1
|
Wang J, Brückner N, Weissmann S, Günther T, Zhu S, Vogt C, Sun G, Guo R, Bruno R, Ritter B, Steinbrück L, Kaufer BB, Depledge DP, Grundhoff A, Viejo-Borbolla A. Repression of varicella zoster virus gene expression during quiescent infection in the absence of detectable histone deposition. PLoS Pathog 2025; 21:e1012367. [PMID: 39928684 PMCID: PMC11838886 DOI: 10.1371/journal.ppat.1012367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/19/2025] [Accepted: 01/20/2025] [Indexed: 02/12/2025] Open
Abstract
Varicella zoster virus (VZV) is a human-specific herpesvirus that establishes latency in peripheral neurons. The only transcripts detected in infected human trigeminal ganglia (TG) obtained shortly after death correspond to the VZV latency-associated transcript (VLT) and associated VLT-ORF63 splice variants. In vitro studies showed that VLT-ORF63 is translated into a protein (pVLT-ORF63) that induces VZV transcription. The mechanisms that lead to this restricted gene expression and the transition to lytic replication remain unknown, partly due to the difficulty of working with human neurons. In this study, we addressed whether the neuroblastoma-derived cell line SH-SY5Y could serve as a model to investigate the mechanisms that lead to repression of VZV gene expression followed by reactivation. VZV productively infected differentiated SH-SY5Y (dSH-SY5Y) whereas incubation with acyclovir (ACV) inhibited virus replication and induced a progressive repression of the virus. Upon removal of ACV there was production of viral particles in a subset of cells, while others contained non-replicating VZV genomes and VLT-containing transcripts for at least 20 days post-infection (dpi). Exogenous expression of VLT-ORF63 induced productive infection, suggesting that the non-replicating and repressed genomes remained functional. Interestingly, histone deposition was undetectable at VZV genomes in quiescently infected dSH-SY5Y cells, pointing to a potential novel mechanism leading to VZV repression in this neuronal setting.
Collapse
Affiliation(s)
- Jiayi Wang
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Nadine Brückner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | - Shuyong Zhu
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster RESIST, Hannover Medical School, Hannover, Germany
| | - Carolin Vogt
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rongrong Guo
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Renzo Bruno
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster RESIST, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | | | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster RESIST, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Krakowiak PA, Flores ME, Cuddy SR, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid-sensing pathways by HSV-1 UL12.5 for reactivation from latent infection. Proc Natl Acad Sci U S A 2025; 122:e2413965122. [PMID: 39854226 PMCID: PMC11789124 DOI: 10.1073/pnas.2413965122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 01/26/2025] Open
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune-sensing pathways triggered HSV-1 reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA- and DNA-sensing pathways, demonstrating that HSV-1 can respond to and active antiviral nucleic acid-sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Sean R. Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
3
|
Fu H, Pan D. Mechanisms of HSV gene regulation during latency and reactivation. Virology 2025; 602:110324. [PMID: 39626607 DOI: 10.1016/j.virol.2024.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) are prevalent human pathogens associated with many diseases. After productive (lytic) infection in peripheral tissues, HSV establishes lifelong latent infection in neurons of the peripheral nervous system. Periodic reactivation from latency, triggered by certain stimuli, can resume the lytic cycle. Lytic infection, latent infection and reactivation follow distinct viral gene expression patterns. The switch between the different infection programs is controlled by complicated regulatory mechanisms involving numerous viral and host molecules. Recent studies integrating cutting-edge technologies including neuronal culture techniques have greatly improved our understanding of the molecular details of latency and reactivation but many questions remain. This review summarizes the current knowledge about how HSV gene expression is regulated during latency and reactivation and discusses the important questions remaining to be addressed in future.
Collapse
Affiliation(s)
- Hui Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Roberts AP, Orr A, Iliev V, Orr L, McFarlane S, Yang Z, Epifano I, Loney C, Rodriguez MC, Cliffe AR, Conn KL, Boutell C. Daxx mediated histone H3.3 deposition on HSV-1 DNA restricts genome decompaction and the progression of immediate-early transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608064. [PMID: 39185184 PMCID: PMC11343217 DOI: 10.1101/2024.08.15.608064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear entry, their genomes associate with histones and chromatin modifying enzymes that regulate the progression of viral transcription and outcome of infection. While the composition and modification of viral chromatin has been extensively studied on bulk populations of infected cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined at single-genome resolution. Here we use high-resolution quantitative imaging to investigate the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A, H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry. We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA that limits the rate of HSV-1 genome decompaction to restrict the progress of immediate-early (IE) transcription. This host response is counteracted by the viral ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the progression of viral genome expansion, IE transcription, and onset of HSV-1 replication. Our data support a model of intermediate and sequential histone assembly initiated by Daxx that limits the rate of HSV-1 genome decompaction independently of the stable enrichment of histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We identify HSV-1 genome decompaction upon nuclear infection to play a key role in the initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the transcriptional regulation of many nuclear replicating herpesvirus pathogens.
Collapse
Affiliation(s)
- Ashley P.E. Roberts
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
- School of Life and Environmental Sciences, College of Health and Science, Joseph Banks laboratories, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Victor Iliev
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Lauren Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Zhousiyu Yang
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Ilaria Epifano
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Milagros Collados Rodriguez
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kristen L. Conn
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, CAN
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| |
Collapse
|
5
|
Cuddy SR, Flores ME, Krakowiak PA, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid sensing pathways by HSV-1 UL12.5 for reactivation from latent Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.601241. [PMID: 39005440 PMCID: PMC11245091 DOI: 10.1101/2024.07.06.601241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt anti-viral responses for their benefit. The ubiquitous human pathogen, Herpes Simplex Virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune sensing pathways and reduces productive replication in non-neuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune sensing pathways triggered HSV reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA and DNA sensing pathways, demonstrating that HSV-1 can both respond to and active antiviral nucleic acid sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna. R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
6
|
Wang D, Chen D, Xu S, Wei F, Zhao H. Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus. J Vet Sci 2024; 25:e54. [PMID: 39083206 PMCID: PMC11291433 DOI: 10.4142/jvs.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
IMPORTANCE As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.
Collapse
Affiliation(s)
- Di Wang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyuan Zhao
- School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.
| |
Collapse
|
7
|
Francois AK, Rohani A, Loftus M, Dochnal S, Hrit J, McFarlane S, Whitford A, Lewis A, Krakowiak P, Boutell C, Rothbart SB, Kashatus D, Cliffe AR. Single-genome analysis reveals a heterogeneous association of the herpes simplex virus genome with H3K27me2 and the reader PHF20L1 following infection of human fibroblasts. mBio 2024; 15:e0327823. [PMID: 38411116 PMCID: PMC11005365 DOI: 10.1128/mbio.03278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. By contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity. IMPORTANCE Investigating the potential mechanisms of gene silencing for DNA viruses in different cell types is important to understand the differential outcomes of infection, particularly for viruses like herpesviruses that can undergo distinct types of infection in different cell types. In addition, investigating chromatin association with viral genomes informs on the mechanisms of epigenetic regulation of DNA processes. However, there is a growing appreciation for heterogeneity in the outcome of infection at the single cell, and even single viral genome, level. Here we describe a novel assay for quantifying viral genome foci with chromatin proteins and show that a portion of genomes are targeted for silencing by H3K27me2 and associate with the reader protein PHF20L1. This study raises important questions regarding the mechanism of H3K27me2-specific targeting to viral genomes, the contribution of epigenetic heterogeneity to herpesvirus infection, and the role of PHF20L1 in regulating the outcome of DNA virus infection.
Collapse
Affiliation(s)
- Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ali Rohani
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Matt Loftus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, USA
| | - Steven McFarlane
- MRC - University of Glasgow, Centre for Virus Research, Glasgow, United Kingdom
| | - Abigail Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna Lewis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Patryk Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Chris Boutell
- MRC - University of Glasgow, Centre for Virus Research, Glasgow, United Kingdom
| | | | - David Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Deng Y, Lin Y, Chen S, Xiang Y, Chen H, Qi S, Oh HS, Das B, Komazin-Meredith G, Pesola JM, Knipe DM, Coen DM, Pan D. Neuronal miR-9 promotes HSV-1 epigenetic silencing and latency by repressing Oct-1 and Onecut family genes. Nat Commun 2024; 15:1991. [PMID: 38443365 PMCID: PMC10914762 DOI: 10.1038/s41467-024-46057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) latent infection entails repression of viral lytic genes in neurons. By functional screening using luciferase-expressing HSV-1, we identify ten neuron-specific microRNAs potentially repressing HSV-1 neuronal replication. Transfection of miR-9, the most active candidate from the screen, decreases HSV-1 replication and gene expression in Neuro-2a cells. Ectopic expression of miR-9 from lentivirus or recombinant HSV-1 suppresses HSV-1 replication in male primary mouse neurons in culture and mouse trigeminal ganglia in vivo, and reactivation from latency in the primary neurons. Target prediction and validation identify transcription factors Oct-1, a known co-activator of HSV transcription, and all three Onecut family members as miR-9 targets. Knockdown of ONECUT2 decreases HSV-1 yields in Neuro-2a cells. Overexpression of each ONECUT protein increases HSV-1 replication in Neuro-2a cells, human induced pluripotent stem cell-derived neurons, and primary mouse neurons, and accelerates reactivation from latency in the mouse neurons. Mutagenesis, ChIP-seq, RNA-seq, ChIP-qPCR and ATAC-seq results suggest that ONECUT2 can nonspecifically bind to viral genes via its CUT domain, globally stimulate viral gene transcription, reduce viral heterochromatin and enhance the accessibility of viral chromatin. Thus, neuronal miR-9 promotes viral epigenetic silencing and latency by targeting multiple host transcription factors important for lytic gene activation.
Collapse
Affiliation(s)
- Yue Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Yuqi Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Siyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Yuhang Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Hongjia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Shuyuan Qi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Biswajit Das
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Jean M Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun signaling during initial HSV-1 infection modulates latency to enhance later reactivation in addition to directly promoting the progression to full reactivation. J Virol 2024; 98:e0176423. [PMID: 38193709 PMCID: PMC10878265 DOI: 10.1128/jvi.01764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Francois AK, Rohani A, Loftus M, Dochnal S, Hrit J, McFarlane S, Whitford A, Lewis A, Krakowiak P, Boutell C, Rothbart SB, Kashatus D, Cliffe AR. Single-genome analysis reveals heterogeneous association of the Herpes Simplex Virus genome with H3K27me2 and the reader PHF20L1 following infection of human fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569766. [PMID: 38076966 PMCID: PMC10705572 DOI: 10.1101/2023.12.03.569766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. In contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. This was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity.
Collapse
Affiliation(s)
- Alison K Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Ali Rohani
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Matt Loftus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland
| | - Abigail Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna Lewis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland
| | - Scott B. Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503
| | - David Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
11
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
12
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun Signaling During Initial HSV-1 Infection Modulates Latency to Enhance Later Reactivation in addition to Directly Promoting the Progression to Full Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566462. [PMID: 37986840 PMCID: PMC10659354 DOI: 10.1101/2023.11.10.566462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and can periodically reactivate to permit transmission and clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection and therefore HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. Activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full, Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required for the transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during HSV latent infection of neurons to promote reactivation. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
13
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Kropp KA, Sun G, Viejo-Borbolla A. Colonization of peripheral ganglia by herpes simplex virus type 1 and 2. Curr Opin Virol 2023; 60:101333. [PMID: 37267706 DOI: 10.1016/j.coviro.2023.101333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) infect and establish latency in neurons of the peripheral nervous system to persist lifelong in the host and to cause recurrent disease. During primary infection, HSV replicates in epithelial cells in the mucosa and skin and then infects neurites, highly dynamic structures that grow or retract in the presence of attracting or repelling cues, respectively. Following retrograde transport in neurites, HSV establishes latency in the neuronal nucleus. Viral and cellular proteins participate in the chromatinization of the HSV genome that regulates gene expression, persistence, and reactivation. HSV-2 modulates neurite outgrowth during primary infection and upon reactivation, probably to facilitate infection and survival of neurons. Whether HSV-1 modulates neurite outgrowth and the underlying mechanism is currently under investigation. This review deals with HSV-1 and HSV-2 colonization of peripheral neurons, with a focus on the modulation of neurite outgrowth by these viruses.
Collapse
Affiliation(s)
- Kai A Kropp
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | - Guorong Sun
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Arbuckle JH, Vogel JL, Efstathiou S, Kristie TM. Deletion of the Transcriptional Coactivator HCF-1 In Vivo Impairs the Removal of Repressive Heterochromatin from Latent HSV Genomes and Suppresses the Initiation of Viral Reactivation. mBio 2023; 14:e0354222. [PMID: 36692302 PMCID: PMC9973298 DOI: 10.1128/mbio.03542-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Transcription of herpes simplex virus 1 (HSV-1) immediate early (IE) genes is controlled at multiple levels by the cellular transcriptional coactivator, HCF-1. HCF-1 is complexed with epigenetic factors that prevent silencing of the viral genome upon infection, transcription factors that drive initiation of IE gene expression, and transcription elongation factors required to circumvent RNAPII pausing at IE genes and promote productive IE mRNA synthesis. Significantly, the coactivator is also implicated in the control of viral reactivation from latency in sensory neurons based on studies that demonstrate that HCF-1-associated epigenetic and transcriptional elongation complexes are critical to initiate IE expression and viral reactivation. Here, an HCF-1 conditional knockout mouse model (HCF-1cKO) was derived to probe the role and significance of HCF-1 in the regulation of HSV-1 latency/reactivation in vivo. Upon deletion of HCF-1 in sensory neurons, there is a striking reduction in the number of latently infected neurons that initiate viral reactivation. Importantly, this correlated with a defect in the removal of repressive chromatin associated with latent viral genomes. These data demonstrate that HCF-1 is a critical regulatory factor that governs the initiation of HSV reactivation, in part, by promoting the transition of latent viral genomes from a repressed heterochromatic state. IMPORTANCE Herpes simplex virus is responsible for a substantial worldwide disease burden. An initial infection leads to the establishment of a lifelong persistent infection in sensory neurons. Periodic reactivation can result in recurrent oral and genital lesions to more significant ocular disease. Despite the significance of this pathogen, many of the regulatory factors and molecular mechanisms that govern the viral latency-reactivation cycles have yet to be elucidated. Initiation of both lytic infection and reactivation are dependent on the expression of the viral immediate early genes. In vivo deletion of a central component of the IE regulatory paradigm, the cellular transcriptional coactivator HCF-1, reduces the epigenetic transition of latent viral genomes, thus suppressing HSV reactivation. These observations define HCF-1 as a critical regulator that controls the initiation of HSV reactivation from latency in vivo and contribute to understanding of the molecular mechanisms that govern viral reactivation.
Collapse
Affiliation(s)
- Jesse H. Arbuckle
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jodi L. Vogel
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stacey Efstathiou
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Mohnke J, Stark I, Fischer M, Fischer PM, Schlosser A, Grothey A, O’Hare P, Sodeik B, Erhard F, Dölken L, Hennig T. pUL36 Deubiquitinase Activity Augments Both the Initiation and the Progression of Lytic Herpes Simplex Virus Infection in IFN-Primed Cells. J Virol 2022; 96:e0096322. [PMID: 36314822 PMCID: PMC9683058 DOI: 10.1128/jvi.00963-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
The evolutionarily conserved, structural HSV-1 tegument protein pUL36 is essential for both virus entry and assembly. While its N-terminal deubiquitinase (DUB) activity is dispensable for infection in cell culture, it is required for efficient virus spread in vivo, as it acts as a potent viral immune evasin. Interferon (IFN) induces the expression of hundreds of antiviral factors, including many ubiquitin modulators, which HSV-1 needs to neutralize to efficiently initiate a productive infection. Herein, we discover two functions of the conserved pUL36 DUB during lytic replication in cell culture in an understudied but equally important scenario of HSV-1 infection in IFN-treated cells. Our data indicate that the pUL36 DUB contributes to overcoming the IFN-mediated suppression of productive infection in both the early and late phases of HSV-1 infection. We show that incoming tegument-derived pUL36 DUB activity contributes to the IFN resistance of HSV-1 in IFN-primed cells to efficiently initiate lytic virus replication. Subsequently, the de novo expressed DUB augmented the efficiency of virus replication and increased the output of infectious virus. Notably, the DUB defect was only apparent when IFN was applied prior to infection. Our data indicate that IFN-induced defense mechanisms exist and that they work to both neutralize infectivity early on and slow the progression of HSV-1 replication in the late stages of infection. Also, our data indicate that pUL36 DUB activity contributes to the disarming of these host responses. IMPORTANCE HSV-1 is a ubiquitous human pathogen that is responsible for common cold sores and may also cause life-threatening disease. pUL36 is an essential, conserved herpesvirus protein with N-terminal deubiquitinating (DUB) activity. The DUB is dispensable for HSV-1 replication in cell culture but represents an important viral immune evasin in vivo. IFN plays a pivotal role in HSV-1 infection and suppresses viral replication both in vitro and in vivo. Here, we show that DUB activity contributes to overcoming IFN-induced cellular resistance in order to more efficiently initiate lytic replication and produce infectious virions. As such, DUB activity in the incoming virions increases their infectivity, while the de novo synthesized DUB augments productive infection. Thus, the HSV-1 DUB antagonizes the activity of IFN-inducible effector proteins to facilitate productive infection at multiple levels. Our findings underscore the importance of using more challenging cell culture systems to fully understand virus protein functions.
Collapse
Affiliation(s)
- Jonas Mohnke
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Irmgard Stark
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mara Fischer
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Patrick M. Fischer
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Peter O’Hare
- Department of Virology, Imperial College London, Norfolk Place, London, United Kingdom
| | - Beate Sodeik
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
- RESIST Exzellenzcluster, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian Erhard
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Whitford AL, Clinton CA, Kennedy EBL, Dochnal SA, Suzich JB, Cliffe AR. Ex Vivo Herpes Simplex Virus Reactivation Involves a Dual Leucine Zipper Kinase-Dependent Wave of Lytic Gene Expression That Is Independent of Histone Demethylase Activity and Viral Genome Synthesis. J Virol 2022; 96:e0047522. [PMID: 35604215 PMCID: PMC9215252 DOI: 10.1128/jvi.00475-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) maintains a lifelong latent infection in neurons and periodically reactivates, resulting in the production of infectious virus. The exact cellular pathways that induce reactivation are not understood. In primary neuronal models of HSV latency, the cellular protein dual leucine zipper kinase (DLK) has been found to initiate a wave of viral gene expression known as phase I. Phase I occurs independently of both viral DNA replication and the activities of histone demethylase enzymes required to remove repressive heterochromatin modifications associated with the viral genome. In this study, we investigated whether phase I-like gene expression occurs in ganglia reactivated from infected mice. Using the combined trigger of explant-induced axotomy and inhibition of phosphatidylinositide 3-kinase (PI3K) signaling, we found that HSV lytic gene expression was induced rapidly from both sensory and sympathetic neurons. Ex vivo reactivation involved a wave of viral late gene expression that occurred independently of viral genome synthesis and histone demethylase activity and preceded the detection of infectious virus. Importantly, we found that DLK was required for the initial induction of lytic gene expression. These data confirm the essential role of DLK in inducing HSV-1 gene expression from the heterochromatin-associated genome and further demonstrate that HSV-1 gene expression during reactivation occurs via mechanisms that are distinct from lytic replication. IMPORTANCE Reactivation of herpes simplex virus from a latent infection is associated with clinical disease. To develop new therapeutics that prevent reactivation, it is important to understand how viral gene expression initiates following a reactivation stimulus. Dual leucine zipper kinase (DLK) is a cellular protein that has previously been found to be required for HSV reactivation from sympathetic neurons in vitro. Here, we show that DLK is essential for reactivation from sensory ganglia isolated from infected mice. Furthermore, we show that DLK-dependent gene expression ex vivo occurs via mechanisms that are distinct from production replication, namely, lytic gene expression that is independent of viral DNA replication and histone demethylase activity. The identification of a DLK-dependent wave of lytic gene expression from sensory ganglia will ultimately permit the development of novel therapeutics that target lytic gene expression and prevent the earliest stage of reactivation.
Collapse
Affiliation(s)
- Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Corinne A. Clinton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - E. B. Lane Kennedy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jon B. Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol 2022; 96:e0050822. [PMID: 35608347 PMCID: PMC9215246 DOI: 10.1128/jvi.00508-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.
Collapse
Affiliation(s)
- Sara Dochnal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Husain Y. Merchant
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Austin R. Schinlever
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Impact of Cultured Neuron Models on α-Herpesvirus Latency Research. Viruses 2022; 14:v14061209. [PMID: 35746680 PMCID: PMC9228292 DOI: 10.3390/v14061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
A signature trait of neurotropic α-herpesviruses (α-HV) is their ability to establish stable non-productive infections of peripheral neurons termed latency. This specialized gene expression program is the foundation of an evolutionarily successful strategy to ensure lifelong persistence in the host. Various physiological stresses can induce reactivation in a subset of latently-infected neurons allowing a new cycle of viral productive cycle gene expression and synthesis of infectious virus. Recurring reactivation events ensure transmission of the virus to new hosts and contributes to pathogenesis. Efforts to define the molecular basis of α-HV latency and reactivation have been notoriously difficult because the neurons harboring latent virus in humans and in experimentally infected live-animal models, are rare and largely inaccessible to study. Increasingly, researchers are turning to cultured neuron infection models as simpler experimental platforms from which to explore latency and reactivation at the molecular level. In this review, I reflect on the strengths and weaknesses of existing neuronal models and briefly summarize the important mechanistic insights these models have provided. I also discuss areas where prioritization will help to ensure continued progress and integration.
Collapse
|
21
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
22
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
23
|
Weller SK, Deluca NA. New model integrates innate responses, PML-NB formation, epigenetic control and reactivation from latency. EMBO Rep 2021; 22:e53496. [PMID: 34313382 DOI: 10.15252/embr.202153496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
The dynamic nature of interactions between invading viral pathogens and their hosts has fascinated scientists for several decades. The well-known capacity of herpes simplex virus (HSV) to establish life-long infections in humans reflects a dynamic balance between maintaining a latent state in which viral genomes are silenced and re-entry into the lytic phase during reactivation. Silencing of the viral genome has been shown to be a function of innate immune signalling, intrinsic cellular antiviral mechanisms and epigenetic repression. Thus, although many important observations have been made identifying cellular processes that contribute to the repression of the viral genome and latency, the field has lacked an understanding of how these factors work together. In this issue of EMBO Reports, Suzich et al (2021) present convincing evidence that brings together individual observations into a cohesive model that explains many of these outstanding mysteries. Here, we will review the background data that lead to this outstanding piece of work.
Collapse
Affiliation(s)
- Sandra K Weller
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Neal A Deluca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|