1
|
Carlsson R, Enström A, Paul G. Molecular Regulation of the Response of Brain Pericytes to Hypoxia. Int J Mol Sci 2023; 24:5671. [PMID: 36982744 PMCID: PMC10053233 DOI: 10.3390/ijms24065671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The brain needs sufficient oxygen in order to function normally. This is achieved by a large vascular capillary network ensuring that oxygen supply meets the changing demand of the brain tissue, especially in situations of hypoxia. Brain capillaries are formed by endothelial cells and perivascular pericytes, whereby pericytes in the brain have a particularly high 1:1 ratio to endothelial cells. Pericytes not only have a key location at the blood/brain interface, they also have multiple functions, for example, they maintain blood-brain barrier integrity, play an important role in angiogenesis and have large secretory abilities. This review is specifically focused on both the cellular and the molecular responses of brain pericytes to hypoxia. We discuss the immediate early molecular responses in pericytes, highlighting four transcription factors involved in regulating the majority of transcripts that change between hypoxic and normoxic pericytes and their potential functions. Whilst many hypoxic responses are controlled by hypoxia-inducible factors (HIF), we specifically focus on the role and functional implications of the regulator of G-protein signaling 5 (RGS5) in pericytes, a hypoxia-sensing protein that is regulated independently of HIF. Finally, we describe potential molecular targets of RGS5 in pericytes. These molecular events together contribute to the pericyte response to hypoxia, regulating survival, metabolism, inflammation and induction of angiogenesis.
Collapse
Affiliation(s)
- Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Centre and Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Neurology, Scania University Hospital, 22185 Lund, Sweden
| |
Collapse
|
2
|
Numaga-Tomita T, Shimauchi T, Kato Y, Nishiyama K, Nishimura A, Sakata K, Inada H, Kita S, Iwamoto T, Nabekura J, Birnbaumer L, Mori Y, Nishida M. Inhibition of transient receptor potential cation channel 6 promotes capillary arterialization during post-ischaemic blood flow recovery. Br J Pharmacol 2023; 180:94-110. [PMID: 36068079 PMCID: PMC10092707 DOI: 10.1111/bph.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Shinshu University School of Medicine, Nagano, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan
| | - Kosuke Sakata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inada
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Satomi Kita
- Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | - Junichi Nabekura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Lutz Birnbaumer
- NIEHS, NIH, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
He YB, Jin HZ, Zhao JL, Wang C, Ma WR, Xing J, Zhang XB, Zhang YY, Dai HD, Zhao NS, Zhang JF, Zhang GX, Zhang J. Single-cell transcriptomic analysis reveals differential cell subpopulations and distinct phenotype transition in normal and dissected ascending aorta. Mol Med 2022; 28:158. [PMID: 36536281 PMCID: PMC9764678 DOI: 10.1186/s10020-022-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute thoracic aortic dissection (ATAD) is a fatal condition characterized by tear of intima, formation of false lumen and rupture of aorta. However, the subpopulations of normal and dissected aorta remain less studied. METHODS Single-cell RNA sequencing was performed including 5 patients with ATAD and 4 healthy controls. Immunohistochemistry and immunofluorescence were used to verify the findings. RESULTS We got 8 cell types from human ascending aorta and identified 50 subpopulations including vascular smooth muscle cells (VSMCs), endothelial cells, fibroblasts, neutrophils, monocytes and macrophages. Six transmembrane epithelial antigen of prostate 4 metalloreductase (STEAP4) was identified as a new marker of synthetic VSMCs. CytoTRACE identified subpopulations with higher differentiation potential in specified cell types including synthetic VSMCs, enolase 1+ fibroblasts and myeloid-derived neutrophils. Synthetic VSMCs-derived C-X-C motif chemokine ligand 12 (CXCL12) might interact with neutrophils and fibroblasts via C-X-C motif chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), respectively, which might recruit neutrophils and induce transdifferentitation of fibroblasts into synthetic VSMCs. CONCLUSION We characterized signatures of different cell types in normal and dissected human ascending aorta and identified a new marker for isolation of synthetic VSMCs. Moreover, we proposed a potential mechanism that synthetic VSMCs might interact with neutrophils and fibroblasts via CXCL12-CXCR4/ACKR3 axis whereby deteriorating the progression of ATAD, which might provide new insights to better understand the development and progression of ATAD.
Collapse
Affiliation(s)
- Yu-bin He
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Hai-zhen Jin
- grid.16821.3c0000 0004 0368 8293Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-long Zhao
- grid.412528.80000 0004 1798 5117Department of Cardiovascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chong Wang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Wen-rui Ma
- grid.8547.e0000 0001 0125 2443Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Xing
- grid.16821.3c0000 0004 0368 8293Department of Biobank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-bin Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Yang-yang Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Huang-dong Dai
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Nai-shi Zhao
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Jian-feng Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| | - Guan-xin Zhang
- grid.73113.370000 0004 0369 1660Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, No.168, Changhai Road, Shanghai, China
| | - Jing Zhang
- grid.16821.3c0000 0004 0368 8293Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030 China
| |
Collapse
|
4
|
Ahn J, Heo S, Ahn SJ, Bang D, Lee SH. Differentially hypomethylated cell-free DNA and coronary collateral circulation. Clin Epigenetics 2022; 14:140. [PMID: 36320085 PMCID: PMC9628091 DOI: 10.1186/s13148-022-01349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The factors affecting cardioprotective collateral circulation are still incompletely understood. Recently, characteristics, such as CpG methylation of cell-free DNA (cfDNA), have been reported as markers with clinical utility. The aim of this study was to evaluate whether cfDNA methylation patterns are associated with the grade of coronary collateral circulation (CCC). RESULT In this case-control study, clinical and angiographic data were obtained from 143 patients (mean age, 58 years, male 71%) with chronic total coronary occlusion. Enzymatic methyl-sequencing (EM-seq) libraries were prepared using the cfDNA extracted from the plasma. Data were processed to obtain the average methylation fraction (AMF) tables of genomic regions from which blacklisted regions were removed. Unsupervised analysis of the obtained AMF values showed that some of the changes in methylation were due to CCC. Through random forest preparation process, 256 differentially methylated region (DMR) candidates showing strong association with CCC were selected. A random forest classifier was then constructed, and the area under the curve of the receiver operating characteristic curve indicated an appropriate predictive function for CCC. Finally, 20 DMRs were identified to have significantly different AMF values between the good and poor CCC groups. Particularly, the good CCC group exhibited hypomethylated DMRs. Pathway analysis revealed five pathways, including TGF-beta signaling, to be associated with good CCC. CONCLUSION These data have demonstrated that differential hypomethylation was identified in dozens of cfDNA regions in patients with good CCC. Our results support the clinical utility of noninvasively obtained epigenetic signatures for predicting collateral circulation in patients with vascular diseases.
Collapse
Affiliation(s)
- Jongseong Ahn
- Department of Chemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | | | - Soo-Jin Ahn
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Sang-Hak Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
5
|
Xu M, Wang S, Jiang Y, Wang J, Xiong Y, Dong W, Yao Q, Xing Y, Liu F, Chen Z, Yu D. Single-Cell RNA-Seq Reveals Heterogeneity of Cell Communications between Schwann Cells and Fibroblasts within Vestibular Schwannoma Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1230-1249. [PMID: 35750260 DOI: 10.1016/j.ajpath.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Vestibular schwannomas (VSs), which develop from Schwann cells (SCs) of the vestibular nerve, are the most prevalent benign tumors of the cerebellopontine angle and internal auditory canal. Despite advances in treatment, the cellular components and mechanisms of VS tumor progression remain unclear. Herein, single-cell RNA-sequencing was performed on clinically surgically isolated VS samples and their cellular composition, including the heterogeneous SC subtypes, was determined. Advanced bioinformatics analysis revealed the associated biological functions, pseudotime trajectory, and transcriptional network of the SC subgroups. A tight intercellular communication between SCs and tumor-associated fibroblasts via integrin and growth factor signaling was observed and the gene expression differences in SCs and fibroblasts were shown to determine the heterogeneity of cellular communication in different individuals. These findings suggest a microenvironmental mechanism underlying the development of VS.
Collapse
Affiliation(s)
- Maoxiang Xu
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shengming Wang
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yumeng Jiang
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingjing Wang
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanping Xiong
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenqi Dong
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingxiu Yao
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yazhi Xing
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Liu
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zhengnong Chen
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Dongzhen Yu
- Otolaryngology Institute of Shanghai Jiao Tong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Wang X, Xu X, Zhu Q, Han Y, Zhang W. Hypoxia-induced miR-182-5p regulates vascular smooth muscle cell phenotypic switch by targeting RGS5. Cell Biol Int 2022; 46:1864-1875. [PMID: 35946384 DOI: 10.1002/cbin.11883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
In response to vascular injury or alterations in the local environment, such as hypoxia and hypertension, contractile vascular smooth muscle cells (VSMCs) are able to switch to a synthetic phenotype characterized by increased extracellular matrix synthesis with decreased expression of contractile markers. miR-182-5p has recently been reported to play a regulatory role in VSMCs proliferation. However, little is known about its target genes and related pathways in VSMCs phenotypic switch. Here, we investigated the function of miR-182-5p in VSMCs phenotypic switch. The results showed that upregulation of miR-182-5p promoted the switching of VSMCs from a contractile to a synthetic phenotype under hypoxic conditions. Mechanistically, hypoxia elevated miR-182-5p, leading to a reduction in expression of contractile markers and weakened RhoA signaling. Using bioinformatics analysis, dual-luciferase reporter assays and rescue assays, we demonstrated that miR-182-5p suppressed RhoA signaling by targeting RGS5. Collectively, the results from the present study indicated that miR-182-5p/RGS5/RhoA axis regulated hypoxia-induced VSMCs phenotypic switch.
Collapse
Affiliation(s)
- Xiaozhou Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China.,Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Xiaolong Xu
- Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China.,Department of Endocrinology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ying Han
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
7
|
Nahalka J. 1-L Transcription in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:3533-3551. [PMID: 36005139 PMCID: PMC9406503 DOI: 10.3390/cimb44080243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a very complex disease and better explanations and models are needed to understand how neurons are affected and microglia are activated. A new model of Alzheimer's disease is presented here, the β-amyloid peptide is considered an important RNA recognition/binding peptide. 1-L transcription revealed compatible sequences with AAUAAA (PAS signal) and UUUC (class III ARE rich in U) in the Aβ peptide, supporting the peptide-RNA regulatory model. When a hypothetical model of fibril selection with the prionic character of amyloid assemblies is added to the peptide-RNA regulatory model, the downregulation of the PI3K-Akt pathway and the upregulation of the PLC-IP3 pathway are well explained. The model explains why neurons are less protected from inflammation and why microglia are activated; why mitochondria are destabilized; why the autophagic flux is destabilized; and why the post-transcriptional attenuation of the axonal signal "noise" is interrupted. For example, the model suggests that Aβ peptide may post-transcriptionally control ELAVL2 (ELAV-like RNA binding protein 2) and DCP2 (decapping mRNA protein 2), which are known to regulate RNA processing, transport, and stability.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
8
|
Shang M, Hu Y, Cao H, Lin Q, Yi N, Zhang J, Gu Y, Yang Y, He S, Lu M, Peng L, Li L. Concordant and Heterogeneity of Single-Cell Transcriptome in Cardiac Development of Human and Mouse. Front Genet 2022; 13:892766. [PMID: 35832197 PMCID: PMC9271823 DOI: 10.3389/fgene.2022.892766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Normal heart development is vital for maintaining its function, and the development process is involved in complex interactions between different cell lineages. How mammalian hearts develop differently is still not fully understood. In this study, we identified several major types of cardiac cells, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), ECs/FBs, epicardial cells (EPs), and immune cells (macrophage/monocyte cluster, MACs/MONOs), based on single-cell transcriptome data from embryonic hearts of both human and mouse. Then, species-shared and species-specific marker genes were determined in the same cell type between the two species, and the genes with consistent and different expression patterns were also selected by constructing the developmental trajectories. Through a comparison of the development stage similarity of CMs, FBs, and ECs/FBs between humans and mice, it is revealed that CMs at e9.5 and e10.5 of mice are most similar to those of humans at 7 W and 9 W, respectively. Mouse FBs at e10.5, e13.5, and e14.5 are correspondingly more like the same human cells at 6, 7, and 9 W. Moreover, the e9.5-ECs/FBs of mice are most similar to that of humans at 10W. These results provide a resource for understudying cardiac cell types and the crucial markers able to trace developmental trajectories among the species, which is beneficial for finding suitable mouse models to detect human cardiac physiology and related diseases.
Collapse
Affiliation(s)
- Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Huaming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Junfang Zhang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yanqiong Gu
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yujie Yang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Siyu He
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
10
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Silva A, Hatch CJ, Chu MT, Cardinal TR. Collateral Arteriogenesis Involves a Sympathetic Denervation That Is Associated With Abnormal α-Adrenergic Signaling and a Transient Loss of Vascular Tone. Front Cardiovasc Med 2022; 9:805810. [PMID: 35242824 PMCID: PMC8886147 DOI: 10.3389/fcvm.2022.805810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Stimulating collateral arteriogenesis is an attractive therapeutic target for peripheral artery disease (PAD). However, the potency of arteriogenesis-stimulation in animal models has not been matched with efficacy in clinical trials. This may be because the presence of enlarged collaterals is not sufficient to relieve symptoms of PAD, suggesting that collateral function is also important. Specifically, collaterals are the primary site of vascular resistance following arterial occlusion, and impaired collateral vasodilation could impact downstream tissue perfusion and limb function. Therefore, we evaluated the effects of arteriogenesis on collateral vascular reactivity. Following femoral artery ligation in the mouse hindlimb, collateral functional vasodilation was impaired at day 7 (17 ± 3 vs. 60 ± 8%) but restored by day 28. This impairment was due to a high resting diameter (73 ± 4 μm at rest vs. 84 ± 3 μm dilated), which does not appear to be a beneficial effect of arteriogenesis because increasing tissue metabolic demand through voluntary exercise decreased resting diameter and restored vascular reactivity at day 7. The high diameter in sedentary animals was not due to sustained NO-dependent vasodilation or defective myogenic constriction, as there were no differences between the enlarged and native collaterals in response to eNOS inhibition with L-NAME or L-type calcium channel inhibition with nifedipine, respectively. Surprisingly, in the context of reduced vascular tone, vasoconstriction in response to the α-adrenergic agonist norepinephrine was enhanced in the enlarged collateral (−62 ± 2 vs. −37 ± 2%) while vasodilation in response to the α-adrenergic antagonist prazosin was reduced (6 ± 4% vs. 22 ± 16%), indicating a lack of α-adrenergic receptor activation by endogenous norepinephrine and suggesting a denervation of the neuroeffector junction. Staining for tyrosine hydroxylase demonstrated sympathetic denervation, with neurons occupying less area and located further from the enlarged collateral at day 7. Inversely, MMP2 presence surrounding the enlarged collateral was greater at day 7, suggesting that denervation may be related to extracellular matrix degradation during arteriogenesis. Further investigation on vascular wall maturation and the functionality of enlarged collaterals holds promise for identifying novel therapeutic targets to enhance arteriogenesis in patients with PAD.
Collapse
|
12
|
Guan X, Xin H, Xu M, Ji J, Li J. The Role and Mechanism of SIRT6 in Regulating Phenotype Transformation of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3200798. [PMID: 35035519 PMCID: PMC8758316 DOI: 10.1155/2022/3200798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Data mining of current gene expression databases has not been previously performed to determine whether sirtuin 6 (SIRT6) expression participates in the pathological process of abdominal aortic aneurysm (AAA). The present study was aimed at investigating the role and mechanism of SIRT6 in regulating phenotype transformation of vascular smooth muscle cells (VSMC) in AAA. METHODS Three gene expression microarray datasets of AAA patients in the Gene Expression Omnibus (GEO) database and one dataset of SIRT6-knockout (KO) mice were selected, and the differentially expressed genes (DEGs) were identified using GEO2R. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of both the AAA-related DEGs and the SIRT6-related DEGs were conducted. RESULTS GEO2R analysis showed that the expression of SIRT6 was downregulated for three groups and upregulated for one group in the three datasets, and none of them satisfied statistical significance. There were top 5 DEGs (KYNU, NPTX2, SCRG1, GRK5, and RGS5) in both of the human AAA group and SIRT6-KO mouse group. Top 25 ontology of the SIRT6-KO-related DEGs showed that several pathways including tryptophan catabolic process to kynurenine and negative regulation of cell growth were enriched in the tissues of thickness aortic wall biopsies of AAA patients. CONCLUSIONS Although SIRT6 mRNA level itself did not change among AAA patients, SIRT6 may play an important role in regulating several signaling pathways with significant association with AAA, suggesting that SIRT6 mRNA upregulation is a protective factor for VSMC against AAA.
Collapse
Affiliation(s)
- Xiaomei Guan
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Hai Xin
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Meiling Xu
- Department of Interventional Operating Room, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Jianlei Ji
- Department of Kidney Transplantation, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Jun Li
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| |
Collapse
|
13
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
14
|
Li Y, Nieuwenhuis LM, Voskuil MD, Gacesa R, Hu S, Jansen BH, Venema WTU, Hepkema BG, Blokzijl H, Verkade HJ, Lisman T, Weersma RK, Porte RJ, Festen EAM, de Meijer VE. Donor genetic variants as risk factors for thrombosis after liver transplantation: A genome-wide association study. Am J Transplant 2021; 21:3133-3147. [PMID: 33445220 PMCID: PMC8518362 DOI: 10.1111/ajt.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/25/2023]
Abstract
Thrombosis after liver transplantation substantially impairs graft- and patient survival. Inevitably, heritable disorders of coagulation originating in the donor liver are transmitted by transplantation. We hypothesized that genetic variants in donor thrombophilia genes are associated with increased risk of posttransplant thrombosis. We genotyped 775 donors for adult recipients and 310 donors for pediatric recipients transplanted between 1993 and 2018. We determined the association between known donor thrombophilia gene variants and recipient posttransplant thrombosis. In addition, we performed a genome-wide association study (GWAS) and meta-analyzed 1085 liver transplantations. In our donor cohort, known thrombosis risk loci were not associated with posttransplant thrombosis, suggesting that it is unnecessary to exclude liver donors based on thrombosis-susceptible polymorphisms. By performing a meta-GWAS from children and adults, we identified 280 variants in 55 loci at suggestive genetic significance threshold. Downstream prioritization strategies identified biologically plausible candidate genes, among which were AK4 (rs11208611-T, p = 4.22 × 10-05 ) which encodes a protein that regulates cellular ATP levels and concurrent activation of AMPK and mTOR, and RGS5 (rs10917696-C, p = 2.62 × 10-05 ) which is involved in vascular development. We provide evidence that common genetic variants in the donor, but not previously known thrombophilia-related variants, are associated with increased risk of thrombosis after liver transplantation.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Lianne M. Nieuwenhuis
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Michiel D. Voskuil
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Shixian Hu
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Bernadien H. Jansen
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Werna T. U. Venema
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Bouke G. Hepkema
- Department of Laboratory MedicineUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Henkjan J. Verkade
- Department of Pediatric Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ton Lisman
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Robert J. Porte
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Eleonora A. M. Festen
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
15
|
Demirel E, Arnold C, Garg J, Jäger MA, Sticht C, Li R, Kuk H, Wettschureck N, Hecker M, Korff T. RGS5 Attenuates Baseline Activity of ERK1/2 and Promotes Growth Arrest of Vascular Smooth Muscle Cells. Cells 2021; 10:1748. [PMID: 34359918 PMCID: PMC8306326 DOI: 10.3390/cells10071748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 01/14/2023] Open
Abstract
The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gαq/11 and Gαi/o activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC responses during various vascular remodeling processes, its regulatory features in resting VSMCs and its impact on their phenotype are still under debate and were subject of this study. While Rgs5 shows a variable expression in mouse arteries, neither global nor SMC-specific genetic ablation of Rgs5 affected the baseline blood pressure yet elevated the phosphorylation level of the MAP kinase ERK1/2. Comparable results were obtained with 3D cultured resting VSMCs. In contrast, overexpression of RGS5 in 2D-cultured proliferating VSMCs promoted their resting state as evidenced by microarray-based expression profiling and attenuated the activity of Akt- and MAP kinase-related signaling cascades. Moreover, RGS5 overexpression attenuated ERK1/2 phosphorylation, VSMC proliferation, and migration, which was mimicked by selectively inhibiting Gαi/o but not Gαq/11 activity. Collectively, the heterogeneous expression of Rgs5 suggests arterial blood vessel type-specific functions in mouse VSMCs. This comprises inhibition of acute agonist-induced Gαq/11/calcium release as well as the support of a resting VSMC phenotype with low ERK1/2 activity by suppressing the activity of Gαi/o.
Collapse
Affiliation(s)
- Eda Demirel
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jaspal Garg
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Marius Andreas Jäger
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hanna Kuk
- The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, Gupta S, Vanderbilt C, Purohit TA, Liu M, Kansler E, Nixon BG, Chen YB, Makarov V, Blum KA, Attalla K, Weng S, Salmans ML, Golkaram M, Liu L, Zhang S, Vijayaraghavan R, Pawlowski T, Reuter V, Carlo MI, Voss MH, Coleman J, Russo P, Motzer RJ, Li MO, Leslie CS, Chan TA, Hakimi AA. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 2021; 39:662-677.e6. [PMID: 33861994 PMCID: PMC8268947 DOI: 10.1016/j.ccell.2021.03.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.
Collapse
Affiliation(s)
- Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lynda Vuong
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Diego Chowell
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sounak Gupta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Makarov
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyle A Blum
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrollis Attalla
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stanley Weng
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Li Liu
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shile Zhang
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | | | | | - Victor Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - A Ari Hakimi
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvasc Res 2020; 132:104058. [PMID: 32798552 DOI: 10.1016/j.mvr.2020.104058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The coronary collateral circulation is a rich anastomotic network of primitive vessels which have the ability to augment in size and function through the process of arteriogenesis. In this review, we evaluate the current understandings of the molecular and cellular mechanisms by which this process occurs, specifically focussing on elevated fluid shear stress (FSS), inflammation, the redox state and gene expression along with the integrative, parallel and simultaneous process by which this occurs. The initiating step of arteriogenesis occurs following occlusion of an epicardial coronary artery, with an increase in FSS detected by mechanoreceptors within the endothelium. This must occur within a 'redox window' where an equilibrium of oxidative and reductive factors are present. These factors initially result in an inflammatory milieu, mediated by neutrophils as well as lymphocytes, with resultant activation of a number of downstream molecular pathways resulting in increased expression of proteins involved in monocyte attraction and adherence; namely vascular cell adhesion molecule 1 (VCAM-1), monocyte chemoattractant protein 1 (MCP-1) and transforming growth factor beta (TGF-β). Once monocytes and other inflammatory cells adhere to the endothelium they enter the extracellular matrix and differentiate into macrophages in an effort to create a favourable environment for vessel growth and development. Activated macrophages secrete inflammatory cytokines such as tumour necrosis factor-α (TNF-α), growth factors such as fibroblast growth factor-2 (FGF-2) and matrix metalloproteinases. Finally, vascular smooth muscle cells proliferate and switch to a contractile phenotype, resulting in an increased diameter and functionality of the collateral vessel, thereby allowing improved perfusion of the distal myocardium subtended by the occluded vessel. This simultaneously reduces FSS within the collateral vessel, inhibiting further vessel growth.
Collapse
|
18
|
He D, Mao A, Zheng CB, Kan H, Zhang K, Zhang Z, Feng L, Ma X. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl Sci Rev 2020; 7:881-896. [PMID: 34692110 PMCID: PMC8289085 DOI: 10.1093/nsr/nwaa038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.
Collapse
Affiliation(s)
- Dongxu He
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiqin Mao
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hao Kan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ka Zhang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Feng
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Ma
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Hsu LC, Hsu LS, Lee TH. RGS5 rs4657251 polymorphism is associated with small vessel occlusion stroke in Taiwan Han Chinese. J Chin Med Assoc 2020; 83:251-254. [PMID: 32080025 DOI: 10.1097/jcma.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The regulator of G-protein signaling protein 5 (RGS5) has been demonstrated to play a role in regulating blood pressure and cardiovascular function. Studies have shown that RGS5 polymorphisms exhibit susceptibility to hypertension. However, no study has yet been performed among stroke patients. METHODS To evaluate whether RGS5 rs4657251 is a susceptibility gene for stroke, we performed a case-control association study involving 714 large-artery atherosclerosis (LAA) patients, 383 small vessel occlusion (SVO) patients, 401 hypertensive intracranial hemorrhages (HICH), and 626 controls. The RGS5 rs4657251 polymorphism was analyzed through polymerase chain reaction. RESULTS The TC genotype was significantly higher in the SVO group compared with that in the control group (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.02-1.76, p = 0.035). In addition, the dominant phenotype (TC + CC vs TT) was also significantly different between the SVO and the control groups (OR = 1.31, 95% CI = 1.01-1.70, p = 0.046). However, no association was found between RGS5 rs4657251 and LAA an HICH. After adjustment with gender, diabetes, smoking, cholesterol and low-density lipoprotein levels, RGS5 rs4657251 polymorphism remained an independent risk factor for SVO (OR = 1.49; 95% CI = 1.12-1.98) but not for LAA or HICH. CONCLUSION Our findings, obtained among Taiwan Han Chinese subjects, provide the first evidence that RGS5 rs4657251 polymorphism is an independent risk factor for SVO.
Collapse
Affiliation(s)
- Li-Chi Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University school of Medicine, Taipei, Taiwan, ROC
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurology and Stroke Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
20
|
Arnold C, Feldner A, Zappe M, Komljenovic D, De La Torre C, Ruzicka P, Hecker M, Neuhofer W, Korff T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J 2018; 33:3364-3377. [PMID: 30383452 DOI: 10.1096/fj.201801594r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The arterial wall adapts to alterations in blood flow and pressure by remodeling the cellular and extracellular architecture. Biomechanical stress of vascular smooth muscle cells (VSMCs) in the media is thought to precede this process and promote their activation and subsequent proliferation. However, molecular determinants orchestrating the transcriptional phenotype under these conditions have been insufficiently studied. We identified the transcription factor, nuclear factor of activated T cells 5 (NFAT5; or tonicity enhancer-binding protein) as a crucial regulatory element of mechanical stress responses of VSMCs. Here, the relevance of NFAT5 for arterial growth and thickening is investigated in mice upon inducible smooth muscle cell (SMC)-specific genetic ablation of Nfat5. In cultured mouse VSMCs, loss of Nfat5 inhibits the expression of gene sets involved in the control of the cell cycle and the interaction with the extracellular matrix and cytoskeletal dynamics. In vivo, SMC-specific knockout of Nfat5 did not affect the general vascular architecture and blood pressure levels under baseline conditions. However, proliferation of VSMCs and the thickening of the arterial wall were inhibited during both flow-induced collateral remodeling and hypertension-mediated arterial hypertrophy. Whereas originally described as a hypertonicity-responsive transcription factor, these findings identify NFAT5 as a novel molecular determinant of biomechanically induced phenotype changes of VSMCs and wall stress-induced arterial remodeling processes.-Arnold, C., Feldner, A., Zappe, M., Komljenovic, D., De La Torre, C., Ruzicka, P., Hecker, M., Neuhofer, W., Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.
Collapse
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Maren Zappe
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Philipp Ruzicka
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Patel J, Chuaiphichai S, Douglas G, Gorvin CM, Channon KM. Vascular wall regulator of G-protein signalling-1 (RGS-1) is required for angiotensin II-mediated blood pressure control. Vascul Pharmacol 2018; 108:15-22. [PMID: 29654907 PMCID: PMC6073721 DOI: 10.1016/j.vph.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 03/18/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
G-Protein coupled receptors (GPCRs) activate intracellular signalling pathways by coupling to heterotrimeric G-proteins that control many physiological processes including blood pressure homeostasis. The Regulator of G-Protein Signalling-1 (RGS1) controls the magnitude and duration of downstream GPCR signalling by acting as a GTPase-activating protein for specific Gα-proteins. RGS1 has contrasting roles in haematopoietic and non-haematopoietic cells. Rgs1−/−ApoE−/− mice are protected from Angiotensin II (Ang II)-induced aortic aneurysm rupture. Conversely, Ang II treatment increases systolic blood pressure to a greater extent in Rgs1−/−ApoE−/− mice than ApoE−/− mice, independent of its role in myeloid cells. However the precise role of RGS1 in hypertension and vascular-derived cells remains unknown. We determined the effects of Rgs1 deletion on vascular function in ApoE−/− mice. Rgs1 deletion led to enhanced vasoconstriction in aortas and mesenteric arteries from ApoE−/− mice in response to phenylephrine (PE) and U46619 respectively. Rgs1 was shown to have a role in the vasculature, with endothelium-dependent vasodilation being impaired, and endothelium-independent dilatation to SNP being enhanced in Rgs1−/−ApoE−/− mesenteric arteries. To address the downstream signalling pathways in vascular smooth muscle cells (VSMCs) in response to Ang II-stimulation, we assessed pErk1/2, pJNK and pp38 MAPK activation in VSMCs transiently transfected with Rgs1. pErk1/2 signalling but not pJNK and pp38 signalling was impaired in the presence of Rgs1. Furthermore, we demonstrated that the enhanced contractile response to PE in Rgs1−/−ApoE−/− aortas was reduced by a MAPK/Erk (MEK) inhibitor and an L-type voltage gated calcium channel antagonist, suggesting that Erk1/2 signalling and calcium influx are major effectors of Rgs1-mediated vascular contractile responses, respectively. These findings indicate RGS1 is a novel regulator of blood pressure homeostasis and highlight RGS1-controlled signalling pathways in the vasculature that may be new drug development targets for hypertension.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Blood Pressure/genetics
- Calcium Signaling
- Cell Line
- Disease Models, Animal
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mice, Knockout, ApoE
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Phosphorylation
- RGS Proteins/deficiency
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Vasoconstriction
- Vasodilation
Collapse
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
22
|
Survival-associated heterogeneity of marker-defined perivascular cells in colorectal cancer. Oncotarget 2018; 7:41948-41958. [PMID: 27248825 PMCID: PMC5173107 DOI: 10.18632/oncotarget.9632] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/09/2016] [Indexed: 01/12/2023] Open
Abstract
Perivascular cells (PC) were recently implied as regulators of metastasis and immune cell activity. Perivascular heterogeneity in clinical samples, and associations with other tumor features and outcome, remain largely unknown. Here we report a novel method for digital quantitative analyses of vessel characteristics and PC, which was applied to two collections of human metastatic colorectal cancer (mCRC). Initial analyses identified marker-defined subsets of PC, including cells expressing PDGFR-β or α-SMA or both markers. PC subsets were largely independently expressed in a manner unrelated to vessel density and size. Association studies implied specific oncogenic mutations in malignant cells as determinants of PC status. Semi-quantitative and digital-image-analyses-based scoring of the NORDIC-VII cohort identified significant associations between low expression of perivascular PDGFR-α and -β and shorter overall survival. Analyses of the SPCRC cohort confirmed these findings. Perivascular PDGFR-α and -β remained independent factors for survival in multivariate analyses. Overall, our study identified host vasculature and oncogenic status as determinants of tumor perivascular features. Perivascular PDGFR-α and -β were identified as novel independent markers predicting survival in mCRC. The novel methodology should be suitable for similar analyses in other tumor collections.
Collapse
|
23
|
Arnold C, Demirel E, Feldner A, Genové G, Zhang H, Sticht C, Wieland T, Hecker M, Heximer S, Korff T. Hypertension‐evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J 2018; 32:2021-2035. [DOI: 10.1096/fj.201700384rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Eda Demirel
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Guillem Genové
- Center of Medical ResearchHeidelberg UniversityHeidelbergGermany
| | - Hangjun Zhang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Carsten Sticht
- Integrated Cardiometabolic CenterKarolinska InstituteHuddingeSweden
| | - Thomas Wieland
- Department of Physiology, Heart and Stroke Richard Lewar Centre of Excellence for Cardiovascular ResearchUniversity of TorontoTorontoOntarioCanada
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Scott Heximer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
24
|
Ganss R. Maternal Metabolism and Vascular Adaptation in Pregnancy: The PPAR Link. Trends Endocrinol Metab 2017; 28:73-84. [PMID: 27789100 DOI: 10.1016/j.tem.2016.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
Current therapies for pregnancy-related hypertension and its complications remain inadequate, although an increasing role for maternal susceptibility is becoming evident. Systemic vascular dysfunction in response to imbalances in angiogenic, inflammatory, and constricting factors is implicated in the pathogenesis of gestational hypertension, and growing evidence now links these factors with maternal metabolism. In particular, the crucial role of peroxisome proliferator-activated receptors (PPARs) in maternal vascular adaptation provides further insights into how obesity and gestational diabetes may be linked to pregnancy-induced hypertension and preeclampsia. This is especially important given the rapidly growing prevalence of obesity during pregnancy, and highlights a new approach to treat pregnancy-related hypertension and its complications.
Collapse
Affiliation(s)
- Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
25
|
Narla C, Scidmore T, Jeong J, Everest M, Chidiac P, Poulter MO. A switch in G protein coupling for type 1 corticotropin-releasing factor receptors promotes excitability in epileptic brains. Sci Signal 2016; 9:ra60. [PMID: 27303056 DOI: 10.1126/scisignal.aad8676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anxiety and stress increase the frequency of epileptic seizures. These behavioral states induce the secretion of corticotropin-releasing factor (CRF), a 40-amino acid neuropeptide neurotransmitter that coordinates many behavioral responses to stress in the central nervous system. In the piriform cortex, which is one of the most seizurogenic regions of the brain, CRF normally dampens excitability. By contrast, CRF increased the excitability of the piriform cortex in rats subjected to kindling, a model of temporal lobe epilepsy. In nonkindled rats, CRF activates its receptor, a G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor, and signals through a Gαq/11-mediated pathway. After seizure induction, CRF signaling occurred through a pathway involving Gαs This change in signaling was associated with reduced abundance of regulator of G protein signaling protein type 2 (RGS2), which has been reported to inhibit Gαs-dependent signaling. RGS2 knockout mice responded to CRF in a similar manner as epileptic rats. These observations indicate that seizures produce changes in neuronal signaling that can increase seizure occurrence by converting a beneficial stress response into an epileptic trigger.
Collapse
Affiliation(s)
- Chakravarthi Narla
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Tanner Scidmore
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Jaymin Jeong
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Graduate Program in Neuroscience, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Michelle Everest
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada. Department of Biology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Michael O Poulter
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada. Graduate Program in Neuroscience, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| |
Collapse
|
26
|
Nishio M, Nakahara M, Sato C, Saeki K, Akutsu H, Umezawa A, Tobe K, Yasuda K, Yuo A, Saeki K. New categorization of human vascular endothelial cells by pro- vs anti-proliferative phenotypes. World J Transl Med 2015; 4:88-100. [DOI: 10.5528/wjtm.v4.i3.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To integrally understand the effects of human vascular endothelial cells (VECs) on the proliferation of vascular smooth muscle cells (VSMCs).
METHODS: Various kinds of human VECs of different origins were co-cultured with human aortic smooth muscle cells, a representative of human VSMCs. To exclude the irrelevant effects due to growth competition between VECs and VSMCs, the proliferation of VECs had previously been arrested via a low-dose gamma ray irradiation. To discriminately analyze the proliferation of VSMCs from that of VECs, the former cells were labeled with red fluorescent dye while the latter cells were labeled with green fluorescent dye before performing co-culture experiments. After 4 d, total cells were harvested and subjected to flow cytometric analyses. Decrements in red fluorescence intensities due to proliferation-mediated dilutions were measured and mathematically processed using a specific software to quantitatively evaluate the proliferation of VSMCs. The findings obtained from the flow cytometry-based analyses were further validated by microscopic observations.
RESULTS: Commercially available primary cultured human VECs exclusively promoted VSMC proliferation regardless of their tissue origins and we termed these pro-proliferative VECs as “type-I”. By contrast, VECs freshly generated from human bone marrow-derived endothelial progenitors cells or human pluripotent stem cells including embryonic stem cells and induced pluripotent stem cells suppressed VSMC proliferation and we termed these anti-proliferative VECs as “type-II”. Repetitive subcultures as well as oxidative stress induced “type-II VECs to type-I” conversion along with an induction of Regulator of G-protein signaling 5 (RGS5). Compatibly, anti-oxidant treatments suppressed both the subculture-dependent “type-II to type-I” conversion and an induction of RGS5 gene. Immunostaining studies of clinical specimens indicated that RGS5 protein expressions in endothelial layers were low in normal arteries but they were up-regulated in pathological arteries including hypertension, atherosclerosis and autoimmune vasculitis in a dose-dependent manner. Overexpression and knockdown of RGS5 caused that “type-II to type-I” and “type-I to type-II” phenotype conversions of VECs, respectively.
CONCLUSION: Human VECs are categorized into two types: pro-proliferative RGS5high VECs (type-I) and anti-proliferative RGS5low VECs (type-II).
Collapse
|
27
|
Daniel JM, Prock A, Dutzmann J, Sonnenschein K, Thum T, Bauersachs J, Sedding DG. Regulator of G-Protein Signaling 5 Prevents Smooth Muscle Cell Proliferation and Attenuates Neointima Formation. Arterioscler Thromb Vasc Biol 2015; 36:317-27. [PMID: 26663397 DOI: 10.1161/atvbaha.115.305974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Regulator of G-protein signaling 5 (RGS5) is abundantly expressed in vascular smooth muscle cells (SMCs) and inhibits G-protein signaling by enhancing the guanosine triphosphate-hydrolyzing activity of Gα-subunits. In the present study, we investigated the effects of RGS5 on vascular SMC function in vitro and neointima formation after wire-induced injury in mice and determined the underlying mechanisms. APPROACH AND RESULTS We found a robust expression of RGS5 in native arteries of C57BL/6 mice and a highly significant downregulation within neointimal lesions 10 and 21 days after vascular injury as assessed by quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. In vitro, RGS5 was found significantly downregulated after mitogenic stimulation of human coronary artery SMCs. To restore RGS5 levels, SMCs were transduced with adenoviral vectors encoding wild-type RGS5 or a nondegradable mutant. RGS5-WT and, even more prominently, the C2A-RGS5 mutant prevented SMC proliferation and migration. In contrast, the siRNA-mediated knockdown of RGS5 significantly augmented SMC proliferation. Following overexpression of RGS5, fluorescence-activated cell sorting analysis of propidium iodide-stained cells indicated cell cycle arrest in G0/G1 phase. Mechanistically, inhibition of the phosphorylation of the extracellular signal-regulated kinase 1/2 and mitogen-activated protein kinase downstream signaling was shown to be responsible for the anti-proliferative effect of RGS5. Following wire-induced injury of the femoral artery in C57BL/6 mice, adenoviral-mediated overexpression of RGS5-WT or C2A-RGS5 significantly reduced SMC proliferation and neointima formation in vivo. CONCLUSIONS Downregulation of RGS5 is an important prerequisite for SMC proliferation in vitro and in vivo. Therefore, reconstitution of RGS5 levels represents a promising therapeutic option to prevent vascular remodeling processes.
Collapse
Affiliation(s)
- Jan-Marcus Daniel
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.)
| | - André Prock
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.)
| | - Jochen Dutzmann
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.)
| | - Kristina Sonnenschein
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.)
| | - Thomas Thum
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.)
| | - Johann Bauersachs
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.)
| | - Daniel G Sedding
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.).
| |
Collapse
|
28
|
Abstract
Formation of arterial vasculature, here termed arteriogenesis, is a central process in embryonic vascular development as well as in adult tissues. Although the process of capillary formation, angiogenesis, is relatively well understood, much remains to be learned about arteriogenesis. Recent discoveries point to the key role played by vascular endothelial growth factor receptor 2 in control of this process and to newly identified control circuits that dramatically influence its activity. The latter can present particularly attractive targets for a new class of therapeutic agents capable of activation of this signaling cascade in a ligand-independent manner, thereby promoting arteriogenesis in diseased tissues.
Collapse
Affiliation(s)
- Michael Simons
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (M.S., A.E.) and Departments of Cell Biology (M.S.) and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, CT.
| | - Anne Eichmann
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (M.S., A.E.) and Departments of Cell Biology (M.S.) and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
29
|
Ghosh S, Kollar B, Nahar T, Suresh Babu S, Wojtowicz A, Sticht C, Gretz N, Wagner AH, Korff T, Hecker M. Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells. J Am Heart Assoc 2015; 4:e001712. [PMID: 26071033 PMCID: PMC4599528 DOI: 10.1161/jaha.114.001712] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Exposure of vascular smooth muscle cells (VSMCs) to excessive cyclic stretch such as in hypertension causes a shift in their phenotype. The focal adhesion protein zyxin can transduce such biomechanical stimuli to the nucleus of both endothelial cells and VSMCs, albeit with different thresholds and kinetics. However, there is no distinct vascular phenotype in young zyxin-deficient mice, possibly due to functional redundancy among other gene products belonging to the zyxin family. Analyzing zyxin function in VSMCs at the cellular level might thus offer a better mechanistic insight. We aimed to characterize zyxin-dependent changes in gene expression in VSMCs exposed to biomechanical stretch and define the functional role of zyxin in controlling the resultant VSMC phenotype. Methods and Results DNA microarray analysis was used to identify genes and pathways that were zyxin regulated in static and stretched human umbilical artery–derived and mouse aortic VSMCs. Zyxin-null VSMCs showed a remarkable shift to a growth-promoting, less apoptotic, promigratory and poorly contractile phenotype with ≈90% of the stretch-responsive genes being zyxin dependent. Interestingly, zyxin-null cells already seemed primed for such a synthetic phenotype, with mechanical stretch further accentuating it. This could be accounted for by higher RhoA activity and myocardin-related transcription factor-A mainly localized to the nucleus of zyxin-null VSMCs, and a condensed and localized accumulation of F-actin upon stretch. Conclusions At the cellular level, zyxin is a key regulator of stretch-induced gene expression. Loss of zyxin drives VSMCs toward a synthetic phenotype, a process further consolidated by exaggerated stretch.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Institute of Physiology and Pathophysiology, University of Heidelberg, Germany (S.G., B.K., T.N., A.H.W., T.K.)
| | - Branislav Kollar
- Institute of Physiology and Pathophysiology, University of Heidelberg, Germany (S.G., B.K., T.N., A.H.W., T.K.)
| | - Taslima Nahar
- Institute of Physiology and Pathophysiology, University of Heidelberg, Germany (S.G., B.K., T.N., A.H.W., T.K.)
| | - Sahana Suresh Babu
- Department of Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX (S.S.B.)
| | - Agnieszka Wojtowicz
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland (A.W.)
| | - Carsten Sticht
- ZMF, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.S., N.G.)
| | - Norbert Gretz
- ZMF, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.S., N.G.)
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, University of Heidelberg, Germany (S.G., B.K., T.N., A.H.W., T.K.)
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, University of Heidelberg, Germany (S.G., B.K., T.N., A.H.W., T.K.)
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, University of Heidelberg and Deutsches Zentrum Für Herz-Kreislauf-Forschung E.V. (DZHK), Partner site Heidelberg/Mannheim, Germany (M.H.)
| |
Collapse
|
30
|
Hromatka BS, Tung JY, Kiefer AK, Do CB, Hinds DA, Eriksson N. Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis. Hum Mol Genet 2015; 24:2700-8. [PMID: 25628336 PMCID: PMC4383869 DOI: 10.1093/hmg/ddv028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 01/06/2023] Open
Abstract
Roughly one in three individuals is highly susceptible to motion sickness and yet the underlying causes of this condition are not well understood. Despite high heritability, no associated genetic factors have been discovered. Here, we conducted the first genome-wide association study on motion sickness in 80 494 individuals from the 23andMe database who were surveyed about car sickness. Thirty-five single-nucleotide polymorphisms (SNPs) were associated with motion sickness at a genome-wide-significant level (P < 5 × 10(-8)). Many of these SNPs are near genes involved in balance, and eye, ear and cranial development (e.g. PVRL3, TSHZ1, MUTED, HOXB3, HOXD3). Other SNPs may affect motion sickness through nearby genes with roles in the nervous system, glucose homeostasis or hypoxia. We show that several of these SNPs display sex-specific effects, with up to three times stronger effects in women. We searched for comorbid phenotypes with motion sickness, confirming associations with known comorbidities including migraines, postoperative nausea and vomiting (PONV), vertigo and morning sickness and observing new associations with altitude sickness and many gastrointestinal conditions. We also show that two of these related phenotypes (PONV and migraines) share underlying genetic factors with motion sickness. These results point to the importance of the nervous system in motion sickness and suggest a role for glucose levels in motion-induced nausea and vomiting, a finding that may provide insight into other nausea-related phenotypes like PONV. They also highlight personal characteristics (e.g. being a poor sleeper) that correlate with motion sickness, findings that could help identify risk factors or treatments.
Collapse
Affiliation(s)
| | - Joyce Y Tung
- Product Science, 23andMe, Inc., Mountain View, CA, USA
| | - Amy K Kiefer
- Product Science, 23andMe, Inc., Mountain View, CA, USA
| | - Chuong B Do
- Product Science, 23andMe, Inc., Mountain View, CA, USA
| | - David A Hinds
- Product Science, 23andMe, Inc., Mountain View, CA, USA
| | | |
Collapse
|
31
|
Xu Z, Zuo Y, Wang J, Yu Z, Peng F, Chen Y, Dong Y, Hu X, Zhou Q, Ma H, Bao Y, Chen M. Overexpression of the regulator of G-protein signaling 5 reduces the survival rate and enhances the radiation response of human lung cancer cells. Oncol Rep 2015; 33:2899-907. [PMID: 25891540 DOI: 10.3892/or.2015.3917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
Regulator of G protein signaling 5 (RGS5) belongs to the R4 subfamily of RGS proteins, a family of GTPase activating proteins, which is dynamically regulated in various biological processes including blood pressure regulation, smooth muscle cell pathology, fat metabolism and tumor angiogenesis. Low-expression of RGS5 was reported to be associated with tumor progression in lung cancer. In the present study, we examined the potential roles of RGS5 in human lung cancer cells by overexpressing RGS5 in the cancer cells and further explored the underlying molecular mechanisms. The RGS5 gene was cloned and transfected into the human lung cancer cell lines A549 and Calu-3. The cells were tested for apoptosis with flow cytometry, for viability with MTT, for mobility and adhesion capacity. The radiosensitization effect of RGS5 was measured by a colony formation assay. The mechanisms of RGS5 functioning was also investigated by detection of protein expression with western blot analysis, including PARP, caspase 3 and 9, bax, bcl2, Rock1, Rock2, CDC42, phospho-p53 (Serine 15) and p53. The present study demonstrated that RGS5 overexpression remarkably induced apoptosis in human lung cancer cells, which was suggested to be through mitochondrial mechanisms. Overexpression of RGS5 resulted in significantly lower adhesion and migration abilities of the lung cancer cells (P<0.01). Furthermore, overexpression of RGS5 sensitized the lung cancer cells to radiation. In conclusion, the present study showed that RGS5 played an inhibitory role in human lung cancer cells through induction of apoptosis. Furthermore, RGS5 enhanced the cytotoxic effect of radiation in the human lung cancer cells. Our results indicated that RGS5 may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zumin Xu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Jin Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhonghua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Fang Peng
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanyuan Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Yong Dong
- Cancer Center, Shilong People's Hospital, Dongguan City, Guangdong 523321, P.R. China
| | - Xiao Hu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qichao Zhou
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Honglian Ma
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Yong Bao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
32
|
Ganss R. Keeping the Balance Right. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:93-121. [DOI: 10.1016/bs.pmbts.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Transcription factor cAMP response element modulator (Crem) restrains Pdgf-dependent proliferation of vascular smooth muscle cells in mice. Pflugers Arch 2014; 467:2165-77. [PMID: 25425331 PMCID: PMC4564437 DOI: 10.1007/s00424-014-1652-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Abstract
Transcription factors of the cAMP response element-binding protein (Creb)/cAMP response element modulator (Crem) family were linked to the switch from a contractile to a proliferating phenotype in vascular smooth muscle cells (VSMCs). Here, we analyzed the vascular function of Crem in mice with a global inactivation of Crem (Crem(-/-)). CRE-mediated transcriptional activity was enhanced in primary Crem(-/-) VSMCs under nonstimulated conditions and under stimulation with Forskolin and platelet-derived growth factor (Pdgf) whereas stimulation with nitric oxide or cGMP showed no effect. This elevated CRE-mediated transcriptional activity as a result of Crem inactivation did not alter aortic contractility or fractions of proliferating or apoptotic aortic VSMCs in situ, and no impact of Crem inactivation on the development of atherosclerotic plaques was observed. Crem(-/-) mice exhibited an increased neointima formation after carotid ligation associated with an increased proliferation of VSMCs in the carotid media. Pdgf-stimulated proliferation of primary aortic Crem(-/-) VSMCs was increased along with an upregulation of messenger RNA (mRNA) levels of Pdgf receptor, alpha polypeptide (Pdgfra), cyclophilin A (Ppia), the regulator of G-protein signaling 5 (Rgs5), and Rho GTPase-activating protein 12 (Arhgap12). Taken together, our data reveal the inhibition of Pdgf-stimulated proliferation of VSMCs by repressing the Pdgf-stimulated CRE-mediated transcriptional activation as the predominant function of Crem in mouse vasculature suggesting an important role of Crem in vasculoproliferative diseases.
Collapse
|