruplex structures (G4s). G4 structures are very stable and can fold in specific guanine-rich regions in DNA and RNA. Different in silico, in vitro, and in cellulo experiments have shown that G4 structures form so far in all tested organisms. There are over 700,000 predicted G4s in higher eukaryotes, but it is so far assumed that not all will form at the same time. Their formation is dynamically regulated by proteins and is cell type-specific and even changes during the cell cycle or during different exogenous or endogenous stimuli (e.g., infection or developmental stages) can alter the G4 level. G4s have been shown to accumulate in cancer cells where they contribute to gene expression changes and the mutagenic burden of the tumor. Specific targeting of G4 structures to impact the expression of oncogenes is currently discussed as an anti-cancer treatment. In a tumor microenvironment, not only the tumor cells will be targeted by G4 stabilization but also immune cells such as macrophages. Although G4s were detected in multiple organisms and different cell types, only little is known about their role in immune cells. Here, we provide a detailed protocol to detect G4 formation in the nucleus of macrophages of vertebrates and invertebrates by microscopic imaging.
Collapse
Affiliation(s)
- Melanie Kastl
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Fabian Hersperger
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Khurana S, Kukreti S, Kaushik M. Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. Int J Biol Macromol 2023; 253:126835. [PMID: 37709220 DOI: 10.1016/j.ijbiomac.2023.126835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The biological relevance of G4 structures formed in telomere & oncogenes promoters make them extremely crucial therapeutic target for cancer treatment. Herein, we have synthesized chitosan-based gold nanoparticles (CH-Au NPs) through green method and have investigated their interaction with G4 structures formed by short telomeric sequences to evaluate their potential for targeting G4 structures. Firstly, we have characterized morphological/physical attributes of synthesized CH-Au NPs and salt dependent structural aspects of model G-rich DNA sequence, 12-mer d(T2G4)2 [TETRA] using spectroscopic and biophysical techniques. The molecular interactions between CH-Au NPs and parallel/antiparallel TETRA G4 structures were evaluated using UV-Visible, CD, Fluorescence, CD melting, DLS and Zeta potential studies. The experimental data indicated that CH-Au NPs showed strong binding interactions with Parallel TETRA G4 and provided thermal stabilization to the structure, whereas their interactions with Antiparallel TETRA G4 DNA and Ct-DNA (DNA duplex) were found to be negligible. Further, CH-Au NPs were also investigated for their selectivity aptitude for different G4 structures formed by human telomeric sequences; d(T2AG3)3 [HUM-12] and d(T2AG3)4T [HUM-25]. Our findings suggested that CH-Au NPs exhibited topology specific binding aptitude towards G4 structure, which can be utilized to inhibit/modulate crucial biological functions for potential anticancer activity.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
25
|
Zareie AR, Verma SC. Nucleolin Regulates the Expression of Kaposi's Sarcoma-Associated Herpesvirus' Latency-Associated Nuclear Antigen through G-Quadruplexes in the mRNA. Viruses 2023; 15:2438. [PMID: 38140679 PMCID: PMC10747643 DOI: 10.3390/v15122438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long latent infection and is linked to several human malignancies. Latency-associated nuclear antigen (LANA) is highly expressed during latency, and is responsible for the replication and maintenance of the viral genome. The expression of LANA is regulated at transcriptional/translational levels through multiple mechanisms, including the secondary structures in the mRNA sequence. LANA mRNA has multiple G-quadruplexes (G4s) that are bound by multiple proteins to stabilize/destabilize these secondary structures for regulating LANA. In this manuscript, we demonstrate the role of Nucleolin (NCL) in regulating LANA expression through its interaction with G-quadruplexes of LANA mRNA. This interaction reduced LANA's protein expression through the sequestration of mRNA into the nucleus, demonstrated by the colocalization of G4-carrying mRNA with NCL. Furthermore, the downregulation of NCL, by way of a short hairpin, showed an increase in LANA translation following an alteration in the levels of LANA mRNA in the cytoplasm. Overall, the data presented in this manuscript showed that G-quadruplexes-mediated translational control could be regulated by NCL, which can be exploited for controlling KSHV latency.
Collapse
Affiliation(s)
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA;
| |
Collapse
|
26
|
Badalyan M, Vardanyan IV, Haroutiunian SG, Dalyan YB. Structural Transitions in Complementary G-Rich and C-Rich Strands and Their Mixture at Various pH Conditions. ACS OMEGA 2023; 8:47051-47056. [PMID: 38107945 PMCID: PMC10719991 DOI: 10.1021/acsomega.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
We used circular dichroism spectroscopy, UV spectrophotometry, and differential scanning calorimetry to investigate pH-dependent structural transitions in an equimolar mixture of complementary G-rich d[5'-A(GGGTTA)3GGG-3'] (TelG) and C-rich d[3'-T(CCCAAT)3CCC-5'] (TelC) human telomeric DNA strands. Our studies were conducted at neutral (pH 7.0) and slightly acidic (pH 5.5 and 6.5) pH. We analyzed the melting thermodynamics of TelG and TelC and their equimolar mixture. Our analysis revealed that the preferred conformation of an equimolar mixture of TelG and TelC is the duplex. At pH 5.5, however, in addition to the duplex state, we observed a significant population of the i-motif state formed by TelC. Our results are consistent with the picture in which an increase in pH from 5.5 to 7.0 has little effect on the melting enthalpy of an isolated G-quadruplex while causing a strong reduction in the melting enthalpy of an isolated i-motif (the latter diminishes to 0 at pH 7.0). These effects summarily lead to a decrease in the contribution of the i-motif to the melting enthalpy of the mixture and, hence, an increase in the apparent melting enthalpy and overall stability of the duplex state.
Collapse
Affiliation(s)
- Milena
Kh. Badalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | - Ishkhan V. Vardanyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | | | - Yeva B. Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
27
|
Lorenzatti A, Piga EJ, Gismondi M, Binolfi A, Margarit E, Calcaterra N, Armas P. Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes. Nucleic Acids Res 2023; 51:12124-12139. [PMID: 37930868 PMCID: PMC10711447 DOI: 10.1093/nar/gkad948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases' onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer's disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases' onset, and could be novel targets for diagnosis and drug design in precision medicine.
Collapse
Affiliation(s)
- Agustín Lorenzatti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Ernesto J Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Santa Fe, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina
| | - Ezequiel Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Santa Fe, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| |
Collapse
|
28
|
Castellano KR, Batta-Lona P, Bucklin A, O'Neill RJ. Salpa genome and developmental transcriptome analyses reveal molecular flexibility enabling reproductive success in a rapidly changing environment. Sci Rep 2023; 13:21056. [PMID: 38030690 PMCID: PMC10686999 DOI: 10.1038/s41598-023-47429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Ocean warming favors pelagic tunicates, such as salps, that exhibit increasingly frequent and rapid population blooms, impacting trophic dynamics and composition and human marine-dependent activities. Salp blooms are a result of their successful reproductive life history, alternating seasonally between asexual and sexual protogynous (i.e. sequential) hermaphroditic stages. While predicting future salp bloom frequency and intensity relies on an understanding of the transitions during the sexual stage from female through parturition and subsequent sex change to male, these transitions have not been explored at the molecular level. Here we report the development of the first complete genome of S. thompsoni and the North Atlantic sister species S. aspera. Genome and comparative analyses reveal an abundance of repeats and G-quadruplex (G4) motifs, a highly stable secondary structure, distributed throughout both salp genomes, a feature shared with other tunicates that perform alternating sexual-asexual reproductive strategies. Transcriptional analyses across sexual reproductive stages for S. thompsoni revealed genes associated with male sex differentiation and spermatogenesis are expressed as early as birth and before parturition, inconsistent with previous descriptions of sequential sexual differentiation in salps. Our findings suggest salp are poised for reproductive success at birth, increasing the potential for bloom formation as ocean temperatures rise.
Collapse
Affiliation(s)
- Kate R Castellano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Paola Batta-Lona
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Ann Bucklin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- Department of Genetics and Genome Science, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
29
|
Sharma T, Kundu N, Kaur S, Tandon V, Shankaraswamy J, Saxena S. Short designed peptide unfolding human telomeric G-quadruplex: mimicking the helicase function. J Biomol Struct Dyn 2023; 41:9977-9986. [PMID: 36437795 DOI: 10.1080/07391102.2022.2150316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Human telomeric DNA can fold into G-quadruplex structures involving the interaction of four guanine bases in a square planar arrangement. The highly distinctive nature of quadruplex topologies suggests that they can act as novel therapeutic targets. In this study, we provide the evidence of human telomeric G4 destabilization in dilute and cell-mimicking molecular crowing conditions upon peptide binding. We have used three human telomeric sequences of different lengths. CD data showed that these sequences folded into anti-parallel G-quadruplex and CD intensity decreased significantly on increasing the peptide concentration. UV-thermal melting results showed significant decrease in hypochromicity due to formation of G4-peptide complex at 295 nm. Fluorescence data showed the quenching on titrating the peptide with human telomere G4. Electrophoretic mobility shift assay confirmed the unfolding of G4 structure. Cell viability was significantly reduced in the presence of QW5 peptide with IC50 values as 8.78 μM and 7.72 μM after 72 and 96 hours of incubation respectively. These results confirmed that QW5 peptide has an ability to bind and unfold to human telomeric G-quadruplex and hence might be the key modulator for targeting diseases having over-representation of G4 motifs and their destabilization will be helpful in increasing the efficiency of DNA replication, transcription or duplex reannealing.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - J Shankaraswamy
- Department of Fruit Science, College of Horticulture, Sri Konda Laxman Telangana State Horticultural University, Mojerla, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
30
|
Babagond V, Katagi K, Pandith A, Akki M, Jaggal A. Unique development of a new dual application probe for selective detection of antiparallel G-quadruplex sequences. Analyst 2023; 148:5507-5513. [PMID: 37789760 DOI: 10.1039/d3an01109g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
G-Quadruplex (G4) structures play vital roles in many biological processes; consequently, they have been implicated in various human diseases like cancer, Alzheimer's disease etc. The selective detection of G4 DNA structures is of great interest for understanding their roles and biological functions. Hence, development of multifunctional fluorescent probes is indeed essential. In this investigation, we have synthesized a quinolinium based dual application probe (QnMF) that presents molecular rotor properties. This dual application molecular rotor is able to detect selectively antiparallel G4 sequences (22AG in 100 mM NaCl) through a turn-on response over other G4 topologies. The QnMF also contains a distinct fluorine-19 that undergoes a significant chemical shift in response to microenvironmental changes around the molecule when bound to G4 structures. The probe QnMF exhibits significantly brighter fluorescence emissions in glycerol (ε × ϕ = 2800 cm-1 M-1) and relatively less brighter fluorescence emissions in methanol (ε × ϕ = 40.5 cm-1 M-1). The restricted rotation inherent property of the QnMF molecular rotor is responsible for brighter fluorescence and leads to enhancement in the fluorescence upon binding to the G4 structure. Overall, the probe's dual detection method makes it useful for monitoring the G4 structures that are abundant and plays a vital role in living organisms.
Collapse
Affiliation(s)
- Vardhaman Babagond
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Kariyappa Katagi
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Anup Pandith
- International Ph.D. Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, Republic of China
| | - Mahesh Akki
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Ashwini Jaggal
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| |
Collapse
|
31
|
Duy DL, Kim N. Yeast transcription factor Msn2 binds to G4 DNA. Nucleic Acids Res 2023; 51:9643-9657. [PMID: 37615577 PMCID: PMC10570036 DOI: 10.1093/nar/gkad684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Sequences capable of forming quadruplex or G4 DNA are prevalent in the promoter regions. The transformation from canonical to non-canonical secondary structure apparently regulates transcription of a number of human genes. In the budding yeast Saccharomyces cerevisiae, we identified 37 genes with a G4 motif in the promoters including 20 genes that contain stress response element (STRE) overlapping a G4 motif. STRE is the binding site of stress response regulators Msn2 and Msn4, transcription factors belonging to the C2H2 zinc-finger protein family. We show here that Msn2 binds directly to the G4 DNA structure through its zinc-finger domain with a dissociation constant similar to that of STRE-binding and that, in a stress condition, Msn2 is enriched at G4 DNA-forming loci in the yeast genome. For a large fraction of genes with G4/STRE-containing promoters, treating with G4-ligands led to significant elevations in transcription levels. Such transcriptional elevation was greatly diminished in a msn2Δ msn4Δ background and was partly muted when the G4 motif was disrupted. Taken together, our data suggest that G4 DNA could be an alternative binding site of Msn2 in addition to STRE, and that G4 DNA formation could be an important element of transcriptional regulation in yeast.
Collapse
Affiliation(s)
- Duong Long Duy
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
32
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
33
|
Mizumoto A, Yokoyama Y, Miyoshi T, Takikawa M, Ishikawa F, Sadaie M. DHX36 maintains genomic integrity by unwinding G-quadruplexes. Genes Cells 2023; 28:694-708. [PMID: 37632696 PMCID: PMC11447921 DOI: 10.1111/gtc.13061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Ayaka Mizumoto
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuta Yokoyama
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of Science, NodaChibaJapan
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Stress Response, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Laboratory for Retrotransposon DynamicsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Masahiro Takikawa
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of Science, NodaChibaJapan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Stress Response, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Mahito Sadaie
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of Science, NodaChibaJapan
| |
Collapse
|
34
|
Stadlbauer P, Mlýnský V, Krepl M, Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J Chem Inf Model 2023; 63:4716-4731. [PMID: 37458574 PMCID: PMC10428220 DOI: 10.1021/acs.jcim.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/15/2023]
Abstract
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
35
|
Nicoletto G, Richter SN, Frasson I. Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans. Int J Mol Sci 2023; 24:ijms24119523. [PMID: 37298474 DOI: 10.3390/ijms24119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4s are found in the human genome and in the genomes of human pathogens, where they are involved in the regulation of gene expression and genome replication. G4s have been proposed as novel pharmacological targets in humans and their exploitation for antiviral therapy is an emerging research topic. Here, we report on the presence, conservation and localization of putative G4-forming sequences (PQSs) in human arboviruses. The prediction of PQSs was performed on more than twelve thousand viral genomes, belonging to forty different arboviruses that infect humans, and revealed that the abundance of PQSs in arboviruses is not related to the genomic GC content, but depends on the type of nucleic acid that constitutes the viral genome. Positive-strand ssRNA arboviruses, especially Flaviviruses, are significantly enriched in highly conserved PQSs, located in coding sequences (CDSs) or untranslated regions (UTRs). In contrast, negative-strand ssRNA and dsRNA arboviruses contain few conserved PQSs. Our analyses also revealed the presence of bulged PQSs, accounting for 17-26% of the total predicted PQSs. The data presented highlight the presence of highly conserved PQS in human arboviruses and present non-canonical nucleic acid-structures as promising therapeutic targets in arbovirus infections.
Collapse
Affiliation(s)
- Giulia Nicoletto
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
36
|
Tariq N, Xu C, Wang J, Kume T, Macgregor RB. Enhancement of the thermal stability of G-quadruplex structures by urea. Biophys Chem 2023; 299:107043. [PMID: 37285661 DOI: 10.1016/j.bpc.2023.107043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The solute urea has been used extensively as a denaturant in protein folding studies; double-stranded nucleic acid structures are also destabilized by urea, but comparatively less than proteins. In previous research, the solute has been shown to strongly destabilize folded G-quadruplex DNA structures. This contribution demonstrates the stabilizing effect of urea on the G-quadruplex formed by the oligodeoxyribonucleotide (ODN), G3T (d[5'-GGGTGGGTGGGTGGG-3']), and related sequences in the presence of sodium or potassium cations. Stabilization is observed up to 7 M urea, which was the highest concentration we investigated. The folded structure of G3T has three G-tetrads and three loops that consist of single thymine residues. ODNs related to G3T, in which the thymine residues in the loop are substituted by adenosine residues, also exhibit enhanced stability in the presence of molar concentrations of urea. The circular dichroism (CD) spectra of these ODNs in the presence of urea are consistent with that of a G-quadruplex. As the urea concentration increases, the spectral intensities of the peaks and troughs change, while their positions change very little. The heat-induced transition from the folded to unfolded state, Tm, was measured by monitoring the change in the UV absorption as a function of temperature. G-quadruplex structures with loops containing single bases exhibited large increases in Tm with increasing urea concentrations. These data imply that the loop region play a significant role in the thermal stability of tetra-helical DNA structures in the presence of the solute urea.
Collapse
Affiliation(s)
- Nabeel Tariq
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Christine Xu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Jingtong Wang
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Takuma Kume
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
37
|
Papp C, Mukundan VT, Jenjaroenpun P, Winnerdy FR, Ow GS, Phan AT, Kuznetsov VA. Stable bulged G-quadruplexes in the human genome: identification, experimental validation and functionalization. Nucleic Acids Res 2023; 51:4148-4177. [PMID: 37094040 DOI: 10.1093/nar/gkad252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
DNA sequence composition determines the topology and stability of G-quadruplexes (G4s). Bulged G-quadruplex structures (G4-Bs) are a subset of G4s characterized by 3D conformations with bulges. Current search algorithms fail to capture stable G4-B, making their genome-wide study infeasible. Here, we introduced a large family of computationally defined and experimentally verified potential G4-B forming sequences (pG4-BS). We found 478 263 pG4-BS regions that do not overlap 'canonical' G4-forming sequences in the human genome and are preferentially localized in transcription regulatory regions including R-loops and open chromatin. Over 90% of protein-coding genes contain pG4-BS in their promoter or gene body. We observed generally higher pG4-BS content in R-loops and their flanks, longer genes that are associated with brain tissue, immune and developmental processes. Also, the presence of pG4-BS on both template and non-template strands in promoters is associated with oncogenesis, cardiovascular disease and stemness. Our G4-BS models predicted G4-forming ability in vitro with 91.5% accuracy. Analysis of G4-seq and CUT&Tag data strongly supports the existence of G4-BS conformations genome-wide. We reconstructed a novel G4-B 3D structure located in the E2F8 promoter. This study defines a large family of G4-like sequences, offering new insights into the essential biological functions and potential future therapeutic uses of G4-B.
Collapse
Affiliation(s)
- Csaba Papp
- Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vineeth T Mukundan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bioinformatics Institute, A*STAR Biomedical Institutes, Singapore, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, A*STAR Biomedical Institutes, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Vladimir A Kuznetsov
- Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Bioinformatics Institute, A*STAR Biomedical Institutes, Singapore, Singapore
| |
Collapse
|
38
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
39
|
Kitamura A, Tornmalm J, Demirbay B, Piguet J, Kinjo M, Widengren J. Trans-cis isomerization kinetics of cyanine dyes reports on the folding states of exogeneous RNA G-quadruplexes in live cells. Nucleic Acids Res 2023; 51:e27. [PMID: 36651281 PMCID: PMC10018373 DOI: 10.1093/nar/gkac1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Guanine (G)-rich nucleic acids are prone to assemble into four-stranded structures, so-called G-quadruplexes. Abnormal GGGGCC repeat elongations, and in particular their folding states, are associated with amyotrophic lateral sclerosis and frontotemporal dementia. Due to methodological constraints however, most studies of G quadruplex structures are restricted to in vitro conditions. Evidence of how GGGGCC repeats form into G-quadruplexes in vivo is sparse. We devised a readout strategy, exploiting the sensitivity of trans-cis isomerization of cyanine dyes to local viscosity and sterical constraints. Thereby, folding states of cyanine-labeled RNA, and in particular G-quadruplexes, can be identified in a sensitive manner. The isomerization kinetics, monitored via fluorescence blinking generated upon transitions between a fluorescent trans isomer and a non-fluorescent cis isomer, was first characterized for RNA with GGGGCC repeats in aqueous solution using fluorescence correlation spectroscopy and transient state (TRAST) monitoring. With TRAST, monitoring the isomerization kinetics from how the average fluorescence intensity varies with laser excitation modulation characteristics, we could then detect folding states of fluorescently tagged RNA introduced into live cells.
Collapse
Affiliation(s)
| | | | - Baris Demirbay
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
40
|
Li Y, Zhu Y, Wang Y, Feng Y, Li D, Li S, Qin P, Yang X, Chen L, Zhao J, Zhang C, Li Y. Characterization of RNA G-quadruplexes in porcine epidemic diarrhea virus genome and the antiviral activity of G-quadruplex ligands. Int J Biol Macromol 2023; 231:123282. [PMID: 36657537 DOI: 10.1016/j.ijbiomac.2023.123282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there are still no anti-PEDV drugs with accurate targets. G-quadruplexes (G4s) are non-canonical secondary structures formed within guanine-rich regions of DNA or RNA, and have attracted great attention as potential targets for antiviral strategy. In this study, we reported two putative G4-forming sequences (PQS) in S and Nsp5 genes of PEDV genome based on bioinformatic analysis, and identified that S-PQS and Nsp5-PQS were enabled to fold into G4 structure by using circular dichroism spectroscopy and fluorescence turn-on assay. Furthermore, we verified that both S-PQS and Nsp5-PQS PQS could form G4 structure in live cells by immunofluorescence microscopy. In addition, G4-specific compounds, such as TMPyP4 and PDS, could significantly inhibit transcription, translation and proliferation of PEDV in vitro. Importantly, these compounds exert antiviral activity at the post-entry step of PEDV infection cycle, by inhibiting viral genome replication and protein expression. Lastly, we demonstrated that TMPyP4 can inhibit reporter gene expression by targeting G4 structure in Nsp5. Taken together, these findings not only reinforce the presence of viral G-quadruplex sequences in PEDV genome but also provide new insights into developing novel antiviral drugs targeting PEDV RNA G-quadruplexes.
Collapse
Affiliation(s)
- Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yance Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yi Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
41
|
G4-interacting proteins endangering genomic stability at G4 DNA-forming sites. Biochem Soc Trans 2023; 51:403-413. [PMID: 36629511 PMCID: PMC10018705 DOI: 10.1042/bst20221018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
In guanine-rich DNA strands, base-base interactions among guanines allow the conformational shift from the B-form DNA to the non-canonical quadruplex or G4 structure. The functional significance of G4 DNA in vivo is largely dependent on the interaction with protein factors, many of which contain the arginine-glycine-glycine or RGG repeat and other consensus G4-binding motifs. These G4-interacting proteins can significantly modulate the effect of G4 DNA structure on genome maintenance, either preventing or aggravating G4-assoicated genome instability. While the role of helicases in resolving G4 DNA structure has been extensively discussed, identification and characterization of protein factors contributing to elevation in G4-associated genome instability has been relatively sparse. In this minireview, we will particularly highlight recent discoveries regarding how interaction between certain G4-binding proteins and G4 DNA could exacerbate genome instability potentiated by G4 DNA-forming sequences.
Collapse
|
42
|
The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands. Eur J Med Chem 2023; 248:115103. [PMID: 36645982 DOI: 10.1016/j.ejmech.2023.115103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.
Collapse
|
43
|
G4Beacon: An In Vivo G4 Prediction Method Using Chromatin and Sequence Information. Biomolecules 2023; 13:biom13020292. [PMID: 36830661 PMCID: PMC9953394 DOI: 10.3390/biom13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
G-quadruplex (G4) structures are critical epigenetic regulatory elements, which usually form in guanine-rich regions in DNA. However, predicting the formation of G4 structures within living cells remains a challenge. Here, we present an ultra-robust machine learning method, G4Beacon, which utilizes the Gradient-Boosting Decision Tree (GBDT) algorithm, coupled with the ATAC-seq data and the surrounding sequences of in vitro G4s, to accurately predict the formation ability of these in vitro G4s in different cell types. As a result, our model achieved excellent performance even when the test set was extremely skewed. Besides this, G4Beacon can also identify the in vivo G4s of other cell lines precisely with the model built on a special cell line, regardless of the experimental techniques or platforms. Altogether, G4Beacon is an accurate, reliable, and easy-to-use method for the prediction of in vivo G4s of various cell lines.
Collapse
|
44
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
45
|
Oprzeska-Zingrebe EA, Smiatek J. Basket-type G-quadruplex with two tetrads in the presence of TMAO and urea: A molecular dynamics study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Makova KD, Weissensteiner MH. Noncanonical DNA structures are drivers of genome evolution. Trends Genet 2023; 39:109-124. [PMID: 36604282 PMCID: PMC9877202 DOI: 10.1016/j.tig.2022.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Biology, Penn State University, 310 Wartik Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
47
|
Kristoffersen E, Coletta A, Lund L, Schiøtt B, Birkedal V. Inhibited complete folding of consecutive human telomeric G-quadruplexes. Nucleic Acids Res 2023; 51:1571-1582. [PMID: 36715345 PMCID: PMC9976873 DOI: 10.1093/nar/gkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.
Collapse
Affiliation(s)
- Emil Laust Kristoffersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Andrea Coletta
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | |
Collapse
|
48
|
Pandith A, Luo Y, Jang Y, Bae J, Kim Y. Self-Assembled Peptidyl Aggregates for the Fluorogenic Recognition of Mitochondrial DNA G-Quadruplexes. Angew Chem Int Ed Engl 2023; 62:e202215049. [PMID: 36396597 DOI: 10.1002/anie.202215049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/19/2022]
Abstract
The selective monitoring of G-quadruplex (G4) structures in living cells is important to elucidate their functions and reveal their value as diagnostic or therapeutic targets. Here we report a fluorogenic probe (CV2) able to selectively light-up parallel G4 DNA over antiparallel topologies. CV2 was constructed by conjugating the excimer-forming CV dye with a peptide sequence (l-Arg-l-Gly-glutaric acid) that specifically recognizes G4s. CV2 forms self-assembled, red excimer-emitting nanoaggregates in aqueous media, but specific binding to G4s triggers its disassembly into rigidified monomeric dyes, leading to a dramatic fluorescence enhancement. Moreover, selective permeation of CV2 stains G4s in mitochondria over the nucleus. CV2 was employed for tracking the folding and unfolding of G4s in living cells, and for monitoring mitochondrial DNA (mtDNA) damage. These properties make CV2 appealing to investigate the possible roles of mtDNA G4s in diseases that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Current address, International Ph.D. Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan (R.O.C
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Yul Jang
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
49
|
Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int J Mol Sci 2022; 23:ijms232416020. [PMID: 36555662 PMCID: PMC9786302 DOI: 10.3390/ijms232416020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by four guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are implicated in the control of gene expression. Most G4-forming DNA contains more G residues than can simultaneously be incorporated into the core resulting in a variety of different possible G4 structures. Although this kind of structural polymorphism is well recognized in the literature, there remain unanswered questions regarding possible connections between G4 polymorphism and biological function. Here we report a detailed bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis is based on identifying G4-containing regions (G4CRs), which we define as stretches of DNA in which every residue can form part of a G4. We found that G4CRs with higher degrees of polymorphism are more tightly clustered near transcription sites and tend to contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-characterized biological functions tended to be longer and more polymorphic than genome-wide averages. These results represent new evidence linking G4 polymorphism to biological function and provide new criteria for identifying biologically relevant G4-forming regions from genomic data.
Collapse
|
50
|
Shiekh S, Jack A, Saurabh A, Mustafa G, Kodikara S, Gyawali P, Hoque M, Pressé S, Yildiz A, Balci H. Shelterin reduces the accessibility of telomeric overhangs. Nucleic Acids Res 2022; 50:12885-12895. [PMID: 36511858 PMCID: PMC9825182 DOI: 10.1093/nar/gkac1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/25/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Telomeres terminate with a 50-300 bases long single-stranded G-rich overhang, which can be misrecognized as a DNA damage repair site. Shelterin plays critical roles in maintaining and protecting telomere ends by regulating access of various physiological agents to telomeric DNA, but the underlying mechanism is not well understood. Here, we measure how shelterin affects the accessibility of long telomeric overhangs by monitoring transient binding events of a short complementary peptide nucleic acid (PNA) probe using FRET-PAINT in vitro. We observed that the POT1 subunit of shelterin reduces the accessibility of the PNA probe by ∼2.5-fold, indicating that POT1 effectively binds to and protects otherwise exposed telomeric sequences. In comparison, a four-component shelterin stabilizes POT1 binding to the overhang by tethering POT1 to the double-stranded telomeric DNA and reduces the accessibility of telomeric overhangs by ∼5-fold. This enhanced protection suggests shelterin restructures the junction between single and double-stranded telomere, which is otherwise the most accessible part of the telomeric overhang.
Collapse
Affiliation(s)
- Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Ayush Saurabh
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Golam Mustafa
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | | | - Prabesh Gyawali
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Steve Pressé
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Science, Arizona State University, Tempe, AZ 85287, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Physics Department, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|