1
|
Ding Y, Wang D, Yan D, Fan J, Ding Z, Xue L. Harnessing single-cell and multi-omics insights: STING pathway-based predictive signature for immunotherapy response in lung adenocarcinoma. Front Immunol 2025; 16:1575084. [PMID: 40308576 PMCID: PMC12040650 DOI: 10.3389/fimmu.2025.1575084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Lung adenocarcinoma is the most prevalent type of small-cell carcinoma, with a poor prognosis. For advanced-stage patients, the efficacy of immunotherapy is suboptimal. The STING signaling pathway plays a pivotal role in the immunotherapy of lung adenocarcinoma; therefore, further investigation into the relationship between the STING pathway and lung adenocarcinoma is warranted. Methods We conducted a comprehensive analysis integrating single-cell RNA sequencing (scRNA-seq) data with bulk transcriptomic profiles from public databases (GEO, TCGA). STING pathway-related genes were identified through Genecard database. Advanced bioinformatics analyses using R packages (Seurat, CellChat) revealed transcriptomic heterogeneity, intercellular communication networks, and immune landscape characteristics. We developed a STING pathway-related signature (STINGsig) using 101 machine learning frameworks. The functional significance of ERRFI1, a key component of STINGsig, was validated through mouse models and multicolor flow cytometry, particularly examining its role in enhancing antitumor immunity and potential synergy with α-PD1 therapy. Results Our single-cell analysis identified and characterized 15 distinct cell populations, including epithelial cells, macrophages, fibroblasts, T cells, B cells, and endothelial cells, each with unique marker gene profiles. STING pathway activity scoring revealed elevated activation in neutrophils, epithelial cells, B cells, and T cells, contrasting with lower activity in inflammatory macrophages. Cell-cell communication analysis demonstrated enhanced interaction networks in high-STING-score cells, particularly evident in fibroblasts and endothelial cells. The developed STINGsig showed robust prognostic value and revealed distinct immune microenvironment characteristics between risk groups. Notably, ERRFI1 knockdown experiments confirmed its significant role in modulating antitumor immunity and enhancing α-PD1 therapy response. Conclusion The STING-related pathway exhibited distinct expression levels across 15 cell populations, with high-score cells showing enhanced tumor-promoting pathways, active immune interactions, and enrichment in fibroblasts and IFI27+ inflammatory macrophages. In contrast, low-score cells were associated with epithelial phenotypes and reduced immune activity. We developed a robust STING pathway-related signature (STINGsig), which identified key prognostic genes and was linked to the immune microenvironment. Through in vivo experiments, we confirmed that knockdown of ERRFI1, a critical gene within the STINGsig, significantly enhances antitumor immunity and synergizes with α-PD1 therapy in a lung cancer model, underscoring its therapeutic potential in modulating immune responses.
Collapse
Affiliation(s)
- Yang Ding
- Department of Pathology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dali Yan
- Department of Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of Huai’an, Huai’an, China
| | - Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zongli Ding
- Department of Geriatrics, The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of Huai’an, Huai’an, China
| | - Lei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Ahmad B, Dumbuya JS, Li W, Tang JX, Chen X, Lu J. Evaluation of GFM1 mutations pathogenicity through in silico tools, RNA sequencing and mitophagy pahtway in GFM1 knockout cells. Int J Biol Macromol 2025; 304:140970. [PMID: 39952508 DOI: 10.1016/j.ijbiomac.2025.140970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
GFM1 is a nuclear gene that plays a role in mitochondrial function. In recent decades, various homozygous and compound heterozygous mutations have been identified, leading to significant health issues in patients and often resulting in early death. There is a few experimental research on this gene, particularly regarding its pathogenicity through in silico methods and RNA sequencing and experimental validation in GFM1 knockout cells. This study aims to explore how high-risk pathogenic variants affect protein stability and function using a comprehensive bioinformatics approach. Analyses with Align-GVGD, PolyPhen-2, MupRo, and SIFT indicated that most variants are likely to be highly pathogenic and destabilize the protein structure. The variants were consistently classified as high-risk by Align-GVGD and were deemed "probably damaging" or "possibly damaging" by PolyPhen-2. MupRo analysis suggested a reduction in protein stability, while SIFT indicated functional impacts for all variants. Further analysis with MetaRNN and structural assessments showed that these variants affect protein size, charge, and hydrophobicity, which may disrupt inter-domain interactions and hinder protein function. Differential gene expression analysis in GFM1 knockout HK2 and 293 T cells revealed significant changes in gene expression, particularly in areas related to translation, mitochondrial function, and cellular responses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that the affected genes are linked to neurodegenerative diseases, cancer, and various signaling pathways. GFM1 knockout cells displayed notable pathway changes, including those related to oxidative phosphorylation and neurodegenerative diseases (e.g., Parkinson's, Alzheimer's, Huntington's). Upregulation of mitochondrial electron transport chain components (COX17, NDUFB1, ATP5MC1) suggests a compensatory mechanism in response to impaired mitochondrial function. Disruptions in proteostasis and protein synthesis were highlighted by dysregulated proteasome and ribosomal pathways. Markers of mitophagy, such as increased HSP90 and decreased TOMM20 levels, along with changes in PINK1 protein, emphasize GFM1's involvement in mitophagy. Protein-protein interaction analysis connected GFM1 to key mitophagy proteins (e.g., OPTN, Park2/Parkin). Functional experiments confirmed increased mitophagy, indicating a protective response. These results highlight the negative impact of high-risk pathogenic variants on protein stability and cellular function, shedding light on their potential roles in disease progression. This study offers valuable insights into the pathogenic mechanisms linked to GFM1 mutations, underscoring its critical role in mitochondrial function and cellular balance. The findings highlight the gene's involvement in mitophagy, oxidative phosphorylation, and neurodegenerative pathways, laying the groundwork for future research into therapeutic approaches targeting GFM1-related dysfunctions.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.
| | - Xiuling Chen
- Department of Pediatrics, Haikou Affiliated Hospital of Central South University, Xiangya School of Medicine Address: No. 43 Renmin Avenue, Haikou, Hainan, China.
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China.
| |
Collapse
|
3
|
Yi SA, Cho D, Kim S, Kim H, Choi MK, Choi HS, Shin S, Yun S, Lim A, Jeong JK, Yoon DE, Cha HJ, Kim K, Han J, Cho H, Cho J. Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR). Mol Oncol 2025; 19:937-953. [PMID: 39129344 PMCID: PMC11887669 DOI: 10.1002/1878-0261.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood. Here, we identify that the stoichiometric balance between MIG6 and EGFR is crucial in promoting EGFR-dependent oncogenic growth in various experimental model systems. In addition, a subset of ERRFI1 (the official gene symbol of MIG6) mutations exhibit impaired ability to suppress the enzymatic activation of EGFR at multiple levels. In summary, our data suggest that decreased or loss of MIG6 activity can lead to abnormal activation of EGFR, potentially contributing to cellular transformation. We propose that the mutation status of ERRFI1 and the expression levels of MIG6 can serve as additional biomarkers for guiding EGFR-targeted cancer therapies, including glioblastoma.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of PharmacySungkyunkwan UniversitySuwonKorea
- Present address:
Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Daseul Cho
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Sujin Kim
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Hyunjin Kim
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Hee Seong Choi
- Department of Systems Biology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Sukjin Shin
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Sujin Yun
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Ahjin Lim
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Jae Kyun Jeong
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| | - Da Eun Yoon
- Department of Biomedical SciencesKorea University College of MedicineSeoulKorea
- Department of PhysiologyKorea University College of MedicineSeoulKorea
| | - Hye Ji Cha
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
| | - Kyoungmi Kim
- Department of Biomedical SciencesKorea University College of MedicineSeoulKorea
- Department of PhysiologyKorea University College of MedicineSeoulKorea
| | - Jeung‐Whan Han
- Epigenome Dynamics Control Research Center, School of PharmacySungkyunkwan UniversitySuwonKorea
| | - Hyun‐Soo Cho
- Department of Systems Biology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Jeonghee Cho
- Department of Biomedical Science & EngineeringDankook UniversityCheonanKorea
- Department of Nanobiomedical ScienceDankook UniversityCheonanKorea
| |
Collapse
|
4
|
Yang M, Zheng G, Chen F, Tang H, Liu Y, Gao X, Huang Y, Lv Z, Li B, Yang M, Bu Q, Zhu L, Yu P, Huo Z, Wei X, Chen X, Huang Y, He Z, Xia X, Bai J. Molecular characterization of EBV-associated primary pulmonary lymphoepithelial carcinoma by multiomics analysis. BMC Cancer 2025; 25:85. [PMID: 39815193 PMCID: PMC11734413 DOI: 10.1186/s12885-024-13410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Primary pulmonary lymphoepithelial carcinoma (pLEC) is a subtype of non-small cell lung cancer (NSCLC) characterized by Epstein-Barr virus (EBV) infection. However, the molecular pathogenesis of pLEC remains poorly understood. METHODS In this study, we explored pLEC using whole-exome sequencing (WES) and RNA-whole-transcriptome sequencing (RNA-seq) technologies. Datasets of normal lung tissue, other types of NSCLC, and EBV-positive nasopharyngeal carcinoma (EBV+-NPC) were obtained from public databases. Furthermore, we described the gene signatures, viral integration, cell quantification, cell death and immune infiltration of pLEC. RESULTS Compared with other types of NSCLC and EBV+-NPC, pLEC patients exhibited a lower somatic mutation burden and extensive copy number deletions, including 1p36.23, 3p21.1, 7q11.23, and 11q23.3. Integration of EBV associated dysregulation of gene expression, with CNV-altered regions coinciding with EBV integration sites. Specifically, ZBTB16 and ERRFI1 were downregulated by CNV loss, and the FOXD family genes were overexpressed with CNV gain. Decreased expression of the FOXD family might be associated with a favorable prognosis in pLEC patients, and these patients exhibited enhanced cytotoxicity. CONCLUSION Compared with other types of NSCLC and NPC, pLEC has distinct molecular characteristics. EBV integration, the aberrant expression of genes, as well as the loss of CNVs, may play a crucial role in the pathogenesis of pLEC. However, further research is needed to assess the potential role of the FOXD gene family as a biomarker.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guixian Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Fukun Chen
- Geneplus-Beijing Institute, Beijing, China
| | - Haijuan Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yaoyao Liu
- Geneplus-Beijing Institute, Beijing, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Yu Huang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zili Lv
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Benhua Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Maolin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qing Bu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lixia Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Pengli Yu
- Geneplus-Beijing Institute, Beijing, China
| | - Zengyu Huo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xinyan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoli Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yanbing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | | | - Jing Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
5
|
Xu D, Wu Y. Ectoin attenuates cortisone-induced skin issues by suppression GR signaling and the UVB-induced overexpression of 11β-HSD1. J Cosmet Dermatol 2024; 23:4303-4314. [PMID: 39222375 PMCID: PMC11626367 DOI: 10.1111/jocd.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Accelerated pace of modern work and lifestyles subject individuals to various external and psychological stressors, which, in turn, can trigger additional stress through visible signs of fatigue, hair loss, and obesity. As the primary stress hormone affecting skin health, cortisol connects to the glucocorticoid receptor (GR) to aggravate skin issues induced by stress. This activation depends on the expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in skin cells, which locally converts cortisone-produced by the central and peripheral hypothalamic-pituitary-adrenal axis-into its active form. METHODS Our study delves deeper into stress's adverse effects on the skin, including the disruption of keratinocyte structural proteins, the loss of basement membrane proteins, and the degradation of collagen. RESULTS Remarkably, we discovered that Ectoin, an amino acid derivative obtained from halophilic bacteria, is capable of mitigating the inhibitory impacts of cortisone on the expression of cutaneous functional proteins, including involucrin, loricrin, laminin-5, and claudin-1. Moreover, Ectoin reduces the suppressive effect of stress on collagen and hyaluronic acid synthesis by impeding GR signal transduction. Additionally, Ectoin counterbalances the UVB-induced overexpression of 11β-HSD1, thereby diminishing the concentration of endogenous glucocorticoids. CONCLUSION Our findings illuminate the significant potential of Ectoin as a preventative agent against stress-induced skin maladies.
Collapse
Affiliation(s)
- Dailin Xu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| | - Yue Wu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| |
Collapse
|
6
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
7
|
Lee CY, The M, Meng C, Bayer FP, Putzker K, Müller J, Streubel J, Woortman J, Sakhteman A, Resch M, Schneider A, Wilhelm S, Kuster B. Illuminating phenotypic drug responses of sarcoma cells to kinase inhibitors by phosphoproteomics. Mol Syst Biol 2024; 20:28-55. [PMID: 38177929 PMCID: PMC10883282 DOI: 10.1038/s44320-023-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Johanna Streubel
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Woortman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Moritz Resch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Annika Schneider
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Pinto BF, Lopes PH, Trufen CEM, Ching ATC, De Azevedo IDLMJ, Nishiyama MY, Pohl PC, Tambourgi DV. Role of ErbB and IL-1 signaling pathways in the dermonecrotic lesion induced by Loxosceles sphingomyelinases D. Arch Toxicol 2023; 97:3285-3301. [PMID: 37707622 DOI: 10.1007/s00204-023-03602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Collapse
|
10
|
Nukpook T, Kiyono T, Ekalaksananan T, Kasemsiri P, Teeramatwanich W, Vatanasapt P, Chaiwiriyakul S, Nakahara T, Pientong C. An in vitro model and the underlying pathways of sinonasal inverted papilloma development. Sci Rep 2023; 13:18456. [PMID: 37891239 PMCID: PMC10611779 DOI: 10.1038/s41598-023-45585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, the specific association between Sinonasal inverted papilloma (SIP) and EGFR exon 20 mutations has been reported. To investigate the link between specific EGFR mutations and SIP development, we established organotypic raft culture system using nasal polyp-derived immortalized NP2 (iNP2) cells expressing EGFR exon 20 mutants or an exon 19 mutant, and SIP-derived iIP4 cells harboring P772_H773insPYNP mutation. In the raft culture, iIP4 cells showed the inverted growth pattern characteristic to SIP. Interestingly, iNP2 cells expressing EGFR exon 20 duplication mutants, S768_D770dup and N771_H773dup, but not of EGFR exon 19 mutant, E746_A750del, showed the inverted growth pattern. Enhanced activation of the PI3K/AKT signaling pathway was observed in iNP2_S768_D770dup and iIP4 cells, while increased MAPK signaling was found in iNP2_N771_H773dup. Increased cell migration and invasion were found in all cells carrying EGFR mutations when compared to iNP2 cells, and this effect was inhibited by either PI3K or MEK inhibitor. Notably, iNP2 cells expressing the N771_H773dup mutant showed the highest migration and invasion abilities. These results suggest that specific mutations in EGFR exon 20 play a crucial role in SIP development, partially though hyper-activation of the PI3K/AKT and MAPK signaling pathways. This study presents the first in vitro model for SIP development, which could facilitate further investigations into SIP pathogenesis and preclinical studies for new therapeutic agents.
Collapse
Affiliation(s)
- Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Pornthep Kasemsiri
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watchareporn Teeramatwanich
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patravoot Vatanasapt
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Tomomi Nakahara
- Division of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuoku, Tokyo, 104-0045, Japan
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
11
|
Wang H, Shi M, Wan J, Yu H. The increased expression of cytokeratin 13 leads to an increase in radiosensitivity of nasopharyngeal carcinoma HNE-3 cells by upregulating ERRFI1. IUBMB Life 2023; 75:688-698. [PMID: 37070291 DOI: 10.1002/iub.2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
The main factors contributing to the unfavorable outcome in the clinical treatment of patients with nasopharyngeal carcinoma (NPC) patients are radiation resistance and recurrence. This study aimed to investigate the sensitivity and molecular foundation of cytokeratin 13 (CK13) in the radiotherapy of NPC. To achieve this, a human NPC cell line overexpressing CK13, HNE-3-CK13, was constructed. The effects of CK13 overexpression on cell viability and apoptosis under radiotherapy conditions were evaluated using the CCK-8 assay, immunofluorescence, and western blotting (WB). Next-generation sequencing was performed to identify the downstream genes and signaling pathways of CK13 that mediate radiotherapy response. The potential role of the candidate gene ERRFI1 in CK13-induced enhancement of radiosensitivity was investigated through rescue experiments using clone formation and WB. The effects of ERRFI1 on cell viability, cell apoptosis, cell cycle, and the related key genes were further evaluated using CCK-8, immunofluorescence, flow cytometry, quantitative polymerase chain reaction and WB. The results showed that CK13 overexpression in HNE-3 significantly inhibited cell survival under radiotherapy and promoted apoptosis marker γH2AX expression, leading to a significant increase of ERRFI1. Knockdown of ERRFI1 rescued the decreased cell viability and proliferation and the increased cell apoptosis that were caused by CK13 overexpression-mediated radiotherapy sensitization of NPC cells. In this process, EGFR, AKT, and GSK-3β were found involved. In the end, ERRFI1 was proven to inhibit expression levels of CDK1, CDK2, cyclin B1, and cyclin D1, resulting an increased G2/M cell ratio. Overexpression of CK13 enhances the radiosensitivity of NPC cells, which is characterized by decreased cell viability and proliferation and increased apoptosis. This regulation may affect the survival of HNE-3 cells by increasing the expression of ERRFI1 and activating the EGFR/Akt/GSK-3β signaling pathway, providing new potential therapeutic targets for the treatment of NPC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yunnan University, the Second People's Hospital of Yunnan Province, Yunnan Eye Hospital, Kunming, Yunnan, People's Republic of China
| | - Ming Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yunnan University, the Second People's Hospital of Yunnan Province, Yunnan Eye Hospital, Kunming, Yunnan, People's Republic of China
| | - Jia Wan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yunnan University, the Second People's Hospital of Yunnan Province, Yunnan Eye Hospital, Kunming, Yunnan, People's Republic of China
| | - Hong Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yunnan University, the Second People's Hospital of Yunnan Province, Yunnan Eye Hospital, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
12
|
Zhou P, Qu H, Shi K, Chen X, Zhuang Z, Wang N, Zhang Q, Liu Z, Wang L, Deng K, Zhao Y, Shan T, Fan G, Chen Y, Xia J. ATF4-mediated circTDRD3 promotes gastric cancer cell proliferation and metastasis by regulating the miR-891b/ITGA2 axis and AKT signaling pathway. Gastric Cancer 2023; 26:565-579. [PMID: 37062785 DOI: 10.1007/s10120-023-01392-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a cancer of the gastrointestinal tract that is highly malignant and has poor prognosis. Circular RNAs are a class of nonclassical RNA molecules that have been determined to be involved in GC malignancy in various ways. However, the underlying function and mechanism of circTDRD3 in gastric cancer remain largely unknown. METHODS We analyzed circTDRD3 expression in databases and verified the findings in GC cell lines and tissue specimens. A series of functional gene overexpression and knockdown assays in vivo and in vitro were carried out to investigate the role of circTDRD3 in proliferation and metastasis. Here, we revealed the role of the miR-891b/ITGA2 axis by analyzing bioinformatics datasets. Furthermore, we performed dual-luciferase, fluorescence in situ hybridization, RNA pull-down, and functional rescue experiments to examine the relationships between circTDRD3 and its interacting molecules. Western blot confirmed the positive regulatory role of circTDRD3 in the AKT signaling pathway. A promoting effect of ATF4 on circTDRD3 was determined through chromatin immunoprecipitation. RESULTS CircTDRD3 was significantly overexpressed in GC tissues compared with adjacent benign tissue, and its expression level was positively correlated with tumor volume and lymph node metastasis. CircTDRD3 promoted GC cell proliferation and migration in vitro and in vivo. Mechanistically, circTDRD3 exerted a tumor-promoting effect by regulating the miR-891b/ITGA2 axis and AKT signaling pathway in a positive feedback manner mediated by the transcription factor ATF4. CONCLUSIONS ATF4-mediated circTDRD3 overexpression modulates the proliferation and metastasis of GC cells through the miR-891b/ITGA2 axis in a positive feedback manner.
Collapse
Affiliation(s)
- Peng Zhou
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Huiheng Qu
- Jiangnan University Medical Center, Wuxi, China
| | - Kaihang Shi
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xingyu Chen
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zequn Zhuang
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ning Wang
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qing Zhang
- Wuxi Clinical College, Nantong University, Wuxi, China
| | - Ziyuan Liu
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Linkun Wang
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | | | - Yupeng Zhao
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ting Shan
- Jiangnan University Medical Center, Wuxi, China
| | - Guidi Fan
- Jiangnan University Medical Center, Wuxi, China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
- Wuxi Clinical College, Nantong University, Wuxi, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Jiangnan University Medical Center, Wuxi, China.
- Wuxi Clinical College, Nantong University, Wuxi, China.
| |
Collapse
|
13
|
Sun Y, Gao Y, Dong M, Li J, Li X, He N, Song H, Zhang M, Ji K, Wang J, Gu Y, Wang Y, Du L, Liu Y, Wang Q, Zhai H, Sun D, Liu Q, Xu C. Kremen2 drives the progression of non-small cell lung cancer by preventing SOCS3-mediated degradation of EGFR. J Exp Clin Cancer Res 2023; 42:140. [PMID: 37270563 DOI: 10.1186/s13046-023-02692-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The transmembrane receptor Kremen2 has been reported to participate in the tumorigenesis and metastasis of gastric cancer. However, the role of Kremen2 in non-small cell lung cancer (NSCLC) and the underlying mechanism remain unclear. This study aimed to explore the biological function and regulatory mechanism of Kremen2 in NSCLC. METHODS The correlation between Kremen2 expression and NSCLC was assessed by analyzing the public database and clinical tissue samples. Colony formation and EdU assays were performed to examine cell proliferation. Transwell and wound healing assays were used to observe cell migration ability. Tumor-bearing nude mice and metastatic tumor models were used to detect the in vivo tumorigenic and metastatic abilities of the NSCLC cells. An immunohistochemical assay was used to detect the expression of proliferation-related proteins in tissues. Western blot, immunoprecipitation and immunofluorescence were conducted to elucidate the Kremen2 regulatory mechanisms in NSCLC. RESULTS Kremen2 was highly expressed in tumor tissues from NSCLC patients and was positively correlated with a poor patient prognosis. Knockout or knockdown of Kremen2 inhibited cell proliferation and migration ability of NSCLC cells. In vivo knockdown of Kremen2 inhibited the tumorigenicity and number of metastatic nodules of NSCLC cells in nude mice. Mechanistically, Kremen2 interacted with suppressor of cytokine signaling 3 (SOCS3) to maintain the epidermal growth factor receptor (EGFR) protein levels by preventing SOCS3-mediated ubiquitination and degradation of EGFR, which, in turn, promoted activation of the PI3K-AKT and JAK2-STAT3 signaling pathways. CONCLUSIONS Our study identified Kremen2 as a candidate oncogene in NSCLC and may provide a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yu Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Mingxin Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Jiuzhen Li
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, Tianjin, 300222, China
| | - Xin Li
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, Tianjin, 300222, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yeqing Gu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Hezheng Zhai
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
- School of Precision Instruments and OPTO-Electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Daqiang Sun
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, Tianjin, 300222, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China.
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
14
|
Hostallero DE, Wei L, Wang L, Cairns J, Emad A. Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:535-550. [PMID: 36775056 PMCID: PMC10787192 DOI: 10.1016/j.gpb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Prediction of the response of cancer patients to different treatments and identification of biomarkers of drug response are two major goals of individualized medicine. Here, we developed a deep learning framework called TINDL, completely trained on preclinical cancer cell lines (CCLs), to predict the response of cancer patients to different treatments. TINDL utilizes a tissue-informed normalization to account for the tissue type and cancer type of the tumors and to reduce the statistical discrepancies between CCLs and patient tumors. Moreover, by making the deep learning black box interpretable, this model identifies a small set of genes whose expression levels are predictive of drug response in the trained model, enabling identification of biomarkers of drug response. Using data from two large databases of CCLs and cancer tumors, we showed that this model can distinguish between sensitive and resistant tumors for 10 (out of 14) drugs, outperforming various other machine learning models. In addition, our small interfering RNA (siRNA) knockdown experiments on 10 genes identified by this model for one of the drugs (tamoxifen) confirmed that tamoxifen sensitivity is substantially influenced by all of these genes in MCF7 cells, and seven of these genes in T47D cells. Furthermore, genes implicated for multiple drugs pointed to shared mechanism of action among drugs and suggested several important signaling pathways. In summary, this study provides a powerful deep learning framework for prediction of drug response and identification of biomarkers of drug response in cancer. The code can be accessed at https://github.com/ddhostallero/tindl.
Collapse
Affiliation(s)
- David Earl Hostallero
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC H2S, Canada
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC H2S, Canada; The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A, Canada.
| |
Collapse
|
15
|
Dorard C, Madry C, Buhard O, Toifl S, Didusch S, Ratovomanana T, Letourneur Q, Dolznig H, Garnett MJ, Duval A, Baccarini M. RAF1 contributes to cell proliferation and STAT3 activation in colorectal cancer independently of microsatellite and KRAS status. Oncogene 2023; 42:1649-1660. [PMID: 37020037 PMCID: PMC10181936 DOI: 10.1038/s41388-023-02683-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
More than 30% of all human cancers are driven by RAS mutations and activating KRAS mutations are present in 40% of colorectal cancer (CRC) in the two main CRC subgroups, MSS (Microsatellite Stable) and MSI (Microsatellite Instable). Studies in RAS-driven tumors have shown essential roles of the RAS effectors RAF and specifically of RAF1, which can be dependent or independent of RAF's ability to activate the MEK/ERK module. In this study, we demonstrate that RAF1, but not its kinase activity, plays a crucial role in the proliferation of both MSI and MSS CRC cell line-derived spheroids and patient-derived organoids, and independently of KRAS mutation status. Moreover, we could define a RAF1 transcriptomic signature which includes genes that contribute to STAT3 activation, and could demonstrate that RAF1 ablation decreases STAT3 phosphorylation in all CRC spheroids tested. The genes involved in STAT3 activation as well as STAT3 targets promoting angiogenesis were also downregulated in human primary tumors expressing low levels of RAF1. These results indicate that RAF1 could be an attractive therapeutic target in both MSI and MSS CRC regardless of their KRAS status and support the development of selective RAF1 degraders rather than RAF1 inhibitors for clinical use in combination therapies.
Collapse
Affiliation(s)
- Coralie Dorard
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France.
| | - Claire Madry
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Olivier Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Stefanie Toifl
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sebastian Didusch
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Toky Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Quentin Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | | | - Alex Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
16
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Qureshi R, Zou B, Alam T, Wu J, Lee VHF, Yan H. Computational Methods for the Analysis and Prediction of EGFR-Mutated Lung Cancer Drug Resistance: Recent Advances in Drug Design, Challenges and Future Prospects. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:238-255. [PMID: 35007197 DOI: 10.1109/tcbb.2022.3141697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lung cancer is a major cause of cancer deaths worldwide, and has a very low survival rate. Non-small cell lung cancer (NSCLC) is the largest subset of lung cancers, which accounts for about 85% of all cases. It has been well established that a mutation in the epidermal growth factor receptor (EGFR) can lead to lung cancer. EGFR Tyrosine Kinase Inhibitors (TKIs) are developed to target the kinase domain of EGFR. These TKIs produce promising results at the initial stage of therapy, but the efficacy becomes limited due to the development of drug resistance. In this paper, we provide a comprehensive overview of computational methods, for understanding drug resistance mechanisms. The important EGFR mutants and the different generations of EGFR-TKIs, with the survival and response rates are discussed. Next, we evaluate the role of important EGFR parameters in drug resistance mechanism, including structural dynamics, hydrogen bonds, stability, dimerization, binding free energies, and signaling pathways. Personalized drug resistance prediction models, drug response curve, drug synergy, and other data-driven methods are also discussed. Recent advancements in deep learning; such as AlphaFold2, deep generative models, big data analytics, and the applications of statistics and permutation are also highlighted. We explore limitations in the current methodologies, and discuss strategies to overcome them. We believe this review will serve as a reference for researchers; to apply computational techniques for precision medicine, analyzing structures of protein-drug complexes, drug discovery, and understanding the drug response and resistance mechanisms in lung cancer patients.
Collapse
|
18
|
Dai Y, Yang L, Sakandar A, Zhang D, Du F, Zhang X, Zou L, Zhao Y, Wang J, Zhang Z, Wu X, Li M, Ling X, Yu L, Dong L, Shen J, Xiao Z, Wen Q. Vemurafenib inhibits immune escape biomarker BCL2A1 by targeting PI3K/AKT signaling pathway to suppress breast cancer. Front Oncol 2022; 12:906197. [PMID: 36524001 PMCID: PMC9745811 DOI: 10.3389/fonc.2022.906197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/07/2022] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES To investigate the role of immune escape encoding genes on the prognosis of BC, and to predict the novel targeting agents. METHODS Human immune genes and immune escape encoding genes were obtained from the IMMPORT database and the previous study. Sample information and clinical data on BC were obtained from the TCGA and GTEX databases. Obtaining differentially expressed protein data from cBioportal database. To construct a risk score model by lasso analysis, and nomogram was used to predict score core. GSCA, TIMER and CELLMINER databases were used for immune and drug susceptibility correlation analyses. Cell experiments were verified by MTT, Western blotting, and RT-qPCR. RESULTS We found prognostic models consisting of eleven immune escape related protein-coding genes with ROC curves that performed well in the ontology data (AUC for TCGA is 0.672) and the external data (AUC for GSE20685 is 0.663 and for GES42568 is 0.706). Five core prognostic models are related to survival (EIF4EBP1, BCL2A1, NDRG1, ERRFI1 and BRD4) were summarized, and a nomogram was constructed to validate a C-index of 0.695, which was superior to other prognostic models. Relevant drugs targeting core genes were identified based on drug sensitivity analysis, and found that Vemurafenib downregulates the PI3K-AKT pathway and BCL2A1 protein in BC, as confirmed by external data and cellular assays. CONCLUSIONS Briefly, our work establishes and validates an 11-immune escape risk model, and five core prognostic factors that are mined deeply from this model, and elucidates in detail that Vemurafenib suppresses breast cancer by targeting the PI3K/AKT signaling pathway to inhibit the immune escape biomarker BCL2A1, confirms the validity of the prognostic model, and provides corresponding targeted agents to guide individualized treatment of BC patients.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
| | - Abass Sakandar
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Xinyi Zhang
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Linglin Zou
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Jigang Wang
- Shenzhen Municipal People’s Hospital, Shenzhen, China
| | - Zhenhua Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
19
|
Androgen-Induced MIG6 Regulates Phosphorylation of Retinoblastoma Protein and AKT to Counteract Non-Genomic AR Signaling in Prostate Cancer Cells. Biomolecules 2022; 12:biom12081048. [PMID: 36008945 PMCID: PMC9405759 DOI: 10.3390/biom12081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The bipolar androgen therapy (BAT) includes the treatment of prostate cancer (PCa) patients with supraphysiological androgen level (SAL). Interestingly, SAL induces cell senescence in PCa cell lines as well as ex vivo in tumor samples of patients. The SAL-mediated cell senescence was shown to be androgen receptor (AR)-dependent and mediated in part by non-genomic AKT signaling. RNA-seq analyses compared with and without SAL treatment as well as by AKT inhibition (AKTi) revealed a specific transcriptome landscape. Comparing the top 100 genes similarly regulated by SAL in two human PCa cell lines that undergo cell senescence and being counteracted by AKTi revealed 33 commonly regulated genes. One gene, ERBB receptor feedback inhibitor 1 (ERRFI1), encodes the mitogen-inducible gene 6 (MIG6) that is potently upregulated by SAL, whereas the combinatory treatment of SAL with AKTi reverses the SAL-mediated upregulation. Functionally, knockdown of ERRFI1 enhances the pro-survival AKT pathway by enhancing phosphorylation of AKT and the downstream AKT target S6, whereas the phospho-retinoblastoma (pRb) protein levels were decreased. Further, the expression of the cell cycle inhibitor p15INK4b is enhanced by SAL and ERRFI1 knockdown. In line with this, cell senescence is induced by ERRFI1 knockdown and is enhanced slightly further by SAL. Treatment of SAL in the ERRFI1 knockdown background enhances phosphorylation of both AKT and S6 whereas pRb becomes hypophosphorylated. Interestingly, the ERRFI1 knockdown does not reduce AR protein levels or AR target gene expression, suggesting that MIG6 does not interfere with genomic signaling of AR but represses androgen-induced cell senescence and might therefore counteract SAL-induced signaling. The findings indicate that SAL treatment, used in BAT, upregulates MIG6, which inactivates both pRb and the pro-survival AKT signaling. This indicates a novel negative feedback loop integrating genomic and non-genomic AR signaling.
Collapse
|
20
|
Liu B, Sun Y, Zhang Y, Xing Y, Suo J. DEK modulates both expression and alternative splicing of cancer‑related genes. Oncol Rep 2022; 47:111. [PMID: 35475534 PMCID: PMC9073418 DOI: 10.3892/or.2022.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/11/2022] [Indexed: 11/05/2022] Open
Abstract
DEK is known to be a potential proto‑oncogene and is highly expressed in gastric cancer (GC); thus, DEK is considered to contribute to the malignant progression of GC. DEK is an RNA‑binding protein involved in transcription, DNA repair, and selection of splicing sites during mRNA processing; however, its precise function remains elusive due to the lack of clarification of the overall profiles of gene transcription and post‑transcriptional splicing that are regulated by DEK. We performed our original whole‑genomic RNA‑Seq data to analyze the global transcription and alternative splicing profiles in a human GC cell line by comparing DEK siRNA‑treated and control conditions, dissecting both differential gene expression and potential alternative splicing events regulated by DEK. The siRNA‑mediated knockdown of DEK in a GC cell line led to significant changes in gene expression of multiple cancer‑related genes including both oncogenes and tumor suppressors. Moreover, it was revealed that DEK regulated a number of alternative splicing in genes which were significantly enriched in various cancer‑related pathways including apoptosis and cell cycle processes. This study clarified for the first time that DEK has a regulatory effect on the alternative splicing, as well as on the expression, of numerous cancer‑related genes, which is consistent with the role of DEK as a possible oncogene. Our results further expand the importance and feasibility of DEK as a clinical therapeutic target for human malignancies including GC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuanlin Sun
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Suo
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Huang G, Mao J. Identification of a 12-Gene Signature and Hub Genes Involved in Kidney Wilms Tumor via Integrated Bioinformatics Analysis. Front Oncol 2022; 12:877796. [PMID: 35480093 PMCID: PMC9038080 DOI: 10.3389/fonc.2022.877796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/23/2023] Open
Abstract
Wilms tumor (WT), also known as nephroblastoma, is a rare primary malignancy in all kinds of tumor. With the development of second-generation sequencing, the discovery of new tumor markers and potential therapeutic targets has become easier. This study aimed to explore new WT prognostic biomarkers. In this study, WT-miRNA datasets GSE57370 and GSE73209 were selected for expression profiling to identify differentially expressed genes. The key gene miRNA, namely hsa-miR-30c-5p, was identified by overlapping, and the target gene of candidate hsa-miR-30c-5p was predicted using an online database. Furthermore, 384 genes were obtained by intersecting them with differentially expressed genes in the TARGET-WT database, and the genes were analyzed for pathway and functional enrichment. Kaplan–Meier survival analysis of the 384 genes yielded a total of 25 key genes associated with WT prognosis. Subsequently, a prediction model with 12 gene signatures (BCL6, CCNA1, CTHRC1, DGKD, EPB41L4B, ERRFI1, LRRC40, NCEH1, NEBL, PDSS1, ROR1, and RTKN2) was developed. The model had good predictive power for the WT prognosis at 1, 3, and 5 years (AUC: 0.684, 0.762, and 0.774). Finally, ERRFI1 (hazard ratios [HR] = 1.858, 95% confidence intervals [CI]: 1.298–2.660) and ROR1 (HR = 0.780, 95% CI: 0.609–0.998) were obtained as independent predictors of prognosis in WT patients by single, multifactorial Cox analysis.
Collapse
|
22
|
Dietlein F, Wang AB, Fagre C, Tang A, Besselink NJM, Cuppen E, Li C, Sunyaev SR, Neal JT, Van Allen EM. Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science 2022; 376:eabg5601. [PMID: 35389777 PMCID: PMC9092060 DOI: 10.1126/science.abg5601] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We established a genome-wide compendium of somatic mutation events in 3949 whole cancer genomes representing 19 tumor types. Protein-coding events captured well-established drivers. Noncoding events near tissue-specific genes, such as ALB in the liver or KLK3 in the prostate, characterized localized passenger mutation patterns and may reflect tumor-cell-of-origin imprinting. Noncoding events in regulatory promoter and enhancer regions frequently involved cancer-relevant genes such as BCL6, FGFR2, RAD51B, SMC6, TERT, and XBP1 and represent possible drivers. Unlike most noncoding regulatory events, XBP1 mutations primarily accumulated outside the gene's promoter, and we validated their effect on gene expression using CRISPR-interference screening and luciferase reporter assays. Broadly, our study provides a blueprint for capturing mutation events across the entire genome to guide advances in biological discovery, therapies, and diagnostics.
Collapse
Affiliation(s)
- Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Corresponding author. (E.M.V.A.); (F.D.)
| | - Alex B. Wang
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Christian Fagre
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anran Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Nicolle J. M. Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands.,Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shamil R. Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - James T. Neal
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Corresponding author. (E.M.V.A.); (F.D.)
| |
Collapse
|
23
|
Xiao C, Xu F, Wang R, Liang Q, Shen K, Xu J, Liu L. Endostar Plus Apatinib Successfully Achieved Long Term Progression-Free Survival in Refractory Ovarian Cancer: A Case Report and Literature Review. Onco Targets Ther 2021; 14:5363-5372. [PMID: 34880628 PMCID: PMC8646866 DOI: 10.2147/ott.s335139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Ovarian cancer (OC) is a common malignancy in the gynecological tumor. Standard treatment for ovarian cancer is surgery and chemotherapy based on paclitaxel and platinum. However, traditional chemotherapy for ovarian cancer is limited by drug resistance and systemic side effects. It is imperative to explore effective treatment options for refractory ovarian cancer. Case Presentation A 52-year-old female initially presented with lower abdominal distension and migratory pain. After the laparoscopic exploration and biopsy, immunohistochemistry showed poorly differentiated adenocarcinoma originated from ovarian (cT3NxM1, stage IV, peritoneal and abdominal wall metastasis). The next generation sequence detected ERRFI1 (T187A, exon4) mutation. Results The patient received first-line chemotherapy (paclitaxel, nedaplatin plus avastin), followed by maintenance therapy with gefitinib, achieving a 15-month progression-free survival (PFS). After disease progression and second-line treatment failure, endostar plus apatinib was administered for 14 cycles and she obtained a PFS of 14 months without long-term adverse events. Conclusion We believe that the ERRFI1 gene may be a potential target of gefitinib. Importantly, endostar combined with apatinib is worth recommending for maintenance treatment in refractory ovarian cancer.
Collapse
Affiliation(s)
- Chunmei Xiao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Fangye Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kai Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jiali Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Lianke Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| |
Collapse
|
24
|
Zhao L, Xing P, Polavarapu VK, Zhao M, Valero-Martínez B, Dang Y, Maturi N, Mathot L, Neves I, Yildirim I, Swartling FJ, Sjöblom T, Uhrbom L, Chen X. FACT-seq: profiling histone modifications in formalin-fixed paraffin-embedded samples with low cell numbers. Nucleic Acids Res 2021; 49:e125. [PMID: 34534335 PMCID: PMC8643707 DOI: 10.1093/nar/gkab813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 01/05/2023] Open
Abstract
The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. But it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissues of interest are limited. Here, we present FFPE tissue with antibody-guided chromatin tagmentation with sequencing (FACT-seq), the first highly sensitive method to efficiently profile histone modifications in FFPE tissues by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We proved a very small piece of FFPE tissue section containing ∼4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. H3K27ac FACT-seq revealed disease-specific super enhancers in the archived FFPE human colorectal and human glioblastoma cancer tissue. In summary, FACT-seq allows decoding the histone modifications in archival FFPE tissues with high sensitivity and help researchers to better understand epigenetic regulation in cancer and human disease.
Collapse
Affiliation(s)
- Linxuan Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Pengwei Xing
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | | | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Blanca Valero-Martínez
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Yonglong Dang
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Nagaprathyusha Maturi
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185 Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185 Uppsala, Sweden
| | - Irem Yildirim
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185 Uppsala, Sweden
| | | | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185 Uppsala, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden
- Beijer Laboratories, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Lin H, Ho A, Huang H, Yang B, Shih B, Lin H, Yeh C, Hsu C, Cheng C. STAT3‐mediated gene expression in colorectal cancer cells‐derived cancer stem‐like tumorspheres. ADVANCES IN DIGESTIVE MEDICINE 2021. [DOI: 10.1002/aid2.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hua‐Ching Lin
- Division of Colorectal Surgery Chen Hsin General Hospital Taipei Taiwan
- Department of Healthcare Information and Management Ming Chuan University Taoyuan Taiwan
| | - Ai‐Sheng Ho
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Hung Huang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bi‐Ling Yang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bin‐Bin Shih
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Chi Lin
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun Yeh
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chung‐Te Hsu
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun‐Chia Cheng
- Radiation Biology Research Center Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| |
Collapse
|
26
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Integrated Network Pharmacology Analysis and In Vitro Validation Revealed the Potential Active Components and Underlying Mechanistic Pathways of Herba Patriniae in Colorectal Cancer. Molecules 2021; 26:molecules26196032. [PMID: 34641576 PMCID: PMC8513027 DOI: 10.3390/molecules26196032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Herba Patriniae (HP) are medicinal plants commonly used in colorectal cancer (CRC) patients. In this study, network pharmacology was used to predict the active components and key signaling pathways of HP in CRC. Patrinia heterophylla, one type of HP, was chosen for validation of the network pharmacology analysis. The phytochemical profile of Patrinia heterophylla water extract (PHW) was determined by UHPLC-MS. MTT, RT-PCR, and Western blot assays were performed to evaluate the bioactivities of PHW in colon cancer cells. Results showed that 15 potentially active components of HP interacted with 28 putative targets of CRC in the compound–target network, of which asperglaucide had the highest degree. Furthermore, the ErbB signaling pathway was identified as the pathway mediated by HP with the most potential against CRC. Both RT-PCR and Western blot results showed that PHW significantly downregulated the mRNA and protein levels of EGFR, PI3K, and AKT in HCT116 cells. Asperglaucide, present in PHW, exhibited an anti-migratory effect in HCT116 cells, suggesting that it could be an active component of PHW in CRC treatment. In conclusion, this study has provided the first scientific evidence to support the use of PHW in CRC and paved the way for further research into the underlying mechanisms of PHW against CRC.
Collapse
|
28
|
Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, Mohammadi AH, Rahimian N, Hamblin MR, Mirzaei H. Roles of Non-coding RNAs and Angiogenesis in Glioblastoma. Front Cell Dev Biol 2021; 9:716462. [PMID: 34646821 PMCID: PMC8502969 DOI: 10.3389/fcell.2021.716462] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
One of the significant hallmarks of cancer is angiogenesis. It has a crucial function in tumor development and metastasis. Thus, angiogenesis has become one of the most exciting targets for drug development in cancer treatment. Here we discuss the regulatory effects on angiogenesis in glioblastoma (GBM) of non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). These ncRNAs may function in trans or cis forms and modify gene transcription by various mechanisms, including epigenetics. NcRNAs may also serve as crucial regulators of angiogenesis-inducing molecules. These molecules include, metalloproteinases, cytokines, several growth factors (platelet-derived growth factor, vascular endothelial growth factor, fibroblast growth factor, hypoxia-inducible factor-1, and epidermal growth factor), phosphoinositide 3-kinase, mitogen-activated protein kinase, and transforming growth factor signaling pathways.
Collapse
Affiliation(s)
- Ebrahim Balandeh
- Department of Clinical Psychology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Yaser Mahmoudi
- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Ali Rajabi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Gao B, Feng C, Chai F, Wei S, Hong N, Ye Y, Wang Y, Cheng J. CT-detected extramural venous invasion-related gene signature for the overall survival prediction in patients with gastric cancer. Cancer Med 2021; 10:7816-7830. [PMID: 34510798 PMCID: PMC8559479 DOI: 10.1002/cam4.4266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Computed tomography (CT)‐detected extramural venous invasion (EMVI) has been identified as an independent factor that can be used for risk stratification and prediction of prognosis in patients with gastric cancer (GC). Overall survival (OS) is identified as the most important prognostic indicator for GC patients. However, the molecular mechanism of EMVI development and its potential relationship with OS in GC are not fully understood. In this radiogenomics‐based study, we sought to investigate the molecular mechanism underlying CT‐detected EMVI in patients with GC, and aimed to construct a genomic signature based on EMVI‐related genes with the goal of using this signature to predict the OS. Materials and Methods Whole mRNA genome sequencing of frozen tumor samples from 13 locally advanced GC patients was performed to identify EMVI‐related genes. EMVI‐prognostic hub genes were selected based on overlapping EMVI‐related differentially expressed genes and OS‐related genes, using a training cohort of 176 GC patients who were included in The Cancer Genome Atlas database. Another 174 GC patients from this database comprised the external validation cohort. A risk stratification model using a seven‐gene signature was constructed through the use of a least absolute shrinkage and selection operator Cox regression model. Results Patients with high risk score showed significantly reduced OS (training cohort, p = 1.143e‐04; validation cohort, p = 2.429e‐02). Risk score was an independent predictor of OS in multivariate Cox regression analyses (training cohort, HR = 2.758; 95% CI: 1.825–4.169; validation cohort, HR = 2.173; 95% CI: 1.347–3.505; p < 0.001 for both). Gene functions/pathways of the seven‐gene signature mainly included cell proliferation, cell adhesion, regulation of metal ion transport, and epithelial to mesenchymal transition. Conclusions A CT‐detected EMVI‐related gene model could be used to predict the prognosis in GC patients, potentially providing clinicians with additional information regarding appropriate therapeutic strategy and medical decision‐making.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Fan Chai
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Shengcai Wei
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
30
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
32
|
Ushijima H, Monzaki R, Funakoshi M. Analysis of differentially expressed genes responsible for the suppressive effect of anisomycin on cell proliferation of DLD-1 cells. Biochem Biophys Rep 2021; 27:101038. [PMID: 34151031 PMCID: PMC8190440 DOI: 10.1016/j.bbrep.2021.101038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Anisomycin is used as a chemical compound that possesses c-Jun N-terminal kinase (JNK)-activating effects. Recently, the potent anti-tumor effects of anisomycin have received much attention. In addition to its JNK-activating effects, anisomycin has been reported to affect gene expression in osteosarcoma, leukemia, hepatocellular carcinoma, ovarian cancer and other cancers. We previously demonstrated that anisomycin induced the degradation of transcription factor GATA-6 in DLD-1 cells (a colorectal cancer cell line) and inhibited their proliferation. However, the details of the gene network involved in the process remain unclear. In this study, we conducted an RNA-seq analysis of differentially expressed genes (DEGs) in anisomycin-treated DLD-1 cells to identify the molecular process of growth-suppressive genes. We found that LAMB3, which regulates cell adhesion and migration, and NFKB2 were down-regulated by anisomycin. In addition, the mRNA expression of several tumor suppressor genes (ATF3, ERRFI1, KLF6, and AKAP12) was transiently enhanced at 3 h after anisomycin treatment. These results suggest that anisomycin blocks a PI3K/Akt-signaling cascade to lead to the suppression of cell growth.
Collapse
Affiliation(s)
- Hironori Ushijima
- Department of Analytical Biochemistry, School of Pharmacy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Shiwa-gun, Iwate, 0283694, Japan
| | - Rina Monzaki
- Department of Analytical Biochemistry, School of Pharmacy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Shiwa-gun, Iwate, 0283694, Japan
| | - Mika Funakoshi
- Department of Analytical Biochemistry, School of Pharmacy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Shiwa-gun, Iwate, 0283694, Japan
| |
Collapse
|
33
|
Choi D, Kang W, Park S, Son B, Park T. β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts. Biomolecules 2021; 11:619. [PMID: 33919331 PMCID: PMC8143342 DOI: 10.3390/biom11050619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Stress is a major contributing factor of skin aging, which is clinically characterized by wrinkles, loss of elasticity, and dryness. In particular, glucocorticoids are generally considered key hormones for promoting stress-induced skin aging through binding to glucocorticoid receptors (GRs). In this work, we aimed to investigate whether β-ionone (a compound occurring in various foods such as carrots and almonds) attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts, and to explore the mechanisms involved. We found that β-ionone promoted collagen production dose-dependently and increased mRNA expression levels, including collagen type I α 1 chain (COL1A1) and COL1A2 in dexamethasone-treated human dermal fibroblasts. It also raised hyaluronic acid synthase mRNA expression and hyaluronic acid levels. Notably, β-ionone inhibited cortisol binding to GR, subsequent dexamethasone-induced GR signaling, and the expression of several GR target genes. Our results reveal the strong potential of β-ionone for preventing stress-induced skin aging and suggest that its effects are related to the inhibition of GR signaling in human dermal fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea; (D.C.); (W.K.); (S.P.); (B.S.)
| |
Collapse
|
34
|
Wu K, Chen X, Feng J, Zhang S, Xu Y, Zhang J, Wu Q, You M, Xia B, Ma S. Capilliposide C from Lysimachia capillipes Restores Radiosensitivity in Ionizing Radiation-Resistant Lung Cancer Cells Through Regulation of ERRFI1/EGFR/STAT3 Signaling Pathway. Front Oncol 2021; 11:644117. [PMID: 33869036 PMCID: PMC8047471 DOI: 10.3389/fonc.2021.644117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Aims Radiation therapy is used as the primary treatment for lung cancer. Unfortunately, radiation resistance remains to be the major clinic problem for lung cancer patients. Lysimachia capillipes capilliposide C (LC-C), an extract from LC Hemsl, has demonstrated multiple anti-cancer effects in several types of cancer. Here, we investigated the potential therapeutic impacts of LC-C on radiosensitivity in lung cancer cells and their underlying mechanisms. Methods Non-small cell lung cancer cell lines were initially irradiated to generate ionizing radiation (IR)-resistant lung cancer cell lines. RNA-seq analysis was used to examine the whole-transcriptome alteration in IR-resistant lung cancer cells treated with or without LC-C, and the differentially expressed genes with most significance were verified by RT-qPCR. Colony formation assays were performed to determine the effect of LC-C and the target gene ErbB receptor feedback inhibitor 1 (ERRFI1) on radiosensitivity of IR-resistant lung cancer cells. In addition, effects of ERRFI1 on cell cycle distribution, DNA damage repair activity were assessed by flow cytometry and γ-H2AX immunofluorescence staining respectively. Western blotting was performed to identify the activation of related signaling pathways. Tumor xenograft experiments were conducted to observe the effect of LC-C and ERRFI1 on radiosensitivity of IR-resistant lung cancer cells in vivo. Results Compared with parental cells, IR-resistant lung cancer cells were more resistant to radiation. LC-C significantly enhanced the effect of radiation in IR-resistant lung cancer cells both in vitro and in vivo and validated ERRFI1 as a candidate downstream gene by RNA-seq. Forced expression of ERRFI1 alone could significantly increase the radiosensitivity of IR-resistant lung cancer cells, while silencing of ERRFI1 attenuated the radiosensitizing function of LC-C. Accordingly, LC-C and ERRFI1 effectively inhibited IR-induced DNA damage repair, and ERRFI1 significantly induced G2/M checkpoint arrest. Additional investigations revealed that down-regulation of EGFR/STAT3 pathway played an important role in radiosensitization between ERRFI1 and LC-C. Furthermore, the high expression level of ERRFI1 was associated with high overall survival rates in lung cancer patients. Conclusions Treatment of LC-C may serve as a promising therapeutic strategy to overcome the radiation resistance and ERRFI1 may be a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Kan Wu
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Xueqin Chen
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China.,Department of Thoracic Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Jianguo Feng
- Zhejiang Cancer Research Institute, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shirong Zhang
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Yasi Xu
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Jingjing Zhang
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Qiong Wu
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Mingliang You
- Hangzhou Cancer Institute, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| | - Bing Xia
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China.,Department of Oncology, Jiande Second People's Hospital, Hangzhou, China
| | - Shenglin Ma
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
35
|
Liu X, Chen B, Chen J, Sun S. A novel tp53-associated nomogram to predict the overall survival in patients with pancreatic cancer. BMC Cancer 2021; 21:335. [PMID: 33789615 PMCID: PMC8011162 DOI: 10.1186/s12885-021-08066-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gene mutations play critical roles in tumorigenesis and cancer development. Our study aimed to screen survival-related mutations and explore a novel gene signature to predict the overall survival in pancreatic cancer. METHODS Somatic mutation data from three cohorts were used to identify the common survival-related gene mutation with Kaplan-Meier curves. RNA-sequencing data were used to explore the signature for survival prediction. First, Weighted Gene Co-expression Network Analysis was conducted to identify candidate genes. Then, the ICGC-PACA-CA cohort was applied as the training set and the TCGA-PAAD cohort was used as the external validation set. A TP53-associated signature calculating the risk score of every patient was developed with univariate Cox, least absolute shrinkage and selection operator, and stepwise regression analysis. Kaplan-Meier and receiver operating characteristic curves were plotted to verify the accuracy. The independence of the signature was confirmed by the multivariate Cox regression analysis. Finally, a prognostic nomogram including 359 patients was constructed based on the combined expression data and the risk scores. RESULTS TP53 mutation was screened to be the robust and survival-related mutation type, and was associated with immune cell infiltration. Two thousand, four hundred fifty-five genes included in the six modules generated in the WGCNA were screened as candidate survival related TP53-associated genes. A seven-gene signature was constructed: Risk score = (0.1254 × ERRFI1) - (0.1365 × IL6R) - (0.4400 × PPP1R10) - (0.3397 × PTOV1-AS2) + (0.1544 × SCEL) - (0.4412 × SSX2IP) - (0.2231 × TXNL4A). Area Under Curves of 1-, 3-, and 5-year ROC curves were 0.731, 0.808, and 0.873 in the training set and 0.703, 0.677, and 0.737 in the validation set. A prognostic nomogram including 359 patients was constructed and well-calibrated, with the Area Under Curves of 1-, 3-, and 5-year ROC curves as 0.713, 0.753, and 0.823. CONCLUSIONS The TP53-associated signature exhibited good prognostic efficacy in predicting the overall survival of PC patients.
Collapse
Affiliation(s)
- Xun Liu
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Bobo Chen
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Jiahui Chen
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Shaolong Sun
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
36
|
FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma. Oncogene 2021; 40:2182-2199. [PMID: 33627785 PMCID: PMC8005492 DOI: 10.1038/s41388-021-01694-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.
Collapse
|
37
|
Liu L, Xing L, Chen R, Zhang J, Huang Y, Huang L, Xie B, Ren X, Wang S, Kuang H, Lin X, Kumar A, Kim JK, Lee C, Li X. Mitogen-Inducible Gene 6 Inhibits Angiogenesis by Binding to SHC1 and Suppressing Its Phosphorylation. Front Cell Dev Biol 2021; 9:634242. [PMID: 33693003 PMCID: PMC7937727 DOI: 10.3389/fcell.2021.634242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuye Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Wang M, Zhao Y, Yu ZY, Zhang RD, Li SA, Zhang P, Shan TK, Liu XY, Wang ZM, Zhao PC, Sun HW. Glioma exosomal microRNA-148a-3p promotes tumor angiogenesis through activating the EGFR/MAPK signaling pathway via inhibiting ERRFI1. Cancer Cell Int 2020; 20:518. [PMID: 33117083 PMCID: PMC7590612 DOI: 10.1186/s12935-020-01566-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioma is the most frequent and lethal primary brain malignancy. Amounting evidence has highlighted the importance of exosomal microRNAs (miRNAs or miRs) in this malignancy. This study aimed to investigate the regulatory role of exosomal miR-148a-3p in glioma. METHODS Bioinformatics analysis was firstly used to predict the target genes of miR-148a-3p. Exosomes were then extracted from normal human astrocytes and glioma cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expression patterns of miR-148a-3p and ERBB receptor feedback inhibitor 1 (ERRFI1). Dual-luciferase reporter gene assay was applied to verify the direct binding between miR-148a-3p and ERRFI1. Cell counting kit-8 and tube formation assays were further conducted to assess the proliferation and angiogenic properties of human umbilical vein endothelial cells (HUVECs) in the co-culture system with exosomes. Lastly, glioma tumor models were established in BALB/c nude mice to study the role of exosomal miR-148a-3p in vivo. RESULTS miR-148a-3p was highly expressed, while ERRFI1 was poorly expressed in glioma. miR-148a-3p was found to be enriched in glioma cells-derived exosomes and could be transferred to HUVECs via exosomes to promote their proliferation and angiogenesis. ERRFI1 was identified as a target gene of miR-148a-3p. In addition, miR-148a-3p activated the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting ERRFI1. In the co-culture system, our data demonstrated that glioma cells-derived exosomal miR-148a-3p down-regulated ERRFI1 and activated the EGFR/MAPK signaling pathway, so as to promote cell proliferation and angiogenesis. In vivo experimentation further demonstrated that this mechanism was responsible for the promotive role of exosomal miR-148a-3p in tumorigenesis and angiogenesis. CONCLUSION Taken together, glioma-derived exosomal miR-148a-3p promoted tumor angiogenesis through activation of the EGFR/MAPK signaling pathway by ERRFI1 inhibition.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People’s Republic of China
| | - Zhi-Yun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Ren-De Zhang
- Department of Medical, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People’s Republic of China
| | - Peng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Ti-Kun Shan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Xue-You Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Ze-Ming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Pei-Chao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| | - Hong-Wei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People’s Republic of China
| |
Collapse
|
39
|
Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells. Sci Rep 2020; 10:16992. [PMID: 33046784 PMCID: PMC7552408 DOI: 10.1038/s41598-020-74083-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we probed the importance of O-GlcNAc transferase (OGT) activity for the survival of tamoxifen-sensitive (TamS) and tamoxifen-resistant (TamR) breast cancer cells. Tamoxifen is an antagonist of estrogen receptor (ERα), a transcription factor expressed in over 50% of breast cancers. ERα-positive breast cancers are successfully treated with tamoxifen; however, a significant number of patients develop tamoxifen-resistant disease. We show that in vitro development of tamoxifen-resistance is associated with increased sensitivity to the OGT small molecule inhibitor OSMI-1. Global transcriptome profiling revealed that TamS cells adapt to OSMI-1 treatment by increasing the expression of histone genes. This is known to mediate chromatin compaction. In contrast, TamR cells respond to OGT inhibition by activating the unfolded protein response and by significantly increasing ERRFI1 expression. ERRFI1 is an endogenous inhibitor of ERBB-signaling, which is a known driver of tamoxifen-resistance. We show that ERRFI1 is selectively downregulated in ERα-positive breast cancers and breast cancers driven by ERBB2. This likely occurs via promoter methylation. Finally, we show that increased ERRFI1 expression is associated with extended survival in patients with ERα-positive tumors (p = 9.2e-8). In summary, we show that tamoxifen-resistance is associated with sensitivity to OSMI-1, and propose that this is explained in part through an epigenetic activation of the tumor-suppressor ERRFI1 in response to OSMI-1 treatment.
Collapse
|
40
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
41
|
Zayas J, Qin S, Yu J, Ingle JN, Wang L. Functional genomics based on germline genome-wide association studies of endocrine therapy for breast cancer. Pharmacogenomics 2020; 21:615-625. [PMID: 32539536 DOI: 10.2217/pgs-2019-0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women worldwide. Functional follow-up of breast cancer genome-wide association studies has led to the discovery of genes that regulate endocrine therapy response in a SNP- and drug-dependent manner. Here, we will present four examples in which functional genomic studies from breast cancer clinical trials led to novel pharmacogenomic insights and molecular mechanisms of selective estrogen receptor modulators and aromatase inhibitors. The approach utilized for studying genetic variability described in this review offers substantial potential for meaningful discoveries that move the field toward precision medicine for patients.
Collapse
Affiliation(s)
- Jacqueline Zayas
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine & Mayo Clinic Medical Scientist Training Program, Rochester, MN 55905, USA
| | - Sisi Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
42
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
43
|
Demirkol Canlı S, Dedeoğlu E, Akbar MW, Küçükkaraduman B, İşbilen M, Erdoğan ÖŞ, Erciyas SK, Yazıcı H, Vural B, Güre AO. A novel 20-gene prognostic score in pancreatic adenocarcinoma. PLoS One 2020; 15:e0231835. [PMID: 32310997 PMCID: PMC7170253 DOI: 10.1371/journal.pone.0231835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers. Known risk factors for this disease are currently insufficient in predicting mortality. In order to better prognosticate patients with PDAC, we identified 20 genes by utilizing publically available high-throughput transcriptomic data from GEO, TCGA and ICGC which are associated with overall survival and event-free survival. A score generated based on the expression matrix of these genes was validated in two independent cohorts. We find that this “Pancreatic cancer prognostic score 20 –PPS20” is independent of the confounding factors in multivariate analyses, is dramatically elevated in metastatic tissue compared to primary tumor, and is higher in primary tumors compared to normal pancreatic tissue. Transcriptomic analyses show that tumors with low PPS20 have overall more immune cell infiltration and a higher CD8 T cell/Treg ratio when compared to those with high PPS20. Analyses of proteomic data from TCGA PAAD indicated higher levels of Cyclin B1, RAD51, EGFR and a lower E-cadherin/Fibronectin ratio in tumors with high PPS20. The PPS20 score defines not only prognostic and biological sub-groups but can predict response to targeted therapy as well. Overall, PPS20 is a stronger and more robust transcriptomic signature when compared to similar, previously published gene lists.
Collapse
Affiliation(s)
- Seçil Demirkol Canlı
- Molecular Pathology Application and Research Center, Hacettepe University, Ankara, Turkey
- * E-mail:
| | - Ege Dedeoğlu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Muhammad Waqas Akbar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Barış Küçükkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Murat İşbilen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Özge Şükrüoğlu Erdoğan
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Seda Kılıç Erciyas
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Hülya Yazıcı
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Burçak Vural
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Osmay Güre
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
44
|
Dietlein F, Weghorn D, Taylor-Weiner A, Richters A, Reardon B, Liu D, Lander ES, Van Allen EM, Sunyaev SR. Identification of cancer driver genes based on nucleotide context. Nat Genet 2020; 52:208-218. [PMID: 32015527 PMCID: PMC7031046 DOI: 10.1038/s41588-019-0572-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Cancer genomes contain large numbers of somatic mutations but few of these mutations drive tumor development. Current approaches either identify driver genes on the basis of mutational recurrence or approximate the functional consequences of nonsynonymous mutations by using bioinformatic scores. Passenger mutations are enriched in characteristic nucleotide contexts, whereas driver mutations occur in functional positions, which are not necessarily surrounded by a particular nucleotide context. We observed that mutations in contexts that deviate from the characteristic contexts around passenger mutations provide a signal in favor of driver genes. We therefore developed a method that combines this feature with the signals traditionally used for driver-gene identification. We applied our method to whole-exome sequencing data from 11,873 tumor-normal pairs and identified 460 driver genes that clustered into 21 cancer-related pathways. Our study provides a resource of driver genes across 28 tumor types with additional driver genes identified according to mutations in unusual nucleotide contexts.
Collapse
Affiliation(s)
- Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Donate Weghorn
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Centre for Genomic Regulation, Barcelona, Spain
| | - Amaro Taylor-Weiner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - André Richters
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Montanuy H, Martínez-Barriocanal Á, Antonio Casado J, Rovirosa L, Ramírez MJ, Nieto R, Carrascoso-Rubio C, Riera P, González A, Lerma E, Lasa A, Carreras-Puigvert J, Helleday T, Bueren JA, Arango D, Minguillón J, Surrallés J. Gefitinib and Afatinib Show Potential Efficacy for Fanconi Anemia-Related Head and Neck Cancer. Clin Cancer Res 2020; 26:3044-3057. [PMID: 32005748 DOI: 10.1158/1078-0432.ccr-19-1625] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia. EXPERIMENTAL DESIGN We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety. RESULTS Several FDA/European Medicines Agency (EMA)-approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patient-derived HNSCCs. Finally, in vivo toxicity studies in Fanca-deficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters. CONCLUSIONS Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.
Collapse
Affiliation(s)
- Helena Montanuy
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - José Antonio Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Llorenç Rovirosa
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria José Ramírez
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Carrascoso-Rubio
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Pau Riera
- Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alan González
- Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Lerma
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Adriana Lasa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Carreras-Puigvert
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Jordi Surrallés
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| |
Collapse
|
46
|
Pan R, Cai W, Sun J, Yu C, Li P, Zheng M. Inhibition of KHSRP sensitizes colorectal cancer to 5-fluoruracil through miR-501-5p-mediated ERRFI1 mRNA degradation. J Cell Physiol 2019; 235:1576-1587. [PMID: 31313286 DOI: 10.1002/jcp.29076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
K-homology (KH)-type splicing regulatory protein (KHSRP) is an RNA binding protein that participates in RNA variable splicing and stability, and facilitates the biogenesis of miRNAs that target mRNA. However, to date, the role of KHSRP in colorectal cancer (CRC) progression has not been reported. In this study, the function of KHSRP in CRC proliferation and 5-fluoruracil (5-FU) resistance was investigated. The upregulation of KHSRP expression was confirmed in CRC patient tissues and two CRC cell lines. Manipulating KHSRP expression altered cell proliferation and 5-FU resistance in CRC cells. ERRFI1, a downstream effector of KHSRP in CRC cells, reduced CRC cell proliferation. Sensitivity to 5-FU mediated by KHSRP knockdown was reversed by ERRFI1 knockdown. We found that KHSRP decreased ERRFI1 mRNA expression indirectly. By screening KHSRP-regulated miRNAs, we further found that miR-501-5p directly combines with KHSRP in CRC cells. Mechanistically, the results of a luciferase assay suggested that miR-501-5p directly binds to the ERRFI1 3'-untranslated region. Taken together, our data indicated that modification of ERRFI1 by KHSRP occurs through miR-501-5p, an essential mechanism driving CRC proliferation and 5-FU resistance. Insight into this mechanism may provide novel targets for overcoming drug resistance in CRC.
Collapse
Affiliation(s)
- Ruijun Pan
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Cai
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chaoran Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Minhua Zheng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
47
|
Expression of Neural Crest Markers GLDC and ERRFI1 is Correlated with Melanoma Prognosis. Cancers (Basel) 2019; 11:cancers11010076. [PMID: 30641895 PMCID: PMC6356846 DOI: 10.3390/cancers11010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022] Open
Abstract
Regulation of particular genes during the formation of neural crest (NC) cells is also described during progression of malignant melanoma. In this context, it is of paramount importance to develop neural crest models allowing the identification of candidate genes, which could be used as biomarkers for melanoma prognosis. Here, we used a human induced Pluripotent Stem Cells (iPSC)-based approach to present novel NC-associated genes, expression of which was upregulated in melanoma. A list of 8 candidate genes, based on highest upregulation, was tested for prognostic value in a tissue microarray analysis containing samples from advanced melanoma (good versus bad prognosis) as well as from high-risk primary melanomas (early metastasizing versus non or late-metastasizing). CD271, GLDC, and ERRFI1 showed significantly higher expression in metastatic patients who died early than the ones who survived at least 30 months. In addition, GLDC and TWIST showed a significantly higher immunohistochemistry (IHC) score in primary melanomas from patients who developed metastases within 12 months versus those who did not develop metastases in 30 months. In conclusion, our iPSC-based study reveals a significant association of NC marker GLDC protein expression with melanoma prognosis.
Collapse
|