1
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
2
|
Sarandy MM, Gonçalves RV, Valacchi G. Cutaneous Redox Senescence. Biomedicines 2024; 12:348. [PMID: 38397950 PMCID: PMC10886899 DOI: 10.3390/biomedicines12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Our current understanding of skin cell senescence involves the role of environmental stressors (UV, O3, cigarette smoke, particulate matter, etc.), lifestyle (diet, exercise, etc.) as well as genetic factors (metabolic changes, hormonal, etc.). The common mechanism of action of these stressors is the disturbance of cellular redox balance characterized by increased free radicals and reactive oxygen species (ROS), and when these overload the intrinsic antioxidant defense system, it can lead to an oxidative stress cellular condition. The main redox mechanisms that activate cellular senescence in the skin involve (1) the oxidative damage of telomeres causing their shortening; (2) the oxidation of proteomes and DNA damage; (3) an a in lysosomal mass through the increased activity of resident enzymes such as senescence-associated β-galactosidase (SA-β-gal) as well as other proteins that are products of lysosomal activity; (4) and the increased expression of SASP, in particular pro-inflammatory cytokines transcriptionally regulated by NF-κB. However, the main targets of ROS on the skin are the proteome (oxi-proteome), followed by telomeres, nucleic acids (DNAs), lipids, proteins, and cytoplasmic organelles. As a result, cell cycle arrest pathways, lipid peroxidation, increased lysosomal content and dysfunctional mitochondria, and SASP synthesis occur. Furthermore, oxidative stress in skin cells increases the activity of p16INK4A and p53 as inhibitors of Rb and CDks, which are important for maintaining the cell cycle. p53 also promotes the inactivation of mTOR-mediated autophagic and apoptotic pathways, leading to senescence. However, these markers alone cannot establish the state of cellular senescence, and multiple analyses are encouraged for confirmation. An updated and more comprehensive approach to investigating skin senescence should include further assays of ox-inflammatory molecular pathways that can consolidate the understanding of cutaneous redox senescence.
Collapse
Affiliation(s)
- Mariáurea Matias Sarandy
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Zhang J, Yu H, Man M, Hu L. Aging in the dermis: Fibroblast senescence and its significance. Aging Cell 2024; 23:e14054. [PMID: 38040661 PMCID: PMC10861215 DOI: 10.1111/acel.14054] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Skin aging is characterized by changes in its structural, cellular, and molecular components in both the epidermis and dermis. Dermal aging is distinguished by reduced dermal thickness, increased wrinkles, and a sagging appearance. Due to intrinsic or extrinsic factors, accumulation of excessive reactive oxygen species (ROS) triggers a series of aging events, including imbalanced extracellular matrix (ECM) homeostasis, accumulation of senescent fibroblasts, loss of cell identity, and chronic inflammation mediated by senescence-associated secretory phenotype (SASP). These events are regulated by signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mechanistic target of rapamycin (mTOR), transforming growth factor beta (TGF-β), and insulin-like growth factor 1 (IGF-1). Senescent fibroblasts can induce and accelerate age-related dysfunction of other skin cells and may even cause systemic inflammation. In this review, we summarize the role of dermal fibroblasts in cutaneous aging and inflammation. Moreover, the underlying mechanisms by which dermal fibroblasts influence cutaneous aging and inflammation are also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
| | - Mao‐Qiang Man
- Dermatology HospitalSouthern Medical UniversityGuangdongChina
- Department of DermatologyUniversity of California San Francisco and Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Medical UniversityTianjinChina
| |
Collapse
|
4
|
Weston WC, Hales KH, Hales DB. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023; 13:945. [PMID: 37623888 PMCID: PMC10456508 DOI: 10.3390/metabo13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
This article illustrates how dietary flaxseed can be used to reduce cancer risk, specifically by attenuating obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We utilize a targeted metabolomics dataset in combination with a reanalysis of past work to investigate the "metabo-bioenergetic" adaptations that occur in White Leghorn laying hens while consuming dietary flaxseed. Recently, we revealed how the anti-vitamin B6 effects of flaxseed augment one-carbon metabolism in a manner that accelerates S-adenosylmethionine (SAM) biosynthesis. Researchers recently showed that accelerated SAM biosynthesis activates the cell's master energy sensor, AMP-activated protein kinase (AMPK). Our paper provides evidence that flaxseed upregulates mitochondrial fatty acid oxidation and glycolysis in liver, concomitant with the attenuation of lipogenesis and polyamine biosynthesis. Defatted flaxseed likely functions as a metformin homologue by upregulating hepatic glucose uptake and pyruvate flux through the pyruvate dehydrogenase complex (PDC) in laying hens. In contrast, whole flaxseed appears to attenuate liver steatosis and body mass by modifying mitochondrial fatty acid oxidation and lipogenesis. Several acylcarnitine moieties indicate Randle cycle adaptations that protect mitochondria from metabolic overload when hens consume flaxseed. We also discuss a paradoxical finding whereby flaxseed induces the highest glycated hemoglobin percentage (HbA1c%) ever recorded in birds, and we suspect that hyperglycemia is not the cause. In conclusion, flaxseed modifies bioenergetic pathways to attenuate the risk of obesity, type 2 diabetes, and NAFLD, possibly downstream of SAM biosynthesis. These findings, if reproducible in humans, can be used to lower cancer risk within the general population.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
5
|
Yu Q, Zhang R, Li T, Yang L, Zhou Z, Hou L, Wu W, Zhao R, Chen X, Yao Y, Huang S, Chen L. Mitochondrial Hydrogen Peroxide Activates PTEN and Inactivates Akt Leading to Autophagy Inhibition-Dependent Cell Death in Neuronal Models of Parkinson's Disease. Mol Neurobiol 2023; 60:3345-3364. [PMID: 36853430 PMCID: PMC10924433 DOI: 10.1007/s12035-023-03286-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
Defective autophagy relates to the pathogenesis of Parkinson's disease (PD), a typical neurodegenerative disease. Our recent study has demonstrated that PD toxins (6-OHDA, MPP+, or rotenone) induce neuronal apoptosis by impeding the AMPK/Akt-mTOR signaling. Here, we show that treatment with 6-OHDA, MPP+, or rotenone triggered decreases of ATG5/LC3-II and autophagosome formation with a concomitant increase of p62 in PC12, SH-SY5Y cells, and primary neurons, suggesting inhibition of autophagy. Interestingly, overexpression of wild-type ATG5 attenuated the inhibitory effect of PD toxins on autophagy, reducing neuronal apoptosis. The effects of PD toxins on autophagy and apoptosis were found to be associated with activation of PTEN and inactivation of Akt. Overexpression of dominant negative PTEN, constitutively active Akt and/or pretreatment with rapamycin rescued the cells from PD toxins-induced downregulation of ATG5/LC3-II and upregulation of p62, as well as consequential autophagosome diminishment and apoptosis in the cells. The effects of PD toxins on autophagy and apoptosis linked to excessive intracellular and mitochondrial hydrogen peroxide (H2O2) production, as evidenced by using a H2O2-scavenging enzyme catalase, a mitochondrial superoxide indicator MitoSOX and a mitochondria-selective superoxide scavenger Mito-TEMPO. Furthermore, we observed that treatment with PD toxins reduced the protein level of Parkin in the cells. Knockdown of Parkin alleviated the effects of PD toxins on H2O2 production, PTEN/Akt activity, autophagy, and apoptosis in the cells, whereas overexpression of wild-type Parkin exacerbated these effects of PD toxins, implying the involvement of Parkin in the PD toxins-induced oxidative stress. Taken together, the results indicate that PD toxins can elicit mitochondrial H2O2, which can activate PTEN and inactivate Akt leading to autophagy inhibition-dependent neuronal apoptosis, and Parkin plays a critical role in this process. Our findings suggest that co-manipulation of the PTEN/Akt/autophagy signaling by antioxidants may be exploited for the prevention of neuronal loss in PD.
Collapse
Affiliation(s)
- Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- Department of Biological Sciences, College of Science and Technology, Xinyang University, Xinyang, 464000, People's Republic of China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- College of Life Sciences, Anhui Medical University, Anhui, 230032, People's Republic of China
| | - Tianjing Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Wen Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Yajie Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
6
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Gauthier V, Kyriazi M, Nefla M, Pucino V, Raza K, Buckley CD, Alsaleh G. Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Front Immunol 2023; 14:1137659. [PMID: 36926329 PMCID: PMC10011104 DOI: 10.3389/fimmu.2023.1137659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblasts, derived from the embryonic mesenchyme, are a diverse array of cells with roles in development, homeostasis, repair, and disease across tissues. In doing so, fibroblasts maintain micro-environmental homeostasis and create tissue niches by producing a complex extracellular matrix (ECM) including various structural proteins. Although long considered phenotypically homogenous and functionally identical, the emergence of novel technologies such as single cell transcriptomics has allowed the identification of different phenotypic and cellular states to be attributed to fibroblasts, highlighting their role in tissue regulation and inflammation. Therefore, fibroblasts are now recognised as central actors in many diseases, increasing the need to discover new therapies targeting those cells. Herein, we review the phenotypic heterogeneity and functionality of these cells and their roles in health and disease.
Collapse
Affiliation(s)
- Vincent Gauthier
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Kyriazi
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Meriam Nefla
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Pucino
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Grande F, Ioele G, Caruso A, Occhiuzzi MA, El-Kashef H, Saturnino C, Sinicropi MS. Carbazoles: Role and Functions in Fighting Diabetes. APPLIED SCIENCES 2022; 13:349. [DOI: 10.3390/app13010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbazole derivatives have gained a lot of attention in medicinal chemistry over the last few decades due to their wide range of biological and pharmacological properties, including antibacterial, antitumor, antioxidant, and anti-inflammatory activities. The therapeutic potential of natural, semi-synthetic or synthetic carbazole-containing molecules has expanded considerably owing to their role in the pathogenesis and development of diabetes. Several studies have demonstrated the ability of carbazole derivatives to reduce oxidative stress, block adrenergic hyperactivation, prevent damage to pancreatic cells and modulate carbohydrate metabolism. In this survey, we summarize the latest advances in the synthetic and natural carbazole-containing compounds involved in diabetes pathways.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
9
|
Shvedova M, Samdavid Thanapaul RJR, Thompson EL, Niedernhofer LJ, Roh DS. Cellular Senescence in Aging, Tissue Repair, and Regeneration. Plast Reconstr Surg 2022; 150:4S-11S. [PMID: 36170430 PMCID: PMC9529244 DOI: 10.1097/prs.0000000000009667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Society and our healthcare system are facing unprecedented challenges due to the expansion of the older population. As plastic surgeons, we can improve care of our older patients through understanding the mechanisms of aging that inevitably impact their outcomes and well-being. One of the major hallmarks of aging, cellular senescence, has recently become the focus of vigorous research in academia and industry. Senescent cells, which are metabolically active but in a state of stable cell cycle arrest, are implicated in causing aging and numerous age-related diseases. Further characterization of the biology of senescence revealed that it can be both detrimental and beneficial to organisms depending on tissue context and senescence chronicity. Here, we review the role of cellular senescence in aging, wound healing, tissue regeneration, and other domains relevant to plastic surgery. We also review the current state of research on therapeutics that modulate senescence to improve conditions of aging.
Collapse
Affiliation(s)
- Maria Shvedova
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Elizabeth L Thompson
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Laura J Niedernhofer
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Daniel S Roh
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| |
Collapse
|
10
|
Thompson EL, Pitcher LE, Niedernhofer LJ, Robbins PD. Targeting Cellular Senescence with Senotherapeutics: Development of New Approaches for Skin Care. Plast Reconstr Surg 2022; 150:12S-19S. [PMID: 36170431 PMCID: PMC9529240 DOI: 10.1097/prs.0000000000009668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY Aging of the skin is evidenced by increased wrinkles, age spots, dryness, and thinning with decreased elasticity. Extrinsic and intrinsic factors including UV, pollution, and inflammation lead to an increase in senescent cells (SnCs) in skin with age that contribute to these observed pathological changes. Cellular senescence is induced by multiple types of damage and stress and is characterized by the irreversible exit from the cell cycle with upregulation of cell cycle-dependent kinase inhibitors p16INK4a and p21CIP1. Most SnCs also developed an inflammatory senescence-associated secretory phenotype (SASP) that drives further pathology through paracrine effects on neighboring cells and endocrine effects on cells at a distance. Recently, compounds able to kill senescent cells specifically, termed senolytics, or suppress the SASP, termed senomorphics, have been developed that have the potential to improve skin aging as well as systemic aging in general. Here, we provide a summary of the evidence for a key role in cellular senescence in driving skin aging. In addition, the evidence for the potential application of senotherapeutics for skin treatments is presented. Overall, topical, and possibly oral senotherapeutic treatments have tremendous potential to eventually become a standard of care for skin aging and related skin disorders.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Louise E Pitcher
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Laura J Niedernhofer
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Paul D Robbins
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| |
Collapse
|
11
|
Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci 2022; 23:ijms23126655. [PMID: 35743097 PMCID: PMC9223561 DOI: 10.3390/ijms23126655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM). The intact collagen matrix ensures proper adhesion and mechanical tension in DFs, which allows these cells to maintain collagen homeostasis while ECM correctly regulates cellular processes. When the integrity of CM is destroyed, mechanotransduction is disrupted, which is accompanied by impairment of DF functioning and destruction of collagen homeostasis, thereby contributing to the progression of aging processes in skin tissues. This article considers in detail the processes of skin aging and associated changes in the skin layers, as well as the mechanisms of these processes at the molecular level.
Collapse
|
12
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
13
|
Singh K, Maity P, Koroma AK, Basu A, Pandey RK, Beken SV, Haas P, Krug L, Hainzl A, Sindrilaru A, Pfeiffer C, Wlaschek M, Frank NY, Frank MH, Ganss C, Bánvölgyi A, Wikonkál N, Eming S, Pastar I, Tomic-Canic M, Kluth MA, Scharffetter-Kochanek K. Angiogenin Released from ABCB5 + Stromal Precursors Improves Healing of Diabetic Wounds by Promoting Angiogenesis. J Invest Dermatol 2021; 142:1725-1736.e10. [PMID: 34808236 DOI: 10.1016/j.jid.2021.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023]
Abstract
Severe angiopathy is a major driver for diabetes associated secondary complications. Knowledge on underlying mechanisms essential for advanced therapies to attenuate these pathologies is limited. Injection of ABCB5+ stromal precursors (SPs) at the edge of non-healing diabetic wounds in a murine db/db model, closely mirroring human type II diabetes, profoundly accelerates wound closure. Strikingly, enhanced angiogenesis was substantially enforced by the release of the ribonuclease angiogenin from ABCB5+ SPs. This compensates for the profoundly reduced angiogenin expression in non-treated murine chronic diabetic wounds. Silencing of angiogenin in ABCB5+ SPs prior to injection significantly reduced angiogenesis and delayed wound closure in diabetic db/db mice implying an unprecedented key role for angiogenin in tissue regeneration in diabetes. These data hold significant promise for further refining SPs-based therapies of non-healing diabetic foot ulcers and other pathologies with impaired angiogenesis.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | | | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Rajeev Kumar Pandey
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Seppe Vander Beken
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Philipp Haas
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Adelheid Hainzl
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Christiane Pfeiffer
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Natasha Y Frank
- Transplantation Research Center, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, West Roxbury, MA, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus H Frank
- Transplantation Research Center, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA; Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Christoph Ganss
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Norbert Wikonkál
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Sabine Eming
- Department of Dermatology and Venereology, University of Cologne, Cologne, Germany
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mark A Kluth
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | |
Collapse
|
14
|
Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2021; 11:20899. [PMID: 34686697 PMCID: PMC8536703 DOI: 10.1038/s41598-021-00319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.
Collapse
|
15
|
Maity P, Singh K, Krug L, Koroma A, Hainzl A, Bloch W, Kochanek S, Wlaschek M, Schorpp-Kistner M, Angel P, Ignatius A, Geiger H, Scharffetter-Kochanek K. Persistent JunB activation in fibroblasts disrupts stem cell niche interactions enforcing skin aging. Cell Rep 2021; 36:109634. [PMID: 34469740 DOI: 10.1016/j.celrep.2021.109634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Fibroblasts residing in the connective tissues constitute the stem cell niche, particularly in organs such as skin. Although the effect of fibroblasts on stem cell niches and organ aging is an emerging concept, the underlying mechanisms are largely unresolved. We report a mechanism of redox-dependent activation of transcription factor JunB, which, through concomitant upregulation of p16INK4A and repression of insulin growth factor-1 (IGF-1), initiates the installment of fibroblast senescence. Fibroblast senescence profoundly disrupts the metabolic and structural niche, and its essential interactions with different stem cells thus enforces depletion of stem cells pools and skin tissue decline. In fact, silencing of JunB in a fibroblast-niche-specific manner-by reinstatement of IGF-1 and p16 levels-restores skin stem cell pools and overall skin tissue integrity. Here, we report a role of JunB in the control of connective tissue niche and identified targets to combat skin aging and associated pathologies.
Collapse
Affiliation(s)
- Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany; Aging Research Center (ARC), 89081 Ulm, Germany.
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany; Aging Research Center (ARC), 89081 Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Albert Koroma
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany; Aging Research Center (ARC), 89081 Ulm, Germany
| | - Adelheid Hainzl
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, Molecular and cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Ulm University, 89081 Ulm, Germany
| | - Hartmut Geiger
- Aging Research Center (ARC), 89081 Ulm, Germany; Institute of Molecular Medicine and Stem Cell Aging, Ulm University, 89081 Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany; Aging Research Center (ARC), 89081 Ulm, Germany.
| |
Collapse
|
16
|
Cellular Senescence and Inflammaging in the Skin Microenvironment. Int J Mol Sci 2021; 22:ijms22083849. [PMID: 33917737 PMCID: PMC8068194 DOI: 10.3390/ijms22083849] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence and aging result in a reduced ability to manage persistent types of inflammation. Thus, the chronic low-level inflammation associated with aging phenotype is called “inflammaging”. Inflammaging is not only related with age-associated chronic systemic diseases such as cardiovascular disease and diabetes, but also skin aging. As the largest organ of the body, skin is continuously exposed to external stressors such as UV radiation, air particulate matter, and human microbiome. In this review article, we present mechanisms for accumulation of senescence cells in different compartments of the skin based on cell types, and their association with skin resident immune cells to describe changes in cutaneous immunity during the aging process.
Collapse
|
17
|
Connective Tissue and Fibroblast Senescence in Skin Aging. J Invest Dermatol 2021; 141:985-992. [PMID: 33563466 DOI: 10.1016/j.jid.2020.11.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that skin aging is significantly enforced by the accumulation of senescent dermal fibroblasts. Various stressors damaging macromolecules inside and outside fibroblasts are responsible. In addition, NK cells fail to adequately remove senescent (SEN) fibroblasts from tissues. SEN fibroblasts by the release of the proinflammatory, tissue degrading senescent-associated secretory phenotype factors and vesicles with distinct cargo impact on their endogenous niche and spread senescence and skin aging. In this review, we will further discuss less noticed facets, including the plasticity of distinct dermal fibroblast phenotypes, the underestimated impact of the extracellular matrix itself, and the depletion of fibroblast subsets on skin homeostasis and aging.
Collapse
|
18
|
Impairment of IGF-1 Signaling and Antioxidant Response Are Associated with Radiation Sensitivity and Mortality. Int J Mol Sci 2021; 22:ijms22010451. [PMID: 33466349 PMCID: PMC7795011 DOI: 10.3390/ijms22010451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/03/2023] Open
Abstract
Following exposure to high doses of ionizing radiation, diverse strains of vertebrate species will manifest varying levels of radiation sensitivity. To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, two mouse strains with varying radiosensitivity (C3H/HeN, and CD2F1), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling pathway is associated with radiosensitivity, we investigated the link between systemic or tissue-specific IGF-1 signaling and radiosensitivity. Adult male C3H/HeN and CD2F1 mice were irradiated using gamma photons at Lethal Dose-70/30 (LD70/30), 7.8 and 9.35 Gy doses, respectively. Those mice that survived up to 30 days post-irradiation, were termed the survivors. Mice that were euthanized prior to 30 days post-irradiation due to deteriorated health were termed decedents. The analysis of non-irradiated and irradiated survivor and decedent mice showed that inter-strain radiosensitivity and post-irradiation survival outcomes are associated with activation status of tissue and systemic IGF-1 signaling, nuclear factor erythroid 2-related factor 2 (Nrf2) activation, and the gene expression profile of cardiac mitochondrial energy metabolism pathways. Our findings link radiosensitivity with dysregulation of IGF-1 signaling, and highlight the role of antioxidant gene response and mitochondrial function in radiation sensitivity.
Collapse
|
19
|
Munir S, Basu A, Maity P, Krug L, Haas P, Jiang D, Strauss G, Wlaschek M, Geiger H, Singh K, Scharffetter-Kochanek K. TLR4-dependent shaping of the wound site by MSCs accelerates wound healing. EMBO Rep 2020; 21:e48777. [PMID: 32162777 PMCID: PMC7202058 DOI: 10.15252/embr.201948777] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
We here address the question whether the unique capacity of mesenchymal stem cells to re‐establish tissue homeostasis depends on their potential to sense pathogen‐associated molecular pattern and, in consequence, mount an adaptive response in the interest of tissue repair. After injection of MSCs primed with the bacterial wall component LPS into murine wounds, an unexpected acceleration of healing occurs, clearly exceeding that of non‐primed MSCs. This correlates with a fundamental reprogramming of the transcriptome in LPS‐treated MSCs as deduced from RNAseq analysis and its validation. A network of genes mediating the adaptive response through the Toll‐like receptor 4 (TLR4) pathway responsible for neutrophil and macrophage recruitment and their activation profoundly contributes to enhanced wound healing. In fact, injection of LPS‐primed MSCs silenced for TLR4 fails to accelerate wound healing. These unprecedented findings hold substantial promise to refine current MSC‐based therapies for difficult‐to‐treat wounds.
Collapse
Affiliation(s)
- Saira Munir
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| | - Philipp Haas
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dongsheng Jiang
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany.,Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| |
Collapse
|
20
|
Vander Beken S, de Vries JC, Meier-Schiesser B, Meyer P, Jiang D, Sindrilaru A, Ferreira FF, Hainzl A, Schatz S, Muschhammer J, Scheurmann NJ, Kampilafkos P, Seitz AM, Dürselen L, Ignatius A, Kluth MA, Ganss C, Wlaschek M, Singh K, Maity P, Frank NY, Frank MH, Scharffetter-Kochanek K. Newly Defined ATP-Binding Cassette Subfamily B Member 5 Positive Dermal Mesenchymal Stem Cells Promote Healing of Chronic Iron-Overload Wounds via Secretion of Interleukin-1 Receptor Antagonist. Stem Cells 2019; 37:1057-1074. [PMID: 31002437 PMCID: PMC6663647 DOI: 10.1002/stem.3022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/22/2019] [Indexed: 01/07/2023]
Abstract
In this study, we report the beneficial effects of a newly identified dermal cell subpopulation expressing the ATP-binding cassette subfamily B member 5 (ABCB5) for the therapy of nonhealing wounds. Local administration of dermal ABCB5+ -derived mesenchymal stem cells (MSCs) attenuated macrophage-dominated inflammation and thereby accelerated healing of full-thickness excisional wounds in the iron-overload mouse model mimicking the nonhealing state of human venous leg ulcers. The observed beneficial effects were due to interleukin-1 receptor antagonist (IL-1RA) secreted by ABCB5+ -derived MSCs, which dampened inflammation and shifted the prevalence of unrestrained proinflammatory M1 macrophages toward repair promoting anti-inflammatory M2 macrophages at the wound site. The beneficial anti-inflammatory effect of IL-1RA released from ABCB5+ -derived MSCs on human wound macrophages was conserved in humanized NOD-scid IL2rγ null mice. In conclusion, human dermal ABCB5+ cells represent a novel, easily accessible, and marker-enriched source of MSCs, which holds substantial promise to successfully treat chronic nonhealing wounds in humans. Stem Cells 2019;37:1057-1074.
Collapse
Affiliation(s)
- Seppe Vander Beken
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Juliane C de Vries
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | | | - Patrick Meyer
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dongsheng Jiang
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Filipa F Ferreira
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Adelheid Hainzl
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Susanne Schatz
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Jana Muschhammer
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | | | | | - Andreas M Seitz
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Mark A Kluth
- TICEBA GmbH, Heidelberg, Germany
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - Christoph Ganss
- TICEBA GmbH, Heidelberg, Germany
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Natasha Y Frank
- Transplantation Research Center, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Markus H Frank
- Transplantation Research Center, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | | |
Collapse
|
21
|
Wlaschek M, Singh K, Sindrilaru A, Crisan D, Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic Biol Med 2019; 133:262-275. [PMID: 30261274 DOI: 10.1016/j.freeradbiomed.2018.09.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Chronic wounds pose a stern challenge to health care systems with growing incidence especially in the aged population. In the presence of increased iron concentrations, recruitment of monocytes from the circulation and activation towards ROS and RNS releasing M1 macrophages together with the persistence of senescent fibroblasts at the wound site are significantly enhanced. This unrestrained activation of pro-inflammatory macrophages and senescent fibroblasts has increasingly been acknowledged as main driver causing non-healing wounds. In a metaphor, macrophages act like stage directors of wound healing, resident fibroblasts constitute main actors and increased iron concentrations are decisive parts of the libretto, and - if dysregulated - are responsible for the development of non-healing wounds. This review will focus on recent cellular and molecular findings from chronic venous leg ulcers and diabetic non-healing wounds both constituting the most common pathologies often resulting in limb amputations of patients. This not only causes tremendous suffering and loss of life quality, but is also associated with an increase in mortality and a major socio-economic burden. Despite recent advances, the underlying molecular mechanisms are not completely understood. Overwhelming evidence shows that reactive oxygen species and the transition metal and trace element iron at pathological concentrations are crucially involved in a complex interplay between cells of different histogenetic origin and their extracellular niche environment. This interplay depends on a variety of cellular, non-cellular biochemical and cell biological mechanisms. Here, we will highlight recent progress in the field of iron-dependent regulation of macrophages and fibroblasts and related pathologies linked to non-healing chronic wounds.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Diana Crisan
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
22
|
Koenen M, Culemann S, Vettorazzi S, Caratti G, Frappart L, Baum W, Krönke G, Baschant U, Tuckermann JP. Glucocorticoid receptor in stromal cells is essential for glucocorticoid-mediated suppression of inflammation in arthritis. Ann Rheum Dis 2018; 77:1610-1618. [PMID: 29997111 PMCID: PMC6225806 DOI: 10.1136/annrheumdis-2017-212762] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glucocorticoid (GC) therapy is frequently used to treat rheumatoid arthritis due to potent anti-inflammatory actions of GCs. Direct actions of GCs on immune cells were suggested to suppress inflammation. OBJECTIVES Define the role of the glucocorticoid receptor (GR) in stromal cells for suppression of inflammatory arthritis. METHODS Bone marrow chimeric mice lacking the GR in the hematopoietic or stromal compartment, respectively, and mice with impaired GR dimerisation (GRdim) were analysed for their response to dexamethasone (DEX, 1 mg/kg) treatment in serum transfer-induced arthritis (STIA). Joint swelling, cell infiltration (histology), cytokines, cell composition (flow cytometry) and gene expression were analysed and RNASeq of wild type and GRdim primary murine fibroblast-like synoviocytes (FLS) was performed. RESULTS GR deficiency in immune cells did not impair GC-mediated suppression of STIA. In contrast, mice with GR-deficient or GR dimerisation-impaired stromal cells were resistant to GC treatment, despite efficient suppression of cytokines. Intriguingly, in mice with impaired GR function in the stromal compartment, GCs failed to stimulate non-classical, non-activated macrophages (Ly6Cneg, MHCIIneg) and associated anti-inflammatory markers CD163, CD36, AnxA1, MerTK and Axl. Mice with GR deficiency in FLS were partially resistant to GC-induced suppression of STIA. Accordingly, RNASeq analysis of DEX-treated GRdim FLS revealed a distinct gene signature indicating enhanced activity and a failure to reduce macrophage inflammatory protein (Mip)-1α and Mip-1β. CONCLUSION We report a novel anti-inflammatory mechanism of GC action that involves GR dimerisation-dependent gene regulation in non-immune stromal cells, presumably FLS. FLS control non-classical, anti-inflammatory polarisation of macrophages that contributes to suppression of inflammation in arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cytokines/biosynthesis
- Dexamethasone/pharmacology
- Dexamethasone/therapeutic use
- Dimerization
- Gene Expression Regulation/drug effects
- Glucocorticoids/pharmacology
- Glucocorticoids/therapeutic use
- Metabolism, Inborn Errors/metabolism
- Metabolism, Inborn Errors/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Transplantation Chimera
Collapse
Affiliation(s)
- Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Stephan Culemann
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Sabine Vettorazzi
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
| | - Giorgio Caratti
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Lucien Frappart
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
- INSERM, Oncogenèse et Progression Tumorale, Universitè Claude Bernard Lyon I, Lyon, France
| | - Wolfgang Baum
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Ulrike Baschant
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- Tuckermann Lab, Leibniz Institute for Age Research–Fritz-Lipmann-Institute, Jena, Germany
| |
Collapse
|
23
|
Singh K, Camera E, Krug L, Basu A, Pandey RK, Munir S, Wlaschek M, Kochanek S, Schorpp-Kistner M, Picardo M, Angel P, Niemann C, Maity P, Scharffetter-Kochanek K. JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin. Nat Commun 2018; 9:3425. [PMID: 30143626 PMCID: PMC6109099 DOI: 10.1038/s41467-018-05726-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Transcription factors ensure skin homeostasis via tight regulation of distinct resident stem cells. Here we report that JunB, a member of the AP-1 transcription factor family, regulates epidermal stem cells and sebaceous glands through balancing proliferation and differentiation of progenitors and by suppressing lineage infidelity. JunB deficiency in basal progenitors results in a dermatitis-like syndrome resembling seborrheic dermatitis harboring structurally and functionally impaired sebaceous glands with a globally altered lipid profile. A fate switch occurs in a subset of JunB deficient epidermal progenitors during wound healing resulting in de novo formation of sebaceous glands. Dysregulated Notch signaling is identified to be causal for this phenotype. In fact, pharmacological inhibition of Notch signaling can efficiently restore the lineage drift, impaired epidermal differentiation and disrupted barrier function in JunB conditional knockout mice. These findings define an unprecedented role for JunB in epidermal-pilosebaceous stem cell homeostasis and its pathology. Epidermal homeostasis is maintained by the activity of stem cells. Here, the authors show that deficiency of the transcription factor JunB leads to altered Notch signaling in stem cells, resulting in a cell fate switch and de novo formation of aberrant sebaceous glands, altered epidermal differentiation and impaired barrier function.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics, San Gallicano Dermatologic Institute (IRCCS), Rome, 00144, Italy
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Rajeev Kumar Pandey
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Saira Munir
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Ulm, 89081, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics, San Gallicano Dermatologic Institute (IRCCS), Rome, 00144, Italy
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Catherin Niemann
- Institute for Biochemistry II, University of Cologne, Cologne, 50931, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50931, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany. .,Aging Research Center (ARC), Ulm, 89081, Germany.
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany. .,Aging Research Center (ARC), Ulm, 89081, Germany.
| |
Collapse
|
24
|
Farsam V, Basu A, Gatzka M, Treiber N, Schneider LA, Mulaw MA, Lucas T, Kochanek S, Dummer R, Levesque MP, Wlaschek M, Scharffetter-Kochanek K. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget 2018; 7:83554-83569. [PMID: 27907906 PMCID: PMC5347788 DOI: 10.18632/oncotarget.13446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with a rising incidence of cutaneous squamous cell carcinoma (cSCC), an aggressive skin cancer with the potential for local invasion and metastasis. Acquisition of a senescence-associated secretory phenotype (SASP) in dermal fibroblasts has been postulated to promote skin cancer progression in elderly individuals. The underlying molecular mechanisms are largely unexplored. We show that Chemerin, a previously unreported SASP factor released from senescent human dermal fibroblasts, promotes cSCC cell migration, a key feature driving tumor progression. Whereas the Chemerin abundance is downregulated in malignant cSCC cells, increased Chemerin transcripts and protein concentrations are detected in replicative senescent fibroblasts in vitro and in the fibroblast of skin sections from old donors, indicating that a Chemerin gradient is built up in the dermis of elderly. Using Transwell® migration assays, we show that Chemerin enhances the chemotaxis of different cSCC cell lines. Notably, the Chemerin receptor CCRL2 is remarkably upregulated in cSCC cell lines and human patient biopsies. Silencing Chemerin in senescent fibroblasts or the CCRL2 and GPR1 receptors in the SCL-1 cSCC cell line abrogates the Chemerin-mediated chemotaxis. Chemerin triggers the MAPK cascade via JNK and ERK1 activation, whereby the inhibition impairs the SASP- or Chemerin-mediated cSCC cell migration. Taken together, we uncover a key role for Chemerin, as a major factor in the secretome of senescent fibroblasts, promoting cSCC cell migration and possibly progression, relaying its signals through CCRL2 and GPR1 receptors with subsequent MAPK activation. These findings might have implications for targeted therapeutic interventions in elderly patients.
Collapse
Affiliation(s)
- Vida Farsam
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Martina Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Nicolai Treiber
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Lars A Schneider
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, University of Ulm, Germany
| | - Tanja Lucas
- Department of Gene Therapy, University of Ulm, Germany
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Switzerland
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | | |
Collapse
|
25
|
Meyer P, Maity P, Burkovski A, Schwab J, Müssel C, Singh K, Ferreira FF, Krug L, Maier HJ, Wlaschek M, Wirth T, Kestler HA, Scharffetter-Kochanek K. A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 2017; 13:e1005741. [PMID: 29206223 PMCID: PMC5730191 DOI: 10.1371/journal.pcbi.1005741] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/14/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Cells and tissues are exposed to stress from numerous sources. Senescence is a protective mechanism that prevents malignant tissue changes and constitutes a fundamental mechanism of aging. It can be accompanied by a senescence associated secretory phenotype (SASP) that causes chronic inflammation. We present a Boolean network model-based gene regulatory network of the SASP, incorporating published gene interaction data. The simulation results describe current biological knowledge. The model predicts different in-silico knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon DNA damage. The NF-κB Essential Modulator (NEMO) was the most promising in-silico knockout candidate and we were able to show its importance in the inhibition of IL-6 and IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the speculated regulator function of the NF-κB signaling pathway in the onset and maintenance of the SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-κB, giving access to possible therapy targets for SASP-accompanied diseases.
Collapse
Affiliation(s)
- Patrick Meyer
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Andre Burkovski
- Institute of Medical Systems Biology, University of Ulm, Germany
- International Graduate School in Molecular Medicine, University of Ulm, Germany
| | - Julian Schwab
- Institute of Medical Systems Biology, University of Ulm, Germany
- International Graduate School in Molecular Medicine, University of Ulm, Germany
| | - Christoph Müssel
- Institute of Medical Systems Biology, University of Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Filipa F. Ferreira
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Germany
| | - Hans A. Kestler
- Aging Research Center (ARC), University of Ulm, Germany
- Institute of Medical Systems Biology, University of Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| |
Collapse
|
26
|
Bharathi Priya L, Baskaran R, Huang CY, Vijaya Padma V. Neferine modulates IGF-1R/Nrf2 signaling in doxorubicin treated H9c2 cardiomyoblasts. J Cell Biochem 2017; 119:1441-1452. [PMID: 28731223 DOI: 10.1002/jcb.26305] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) induced cardiotoxicity is a major problem during chemotherapy of cancers. DOX-mediated suppression of type 1 IGF receptor (IGF-1R) signaling leads to cardiac dysfunction. Neferine, a bisbezylisoquinoline alkaloid from the seed embryos of Nelumbo nucifera Gaertn possesses a distinct range of pharmacological properties. Herewith, the present study attempts to elucidate the protective role of neferine against DOX induced toxicity in H9c2 rat cardiomyoblast cell line model. DOX-treated H9c2 cells significantly increased mitochondrial superoxide generation, depleted cellular antioxidant status, suppressed the activation of IGF-1R signaling via PI3K/Akt/mTOR and induced autophagy by the activation of ULK1, Beclin1, Atg7, and LC3B. Neferine pre-treatment activated IGF-1R signaling, improved cellular antioxidant pool, increased the expression of down-stream targets of IGF-1R, such as PI3K/Akt/mTOR, inhibited mitochondrial superoxide generation and autophagy significantly with the induction of Nrf2 translocation and expressions of HO1 and SOD1. Our study suggests the use of neferine for amelioration of DOX-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Lohanathan Bharathi Priya
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Singh K, Krug L, Basu A, Meyer P, Treiber N, Vander Beken S, Wlaschek M, Kochanek S, Bloch W, Geiger H, Maity P, Scharffetter-Kochanek K. Alpha-Ketoglutarate Curbs Differentiation and Induces Cell Death in Mesenchymal Stromal Precursors with Mitochondrial Dysfunction. Stem Cells 2017; 35:1704-1718. [PMID: 28398002 DOI: 10.1002/stem.2629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Increased concentrations of reactive oxygen species (ROS) originating from dysfunctional mitochondria contribute to diverse aging-related degenerative disorders. But so far little is known about the impact of distinct ROS on metabolism and fate of stromal precursor cells. Here, we demonstrate that an increase in superoxide anion radicals due to superoxide dismutase 2 (Sod2) deficiency in stromal precursor cells suppress osteogenic and adipogenic differentiation through fundamental changes in the global metabolite landscape. Our data identify impairment of the pyruvate and l-glutamine metabolism causing toxic accumulation of alpha-ketoglutarate in the Sod2-deficient and intrinsically aged stromal precursor cells as a major cause for their reduced lineage differentiation. Alpha-ketoglutarate accumulation led to enhanced nucleocytoplasmic vacuolation and chromatin condensation-mediated cell death in Sod2-deficient stromal precursor cells as a consequence of DNA damage, Hif-1α instability, and reduced histone H3 (Lys27) acetylation. These findings hold promise for prevention and treatment of mitochondrial disorders commonly associated with aged individuals. Stem Cells 2017;35:1704-1718.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | - Patrick Meyer
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | - Nicolai Treiber
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | | | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany.,Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | |
Collapse
|
28
|
De Magalhaes Filho CD, Kappeler L, Dupont J, Solinc J, Villapol S, Denis C, Nosten-Bertrand M, Billard JM, Blaise A, Tronche F, Giros B, Charriaut-Marlangue C, Aïd S, Le Bouc Y, Holzenberger M. Deleting IGF-1 receptor from forebrain neurons confers neuroprotection during stroke and upregulates endocrine somatotropin. J Cereb Blood Flow Metab 2017; 37:396-412. [PMID: 26762506 PMCID: PMC5381438 DOI: 10.1177/0271678x15626718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insulin-like growth factors control numerous processes, namely somatic growth, metabolism and stress resistance, connecting this pathway to aging and age-related diseases. Insulin-like growth factor signaling also impacts on neurogenesis, neuronal survival and structural plasticity. Recent reports demonstrated that diminished insulin-like growth factor signaling confers increased stress resistance in brain and other tissues. To better understand the role of neuronal insulin-like growth factor signaling in neuroprotection, we inactivated insulin-like growth factor type-1-receptor in forebrain neurons using conditional Cre-LoxP-mediated gene targeting. We found that brain structure and function, including memory performance, were preserved in insulin-like growth factor receptor mutants, and that certain characteristics improved, notably synaptic transmission in hippocampal neurons. To reveal stress-related roles of insulin-like growth factor signaling, we challenged the brain using a stroke-like insult. Importantly, when charged with hypoxia-ischemia, mutant brains were broadly protected from cell damage, neuroinflammation and cerebral edema. We also found that in mice with insulin-like growth factor receptor knockout specifically in forebrain neurons, a substantial systemic upregulation of growth hormone and insulin-like growth factor-I occurred, which was associated with significant somatic overgrowth. Collectively, we found strong evidence that blocking neuronal insulin-like growth factor signaling increases peripheral somatotropic tone and simultaneously protects the brain against hypoxic-ischemic injury, findings that may contribute to developing new therapeutic concepts preventing the disabling consequences of stroke.
Collapse
Affiliation(s)
- C Daniel De Magalhaes Filho
- 1 INSERM Research Center UMR938, Paris, France.,2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | - Laurent Kappeler
- 1 INSERM Research Center UMR938, Paris, France.,2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Cécile Denis
- 2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France.,5 INSERM UMR1130, Neurosciences, Institut de Biologie Paris-Seine, Paris, France.,6 CNRS UMR8246, Neurosciences, Institut de Biologie Paris-Seine, Paris, France
| | - Marika Nosten-Bertrand
- 2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France.,5 INSERM UMR1130, Neurosciences, Institut de Biologie Paris-Seine, Paris, France.,6 CNRS UMR8246, Neurosciences, Institut de Biologie Paris-Seine, Paris, France
| | - Jean-Marie Billard
- 7 Centre de Psychiatrie et Neurosciences, UMR894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Annick Blaise
- 1 INSERM Research Center UMR938, Paris, France.,2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | - François Tronche
- 2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France.,5 INSERM UMR1130, Neurosciences, Institut de Biologie Paris-Seine, Paris, France.,6 CNRS UMR8246, Neurosciences, Institut de Biologie Paris-Seine, Paris, France
| | - Bruno Giros
- 2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France.,5 INSERM UMR1130, Neurosciences, Institut de Biologie Paris-Seine, Paris, France.,6 CNRS UMR8246, Neurosciences, Institut de Biologie Paris-Seine, Paris, France.,8 Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, Canada
| | | | - Saba Aïd
- 1 INSERM Research Center UMR938, Paris, France.,2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | - Yves Le Bouc
- 1 INSERM Research Center UMR938, Paris, France.,2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| | - Martin Holzenberger
- 1 INSERM Research Center UMR938, Paris, France.,2 Sorbonne Universités, UPMC - Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
29
|
Collins JA, Wood ST, Nelson KJ, Rowe MA, Carlson CS, Chubinskaya S, Poole LB, Furdui CM, Loeser RF. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes. J Biol Chem 2016; 291:6641-54. [PMID: 26797130 DOI: 10.1074/jbc.m115.693523] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.
Collapse
Affiliation(s)
- John A Collins
- From the Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott T Wood
- From the Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - Meredith A Rowe
- From the Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Cathy S Carlson
- the Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota 55108, and
| | - Susan Chubinskaya
- the Department of Pediatrics, Rush University Medical Center, Chicago, Illinois 60612
| | | | - Cristina M Furdui
- Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Richard F Loeser
- From the Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
30
|
|