1
|
Brzozowski CF, Challa H, Gcwensa NZ, Hall D, Nabert D, Chambers N, Gallardo I, Millet M, Volpicelli-Daley L, Moehle MS. Early α-synuclein aggregation decreases corticostriatal glutamate drive and synapse density. Neurobiol Dis 2025; 210:106918. [PMID: 40250719 DOI: 10.1016/j.nbd.2025.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025] Open
Abstract
Neuronal inclusions of α-synuclein (α-syn) are pathological hallmarks of Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). α-Syn pathology accumulates in cortical neurons which project to the striatum. To understand how α-syn pathology affects cortico-striatal synapses at early time points before significant dopamine neuron loss, pre-formed α-syn fibrils (PFF) were injected into the striatum to induce endogenous α-syn aggregation in corticostriatal-projecting neurons. Electrophysiological recordings of striatal spiny projection neurons (SPNs) from acute slices found a significant decrease in evoked corticostriatal glutamate release and corticostriatal synaptic release sites in mice with PFF-induced aggregates compared to monomer injected mice. Expansion microscopy, confocal microscopy and Imaris reconstructions were used to identify VGLUT1 positive presynaptic terminals juxtaposed to Homer1 positive postsynaptic densities, termed synaptic loci. Quantitation of synaptic loci density revealed an early loss of corticostriatal synapses. Immunoblots of the striatum showed reductions in expression of pre-synaptic proteins VGLUT1, VAMP2 and Snap25, in mice with α-syn aggregates compared to controls. Paradoxically, a small percentage of remaining VGLUT1+ synaptic loci positive for pS129-α-syn aggregates showed enlarged volumes compared to nearby synapses without α-syn aggregates. Our combined physiology and high-resolution imaging data point to an early loss of corticostriatal synapses in mice harboring α-synuclein inclusions, which may contribute to impaired basal ganglia circuitry in PD and DLB.
Collapse
Affiliation(s)
- Charlotte F Brzozowski
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Harshita Challa
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nolwazi Z Gcwensa
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dominic Hall
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Douglas Nabert
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole Chambers
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ignacio Gallardo
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michael Millet
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Mak E, Reid RI, Przybelski SA, Fought AM, Lesnick TG, Schwarz CG, Senjem ML, Raghavan S, Vemuri P, Jack CR, Min HK, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Dickson DW, Graff-Radford NR, Day GS, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, O'Brien JT, Kantarci K. Cortical microstructural abnormalities in dementia with Lewy bodies and their associations with Alzheimer's disease copathologies. NPJ Parkinsons Dis 2025; 11:124. [PMID: 40355490 PMCID: PMC12069582 DOI: 10.1038/s41531-025-00944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/18/2025] [Indexed: 05/14/2025] Open
Abstract
Dementia with Lewy bodies (DLB) frequently coexists with Alzheimer's disease pathology, yet the pattern of cortical microstructural injury and its relationship with amyloid, tau, and cerebrovascular pathologies remains unclear. We applied neurite orientation dispersion and density imaging (NODDI) to assess cortical microstructural integrity in 57 individuals within the DLB spectrum and 57 age- and sex-matched cognitively unimpaired controls by quantifying mean diffusivity (MD), tissue-weighted neurite density index (tNDI), orientation dispersion index (ODI), and free water fraction (FWF). Amyloid and tau levels were measured using PiB and Flortaucipir PET imaging. Compared to controls, DLB exhibited increased MD and FWF, reduced tNDI across multiple regions, and focal ODI reductions in the occipital cortex. Structural equation modeling revealed that APOE genotype influenced amyloid levels, which elevated tau, leading to microstructural injury. These findings highlight the role of AD pathology in DLB neurodegeneration, advocating for multi-target therapeutic approaches addressing both AD and DLB-specific pathologies.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Angela M Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Hoon Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Dennis W Dickson
- Laboratory of Medicine and Pathology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Dutta S, Hensel J, Scott A, Mohallem R, Rossitto LAM, Khan HF, Johnson T, Ferreira CR, Marmolejo JF, Chen X, Jayant K, Aryal UK, Volpicelli-Daley L, Rochet JC. Synaptic phosphoproteome modifications and cortical circuit dysfunction are linked to the early-stage progression of alpha-synuclein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634820. [PMID: 39896549 PMCID: PMC11785254 DOI: 10.1101/2025.01.24.634820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical dysfunction is increasingly recognized as a major contributor to the non-motor symptoms associated with Parkinson's disease (PD) and other synucleinopathies. Although functional alterations in cortical circuits have been observed in preclinical PD models, the underlying molecular mechanisms are unclear. To bridge this knowledge gap, we investigated tissue-level changes in the cortices of rats and mice treated with alpha-synuclein (aSyn) seeds using a multi-omics approach. Our study revealed significant phosphoproteomic changes, but not global proteomic or lipid profiling changes, in the rat sensorimotor cortex 3 months after intrastriatal injection with aSyn preformed fibrils (PFFs). Gene ontology analysis of the phosphoproteomic data indicated that PFF administration impacted pathways related to synaptic transmission and cytoskeletal organization. Similar phosphoproteomic perturbations were observed in the sensorimotor cortex of mice injected intrastriatally or intracortically with aSyn PFFs. Functional analyses demonstrated increased neuronal firing rates and enhanced spike-spike coherence in the sensorimotor cortices of PFF-treated mice, indicating seed-dependent cortical circuit dysfunction. Bioinformatic analysis of the altered phosphosites suggested the involvement of several kinases, including casein kinase-2 (CK2), which has been previously implicated in PD pathology. Collectively, these findings highlight the importance of phosphorylation-mediated signaling pathways in the cortical response to aSyn pathology spread in PD and related synucleinopathies, setting the stage for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sayan Dutta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer Hensel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Alicia Scott
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Leigh-Ana M Rossitto
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Hammad Furqan Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Teshawn Johnson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Jackeline F. Marmolejo
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Khan HF, Dutta S, Scott AN, Xiao S, Yadav S, Chen X, Aryal UK, Kinzer-Ursem TL, Rochet JC, Jayant K. Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex. Nat Commun 2024; 15:10775. [PMID: 39737978 PMCID: PMC11685769 DOI: 10.1038/s41467-024-54945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites. Notably, while beta-band spike-field-coherence reflected a significant increase beginning in Layer-5 and then spreading to Layer-2/3, the rate of entrainment and the propensity of stochastic beta-burst dynamics was markedly seeding location-specific. This beta dysfunction was accompanied by gradual superficial excitatory ensemble instability following cortical, but not striatal, preformed fibrils injection. We reveal a link between Layer-5 dendritic vulnerabilities and translaminar beta event dysfunction, which could be used to differentiate symptomatically similar synucleinopathies.
Collapse
Affiliation(s)
- Hammad F Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Sayan Dutta
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Alicia N Scott
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Shulan Xiao
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Saumitra Yadav
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Bai X, Guo T, Guan X, Zhou C, Wu J, Wu H, Liu X, Wu C, Chen J, Wen J, Qin J, Tan S, DuanMu X, Gu L, Gao T, Huang P, Zhang B, Xu X, Zheng X, Zhang M. Cortical microstructural alterations in different stages of Parkinson's disease. Brain Imaging Behav 2024; 18:1438-1447. [PMID: 39331345 DOI: 10.1007/s11682-024-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.
Collapse
Affiliation(s)
- Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Chengqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojie DuanMu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiangwu Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Massari CM, Dues DJ, Bergsma A, Sipple K, Frye M, Williams ET, Moore DJ. Neuropathology in an α-synuclein preformed fibril mouse model occurs independent of the Parkinson's disease-linked lysosomal ATP13A2 protein. Neurobiol Dis 2024; 202:106701. [PMID: 39406291 DOI: 10.1016/j.nbd.2024.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P5B-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear. Cellular studies report that ATP13A2 can regulate α-synuclein (α-syn) secretion via exosomes. However, the relationship between ATP13A2 and α-syn in animal models remains inconclusive. ATP13A2 knockout (KO) mice exhibit lysosomal abnormalities and reactive astrogliosis but do not develop PD-related neuropathology. Studies manipulating α-syn levels in mice lacking ATP13A2 indicate minimal effects on pathology. The delivery of α-syn preformed fibrils (PFFs) into the mouse striatum is a well-defined model to study the development and spread of α-syn pathology. In this study we unilaterally injected wild-type (WT) and homozygous ATP13A2 KO mice with mouse α-syn PFFs in the striatum and evaluated mice for neuropathology after 6 months. The distribution, spread and extent of α-syn aggregation in multiple regions of the mouse brain was largely independent of ATP13A2 expression. The loss of nigrostriatal pathway dopaminergic neurons and their nerve terminals induced by PFFs were equivalent in WT and ATP13A2 KO mice. Reactive astrogliosis was induced equivalently by α-syn PFFs in WT and KO mice but was already significantly higher in ATP13A2 KO mice due to pre-existing reactive gliosis. We did not identify asymmetric motor disturbances, microglial activation, or axonal damage induced by α-syn PFFs in WT or KO mice. Although α-syn PFFs induce an increase in lysosomal number in the SNc in general, TH-positive dopaminergic neurons did not exhibit either increased lysosomal area or intensity, regardless of genotype. Our study evaluating the spread of α-syn pathology reveals no exacerbation of α-syn pathology, neuronal loss, astrogliosis or motor deficits in ATP13A2 KO mice, suggesting that selective lysosomal abnormalities resulting from ATP13A2 loss do not play a major role in α-syn clearance or propagation in vivo.
Collapse
Affiliation(s)
- Caio M Massari
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dylan J Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexis Bergsma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kayla Sipple
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Maxwell Frye
- West Michigan Neurodegenerative Diseases (MiND) Program, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin T Williams
- West Michigan Neurodegenerative Diseases (MiND) Program, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
7
|
Moore C, Helms ML, Nipper MA, Winfrey LC, Finn DA, Meshul CK. Dopamine loss alters glutamate synapses and transporters in the medial prefrontal cortex and anxiety-related behaviour in a male MPTP rodent model of Parkinson's disease. Eur J Neurosci 2024; 60:6195-6215. [PMID: 39431445 DOI: 10.1111/ejn.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Anxiety is a prominent non-motor symptom of Parkinson's disease (PD). Changes in the B-spectrum recordings in PD patients of the prefrontal cortex correlate with increased anxiety. Using a rodent model of PD, we reported alterations in glutamate synapses in the striatum and substantia nigra following dopamine (DA) loss. We hypothesize that DA loss will result in increased anxiety-related behaviours and that this will be associated with alterations in glutamate synapses and transporters within the medial prefrontal cortex (mPFC). Following 4 weeks of progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, there was an increase in anxiety-related behaviours and a 78% decrease in plasma corticosterone levels versus the vehicle (VEH)-treated mice. This was associated with a 30% decrease in the density of dendritic spines in Layers Il/Ill, and a 53% decrease in the density of glutamate immuno-gold labelling within vesicular glutamate transporter 1 (Vglut1)-labelled nerve terminals and spines, with no change within vesicular glutamate transporter 2 (Vglut2) positive terminals/spines in the MPTP versus VEH groups. Our prior work determined that a decrease in striatal glutamate terminal density was associated with an increase in extracellular glutamate levels. There was an increase in protein expression of Vglut1 (40%), Vglut2 (37%) and glutamate aspartate transporter (GLAST) (225%), and a decrease in glutamate transporter 1 (GLT-1) (50%) and excitatory amino acid carrier 1 (EAAC1) (51%), in the MPTP versus VEH groups within the mPFC. These data suggest that the decrease in dendritic spines within the mPFC following nigrostriatal DA loss may be due to increased extracellular glutamate levels (decrease in glutamate transporters), leading to an increase in anxiety-related behaviours.
Collapse
Affiliation(s)
- Cindy Moore
- VA Medical Center/Portland, Portland, Oregon, USA
| | | | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Deborah A Finn
- VA Medical Center/Portland, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles K Meshul
- VA Medical Center/Portland, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
8
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 PMCID: PMC11808831 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Robert H. Edwards
- Department of Physiology and NeurologyUniversity of California, San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of SydneyCamperdownNew South WalesAustralia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Hilal A. Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRSFontenay‐Aux‐RosesFrance
| | - Shigeo Murayama
- Department of NeuropathologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child DevelopmentOsaka UniversityOsakaJapan
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationUniversity Medical CenterGöttingenGermany
- Faculty of Medical Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Stella M. Papa
- Department of NeurologySchool of Medicine, and Emory National Primate Research Center, Emory UniversityAtlantaGeorgiaUSA
| | - Leonidas Stefanis
- First Department of NeurologyEginitio Hospital, School of Medicine, National and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Amanda L. Woerman
- Department of BiologyInstitute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
- Department of Microbiology, Immunology, and PathologyPrion Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Gcwensa NZ, Russell DL, Long KY, Brzozowski CF, Liu X, Gamble KL, Cowell RM, Volpicelli-Daley LA. Excitatory synaptic structural abnormalities produced by templated aggregation of α-syn in the basolateral amygdala. Neurobiol Dis 2024; 199:106595. [PMID: 38972360 PMCID: PMC11632701 DOI: 10.1016/j.nbd.2024.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.
Collapse
Affiliation(s)
- Nolwazi Z Gcwensa
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Dreson L Russell
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Khaliah Y Long
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Charlotte F Brzozowski
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Karen L Gamble
- Department of Psychiatry and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rita M Cowell
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Laursen ALS, Olesen MV, Folke J, Brudek T, Knecht LH, Sotty F, Lambertsen KL, Fog K, Dalgaard LT, Aznar S. Systemic inflammation activates coagulation and immune cell infiltration pathways in brains with propagating α-synuclein fibril aggregates. Mol Cell Neurosci 2024; 129:103931. [PMID: 38508542 DOI: 10.1016/j.mcn.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1β, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.
Collapse
Affiliation(s)
- Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Mikkel Vestergaard Olesen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Jonas Folke
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Luisa Harriet Knecht
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 21-25, DK-5000, Odense, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, Odense, Denmark; BRIDGE - Brain-Research-Inter-Disciplinary Guided Excellence, Department of Clinical Institute, University of Southern Denmark, Winsløwparken 19, Odense, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark.
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| |
Collapse
|
11
|
Gcwensa NZ, Russell DL, Long KY, Brzozowski CF, Liu X, Gamble KL, Cowell RM, Volpicelli-Daley LA. Cortico-amygdala synaptic structural abnormalities produced by templated aggregation of α-synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594419. [PMID: 38798467 PMCID: PMC11118572 DOI: 10.1101/2024.05.15.594419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-synuclein pre-formed fibrils (PFFs) into the striatum induces robust α-synuclein aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-synuclein show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that PFF-injected mice showed reduced intervesicular distances similar to a recent study showing phospho-serine-129 α-synuclein increases synaptic vesicle clustering. Thus, pathologic α-synuclein causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.
Collapse
|
12
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced Spine Stability and Survival Lead to Increases in Dendritic Spine Density as an Early Response to Local Alpha-Synuclein Overexpression in Mouse Prefrontal Cortex. Cell Mol Neurobiol 2024; 44:42. [PMID: 38668880 PMCID: PMC11052719 DOI: 10.1007/s10571-024-01472-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Rachel Cole
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | | | - Linder H Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Akash Pradeep
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Emma Bagnall
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Georgina M Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Zhang Z, Wang R, Zhou H, Wu D, Cao Y, Zhang C, Sun H, Mu C, Hao Z, Ren H, Wang N, Yu S, Zhang J, Tao M, Wang C, Liu Y, Liu L, Liu Y, Zang J, Wang G. Inhibition of EHMT1/2 rescues synaptic damage and motor impairment in a PD mouse model. Cell Mol Life Sci 2024; 81:128. [PMID: 38472451 DOI: 10.1007/s00018-024-05176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.
Collapse
Affiliation(s)
- Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hui Zhou
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chuang Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nana Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Mengdan Tao
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Can Wang
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, Jiangsu, China.
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, China.
| |
Collapse
|
14
|
Villavicencio-Tejo F, Olesen MA, Navarro L, Calisto N, Iribarren C, García K, Corsini G, Quintanilla RA. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotox Res 2023; 42:4. [PMID: 38103074 DOI: 10.1007/s12640-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.
Collapse
Affiliation(s)
- Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile
| | - Laura Navarro
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nancy Calisto
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Iribarren
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Laboratorio de Patógenos Gastrointestinales, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Laboratorio de Microbiología Molecular y Compuestos Bioactivos, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel 8910060, Santiago, Chile.
| |
Collapse
|
15
|
Pérez-Acuña D, Shin SJ, Rhee KH, Kim SJ, Lee SJ. α-Synuclein propagation leads to synaptic abnormalities in the cortex through microglial synapse phagocytosis. Mol Brain 2023; 16:72. [PMID: 37848910 PMCID: PMC10580656 DOI: 10.1186/s13041-023-01059-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
The major neuropathologic feature of Parkinson's disease is the presence of widespread intracellular inclusions of α-synuclein known as Lewy bodies. Evidence suggests that these misfolded protein inclusions spread through the brain with disease progression. Changes in synaptic function precede neurodegeneration, and this extracellular α-synuclein can affect synaptic transmission. However, whether and how the spreading of α-synuclein aggregates modulates synaptic function before neuronal loss remains unknown. In the present study, we investigated the effect of intrastriatal injection of α-synuclein preformed fibrils (PFFs) on synaptic activity in the somatosensory cortex using a combination of whole-cell patch-clamp electrophysiology, histology, and Golgi-Cox staining. Intrastriatal PFF injection was followed by formation of phosphorylated α-synuclein inclusions in layer 5 of the somatosensory cortex, leading to a decrease in synapse density, dendritic spines, and spontaneous excitatory post-synaptic currents, without apparent neuronal loss. Additionally, three-dimensional reconstruction of microglia using confocal imaging showed an increase in the engulfment of synapses. Collectively, our data indicate that propagation of α-synuclein through neural networks causes abnormalities in synaptic structure and dynamics prior to neuronal loss.
Collapse
Affiliation(s)
- Dayana Pérez-Acuña
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea
| | - Soo Jean Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea
| | - Ka Hyun Rhee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sang Jeong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University, College of Medicine, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- , Neuramedy, Seoul, 04796, Republic of Korea.
| |
Collapse
|
16
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced spine stability and survival lead to increases in dendritic spine density as an early response to local alpha-synuclein overexpression in mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559765. [PMID: 37808820 PMCID: PMC10557684 DOI: 10.1101/2023.09.28.559765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. Patients with LBDs develop cognitive changes, including abnormalities in executive function, attention, hallucinations, slowed processing, and cognitive fluctuations. The causes of these non-motor symptoms remain unclear; however, accumulation of alpha-Synuclein aggregates in the cortex and subsequent interference of synaptic and cellular function could contribute to psychiatric and cognitive symptoms. It is unknown how the cortex responds to local pathology in the absence of significant secondary effects of alpha-Synuclein pathology in the brainstem. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1-2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
|
17
|
Dues DJ, Nguyen APT, Becker K, Ma J, Moore DJ. Hippocampal subfield vulnerability to α-synuclein pathology precedes neurodegeneration and cognitive dysfunction. NPJ Parkinsons Dis 2023; 9:125. [PMID: 37640722 PMCID: PMC10462636 DOI: 10.1038/s41531-023-00574-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Cognitive dysfunction is a salient feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status. Thus, it remains unclear whether Lewy pathology is the de facto substrate driving cognitive dysfunction in PD and DLB. Through application of α-synuclein fibrils in vivo, we sought to examine the influence of pathologic inclusions on cognition. Following stereotactic injection of α-synuclein fibrils within the mouse forebrain, we measured the burden of α-synuclein pathology at 1-, 3-, and 6-months post-injection within subregions of the hippocampus and cortex. Under this paradigm, the hippocampal CA2/3 subfield was especially susceptible to α-synuclein pathology. Strikingly, we observed a drastic reduction of pathology in the CA2/3 subfield across time-points, consistent with the consolidation of α-synuclein pathology into dense somatic inclusions followed by neurodegeneration. Silver-positive degenerating neurites were observed prior to neuronal loss, suggesting that this might be an early feature of fibril-induced neurotoxicity and a precursor to neurodegeneration. Critically, mice injected with α-synuclein fibrils developed progressive deficits in spatial learning and memory. These findings support that the formation of α-synuclein inclusions in the mouse forebrain precipitate neurodegenerative changes that recapitulate features of Lewy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Dylan J Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Katelyn Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jiyan Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
18
|
Park JS, Choe K, Lee HJ, Park TJ, Kim MO. Neuroprotective effects of osmotin in Parkinson's disease-associated pathology via the AdipoR1/MAPK/AMPK/mTOR signaling pathways. J Biomed Sci 2023; 30:66. [PMID: 37568205 PMCID: PMC10422754 DOI: 10.1186/s12929-023-00961-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Both environmental and genetic aspects are involved in the pathogenesis of PD. Osmotin is a structural and functional homolog of adiponectin, which regulates the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) via adiponectin receptor 1 (AdipoR1), thus attenuating PD-associated pathology. Therefore, the current study investigated the neuroprotective effects of osmotin using in vitro and in vivo models of PD. METHODS The study used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and neuron-specific enolase promoter human alpha-synuclein (NSE-hαSyn) transgenic mouse models and 1-methyl-4-phenylpyridinium (MPP+)- or alpha-synuclein A53T-treated cell models. MPTP was injected at a dose of 30 mg/kg/day for five days, and osmotin was injected twice a week at a dose of 15 mg/kg for five weeks. We performed behavioral tests and analyzed the biochemical and molecular changes in the substantia nigra pars compacta (SNpc) and the striatum. RESULTS Based on our study, osmotin mitigated MPTP- and α-synuclein-induced motor dysfunction by upregulating the nuclear receptor-related 1 protein (Nurr1) transcription factor and its downstream markers tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2). From a pathological perspective, osmotin ameliorated neuronal cell death and neuroinflammation by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, osmotin alleviated the accumulation of α-synuclein by promoting the AMPK/mammalian target of rapamycin (mTOR) autophagy signaling pathway. Finally, in nonmotor symptoms of PD, such as cognitive deficits, osmotin restored synaptic deficits, thereby improving cognitive impairment in MPTP- and α-synuclein-induced mice. CONCLUSIONS Therefore, our findings indicated that osmotin significantly rescued MPTP/α-synuclein-mediated PD neuropathology. Altogether, these results suggest that osmotin has potential neuroprotective effects in PD neuropathology and may provide opportunities to develop novel therapeutic interventions for the treatment of PD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, the Netherlands
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, G12 0ZD UK
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- Alz-Dementia Korea Co., Jinju, 52828 Republic of Korea
| |
Collapse
|
19
|
Dues DJ, Nguyen APT, Becker K, Ma J, Moore DJ. Hippocampal subfield vulnerability to α-synuclein pathology precedes neurodegeneration and cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536572. [PMID: 37090590 PMCID: PMC10120695 DOI: 10.1101/2023.04.12.536572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cognitive dysfunction is a salient feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status. Thus, it remains unclear whether Lewy pathology is the de facto substrate driving cognitive dysfunction in PD and DLB. Through application of α-synuclein fibrils in vivo , we sought to examine the influence of pathologic inclusions on cognition. Following stereotactic injection of α-synuclein fibrils within the mouse forebrain, we measured the burden of α-synuclein pathology at 1-, 3-, and 6-months post-injection within subregions of the hippocampus and cortex. Under this paradigm, the hippocampal CA2/3 subfield was especially susceptible to α- synuclein pathology. Strikingly, we observed a drastic reduction of pathology in the CA2/3 subfield across time-points, consistent with the consolidation of α-synuclein pathology into dense somatic inclusions followed by neurodegeneration. Silver-positive degenerating neurites were observed prior to neuronal loss, suggesting that this might be an early feature of fibril-induced neurotoxicity and a precursor to neurodegeneration. Critically, mice injected with α-synuclein fibrils developed progressive deficits in spatial learning and memory. These findings support that the formation of α-synuclein inclusions in the mouse forebrain precipitate neurodegenerative changes that recapitulate features of Lewy-related cognitive dysfunction. Highlights Mice injected with α-synuclein fibrils develop hippocampal and cortical α- synuclein pathology with a dynamic regional burden at 1-, 3-, and 6-months post-injection.Silver-positive neuronal processes are an early and enduring degenerative feature of the fibril model, while extensive neurodegeneration of the hippocampal CA2/3 subfield is detected at 6-months post-injection.Mice exhibit progressive hippocampal-dependent spatial learning and memory deficits.Forebrain injection of α-synuclein fibrils may be used to model aspects of Lewy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Dylan J. Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Katelyn Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jiyan Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
20
|
Lin S, Leitão ADG, Fang S, Gu Y, Barber S, Gilliard-Telefoni R, Castro A, Sung K, Shen R, Florio JB, Mante ML, Ding J, Spencer B, Masliah E, Rissman RA, Wu C. Overexpression of alpha synuclein disrupts APP and Endolysosomal axonal trafficking in a mouse model of synucleinopathy. Neurobiol Dis 2023; 178:106010. [PMID: 36702318 PMCID: PMC10754494 DOI: 10.1016/j.nbd.2023.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.
Collapse
Affiliation(s)
- Suzhen Lin
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - André D G Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Sophia Barber
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Alfredo Castro
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jazmin B Florio
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Michael L Mante
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; VA San Diego Health System, La Jolla, CA, USA.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Intracellular Accumulation of α-Synuclein Aggregates Promotes S-Nitrosylation of MAP1A Leading to Decreased NMDAR-Evoked Calcium Influx and Loss of Mature Synaptic Spines. J Neurosci 2022; 42:9473-9487. [PMID: 36414406 PMCID: PMC9794373 DOI: 10.1523/jneurosci.0074-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
Cortical synucleinopathies, including dementia with Lewy bodies and Parkinson's disease dementia, collectively known as Lewy body dementia, are characterized by the aberrant aggregation of misfolded α-synuclein (α-syn) protein into large inclusions in cortical tissue, leading to impairments in proteostasis and synaptic connectivity and eventually resulting in neurodegeneration. Here, we show that male and female rat cortical neurons exposed to exogenous α-syn preformed fibrils accumulate large, detergent-insoluble, PS129-labeled deposits at synaptic terminals. Live-cell imaging of calcium dynamics coupled with assessment of network activity reveals that aberrant intracellular accumulation of α-syn inhibits synaptic response to glutamate through NMDARs, although deficits manifest slowly over a 7 d period. Impairments in NMDAR activity temporally correlated with increased nitric oxide synthesis and S-nitrosylation of the dendritic scaffold protein, microtubule-associated protein 1A. Inhibition of nitric oxide synthesis via the nitric oxide synthase inhibitor l-NG-nitroarginine methyl ester blocked microtubule-associated protein 1A S-nitrosylation and normalized NMDAR-dependent inward calcium transients and overall network activity. Collectively, these data suggest that loss of synaptic function in Lewy body dementia may result from synucleinopathy-evoked nitrosative stress and subsequent NMDAR dysfunction.SIGNIFICANCE STATEMENT This work shows the importance of the redox state of microtubule-associated protein 1A in the maintenance of synaptic function through regulation of NMDAR. We show that α-syn preformed fibrils promote nitric oxide synthesis, which triggers S-nitrosylation of microtubule-associated protein 1A, leading to impairment of NMDAR-dependent glutamate responses. This offers insight into the mechanism of synaptic dysfunction in Lewy body dementia.
Collapse
|
22
|
Yang X, Wang J, Zeng W, Zhang X, Yang X, Xu Y, Xu Y, Cao X. Time-dependent alterations in the rat nigrostriatal system after intrastriatal injection of fibrils formed by α–Syn and tau fragments. Front Aging Neurosci 2022; 14:1049418. [DOI: 10.3389/fnagi.2022.1049418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionAccurate demonstration of phosphorylated α-synuclein aggregation and propagation, progressive nigrostriatal degeneration and motor deficits will help further research on elucidating the mechanisms of Parkinson’s Disease. α-synucleinN103 and tauN368, cleaved by activated asparagine endopeptidase in Parkinson’s Disease, robustly interacted with each other and triggered endogenous α-synuclein accumulation in a strong manner. However, the detailed pathophysiological process caused by the complex remains to be established.MethodsIn this study, rats were unilaterally inoculated with 15 or 30 μg of this complex or vehicle (phosphate buffered saline, PBS). Over a 6-month period post injection, we then investigated the abundance of pSyn inclusions, nigrostriatal degeneration, and changes in axonal transport proteins to identify the various dynamic pathological changes caused by pSyn aggregates in the nigrostriatal system.ResultsAs expected, rats displayed a dose-dependent increase in the amount of α-synuclein inclusions, and progressive dopaminergic neurodegeneration was observed throughout the study, reaching 30% at 6 months post injection. Impairments in anterograde axonal transport, followed by retrograde transport, were observed prior to neuron death, which was first discovered in the PFFs model.DiscussionThe current results demonstrate the value of a novel rat model of Parkinson’s disease characterized by widespread, “seed”-initiated endogenous α-Syn pathology, impaired axonal transport, and a neurodegenerative cascade in the nigrostriatal system. Notably, the present study is the first to examine alterations in axonal transport proteins in a PFF model, providing an appropriate foundation for future research regarding the mechanisms leading to subsequent neurodegeneration. As this model recapitulates some essential features of Parkinson’s disease, it provides an important platform for further research on specific pathogenic mechanisms and pre-clinical evaluations of novel therapeutic strategies.
Collapse
|
23
|
Bai X, Guo T, Chen J, Guan X, Zhou C, Wu J, Liu X, Wu H, Wen J, Gu L, Gao T, Xuan M, Huang P, Zhang B, Xu X, Zhang M. Microstructural but not macrostructural cortical degeneration occurs in Parkinson’s disease with mild cognitive impairment. NPJ Parkinsons Dis 2022; 8:151. [DOI: 10.1038/s41531-022-00416-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractThis study aimed to investigate the cortical microstructural/macrostructural degenerative patterns in Parkinson’s disease (PD) patients with mild cognitive impairment (MCI). Overall, 38 PD patients with normal cognition (PD-NC), 38 PD-MCI, and 32 healthy controls (HC) were included. PD-MCI was diagnosed according to the MDS Task Force level II criteria. Cortical microstructural alterations were evaluated with Neurite Orientation Dispersion and Density Imaging. Cortical thickness analyses were derived from T1-weighted imaging using the FreeSurfer software. For cortical microstructural analyses, compared with HC, PD-NC showed lower orientation dispersion index (ODI) in bilateral cingulate and paracingulate gyri, supplementary motor area, right paracentral lobule, and precuneus (PFWE < 0.05); while PD-MCI showed lower ODI in widespread regions covering bilateral frontal, parietal, occipital, and right temporal areas and lower neurite density index in left frontal area, left cingulate, and paracingulate gyri (PFWE < 0.05). Furthermore, compared with PD-NC, PD-MCI showed reduced ODI in right frontal area and bilateral caudate nuclei (voxel P < 0.01 and cluster >100 voxels) and the ODI values were associated with the Montreal Cognitive Assessment scores (r = 0.440, P < 0.001) and the memory performance (r = 0.333, P = 0.004) in the PD patients. However, for cortical thickness analyses, there was no difference in the between-group comparisons. In conclusion, cortical microstructural alterations may precede macrostructural changes in PD-MCI. This study provides insightful evidence for the degenerative patterns in PD-MCI and contributes to our understanding of the latent biological basis of cortical neurite changes for early cognitive impairment in PD.
Collapse
|
24
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
25
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodríguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernández-Irigoyen J, Aiastui A, Doudnikoff E, Bézard E, Ouro A, Knafo S, Gago B, Quiroga-Varela A, Rodríguez-Oroz MC. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 2022; 145:2092-2107. [PMID: 35245368 PMCID: PMC9460676 DOI: 10.1093/brain/awac087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic impairment might precede neuronal degeneration in Parkinson’s disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson’s disease.
Collapse
Affiliation(s)
- Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Haritz Jimenez-Urbieta
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Aiastui
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Erwan Bézard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Basque Foundation for Science, IKERBASQUE, 48940 Leioa, Spain
| | - Belén Gago
- Faculty of Medicine, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29016 Málaga, Spain
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
27
|
Sun F, Salinas AG, Filser S, Blumenstock S, Medina-Luque J, Herms J, Sgobio C. Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology. Brain Pathol 2021; 32:e13036. [PMID: 34806235 PMCID: PMC8877754 DOI: 10.1111/bpa.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Misfolded α‐synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α‐synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α‐synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2‐month‐old (young) and 5‐month‐old (adult) mice. Two months after α‐synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α‐synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs‐seeded hemisphere coexist with decreased large‐sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α‐synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α‐synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.
Collapse
Affiliation(s)
- Fanfan Sun
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Armando G Salinas
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisina, USA
| | - Severin Filser
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Sonja Blumenstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Molecular Neurodegeneration Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jose Medina-Luque
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carmelo Sgobio
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
28
|
Zhang Q, Abdelmotilib H, Larson T, Keomanivong C, Conlon M, Aldridge GM, Narayanan NS. Cortical alpha-synuclein preformed fibrils do not affect interval timing in mice. Neurosci Lett 2021; 765:136273. [PMID: 34601038 DOI: 10.1016/j.neulet.2021.136273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
One hallmark feature of Parkinson's disease (PD) is Lewy body pathology associated with misfolded alpha-synuclein. Previous studies have shown that striatal injection of alpha-synuclein preformed fibrils (PFF) can induce misfolding and aggregation of native alpha-synuclein in a prion-like manner, leading to cell death and motor dysfunction in mouse models. Here, we tested whether alpha-synuclein PFFs injected into the medial prefrontal cortex results in deficits in interval timing, a cognitive task which is disrupted in human PD patients and in rodent models of PD. We injected PFF or monomers of human alpha-synuclein into the medial prefrontal cortex of mice pre-injected with adeno-associated virus (AAV) coding for overexpression of human alpha-synuclein or control protein. Despite notable medial prefrontal cortical synucleinopathy, we did not observe consistent deficits in fixed-interval timing. These results suggest that cortical alpha-synuclein does not reliably disrupt fixed-interval timing.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Travis Larson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Cameron Keomanivong
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Mackenzie Conlon
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Georgina M Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
29
|
Blumenstock S, Sun F, Klaus C, Marinković P, Sgobio C, Paeger L, Liebscher S, Herms J. Cortical circuit dysfunction in a mouse model of alpha-synucleinopathy in vivo. Brain Commun 2021; 3:fcab273. [PMID: 34877534 PMCID: PMC8643497 DOI: 10.1093/braincomms/fcab273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Considerable fluctuations in cognitive performance and eventual dementia are an important characteristic of alpha-synucleinopathies, such as Parkinson's disease and Lewy Body dementia and are linked to cortical dysfunction. The presence of misfolded and aggregated alpha-synuclein in the cerebral cortex of patients has been suggested to play a crucial role in this process. However, the consequences of a-synuclein accumulation on the function of cortical networks at cellular resolution in vivo are largely unknown. Here, we induced robust a-synuclein pathology in the cerebral cortex using the striatal seeding model in wild-type mice. Nine months after a single intrastriatal injection of a-synuclein preformed fibrils, we observed profound alterations of the function of layer 2/3 cortical neurons in somatosensory cortex by in vivo two-photon calcium imaging in awake mice. We detected increased spontaneous activity levels, an enhanced response to whisking and increased synchrony. Stereological analyses revealed a reduction in glutamic acid decarboxylase 67-positive inhibitory neurons in the somatosensory cortex of mice injected with preformed fibrils. Importantly, these findings point to a disturbed excitation/inhibition balance as a relevant driver of circuit dysfunction, potentially underlying cognitive changes in alpha-synucleinopathies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fanfan Sun
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Petar Marinković
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Carmelo Sgobio
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Sabine Liebscher
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University, 82152 Martinsried, Germany
- Biomedical Center, Medical Faculty, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
30
|
Dauer Née Joppe K, Tatenhorst L, Caldi Gomes L, Zhang S, Parvaz M, Carboni E, Roser AE, El DeBakey H, Bähr M, Vogel-Mikuš K, Wang Ip C, Becker S, Zweckstetter M, Lingor P. Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils. J Neurochem 2021; 159:554-573. [PMID: 34176164 DOI: 10.1111/jnc.15461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.
Collapse
Affiliation(s)
- Karina Dauer Née Joppe
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Lucas Caldi Gomes
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Shuyu Zhang
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mojan Parvaz
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eleonora Carboni
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Hazem El DeBakey
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Katarina Vogel-Mikuš
- Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Stefan Becker
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Markus Zweckstetter
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Research group Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Zhang J, Zhao M, Yan R, Liu J, Maddila S, Junn E, Mouradian MM. MicroRNA-7 Protects Against Neurodegeneration Induced by α-Synuclein Preformed Fibrils in the Mouse Brain. Neurotherapeutics 2021; 18:2529-2540. [PMID: 34697773 PMCID: PMC8804150 DOI: 10.1007/s13311-021-01130-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
α-Synuclein is a key protein in the pathogenesis of Parkinson's disease as it accumulates in fibrillar form in affected brain regions. Misfolded α-synuclein seeds recruit monomeric α-synuclein to form aggregates, which can spread to anatomically connected brain regions, a phenomenon that correlates with clinical disease progression. Thus, downregulating α-synuclein levels could reduce seeding and inhibit aggregate formation and propagation. We previously reported that microRNA-7 (miR-7) protects neuronal cells by downregulating α-synuclein expression through its effect on the 3'-untranslated region of SNCA mRNA; however, whether miR-7 blocks α-synuclein seeding and propagation in vivo remains unknown. Here, we induced miR-7 overexpression in the mouse striatum unilaterally by infusing adeno-associated virus 1 (AAV-miR-7) followed by inoculation with recombinant α-synuclein preformed fibrils (PFF) a month later. Compared with control mice injected with non-targeting AAV-miR-NT followed by PFF, AAV-miR-7 pre-injected mice exhibited lower levels of monomeric and high-molecular-weight α-synuclein species in the striatum, and reduced amount of phosphorylated α-synuclein in the striatum and in nigral dopamine neurons. Accordingly, AAV-miR-7-injected mice had less pronounced degeneration of the nigrostriatal pathway and better behavioral performance. The neuroinflammatory reaction to α-synuclein PFF inoculation was also significantly attenuated. These data suggest that miR-7 inhibits the formation and propagation of pathological α-synuclein and protects against neurodegeneration induced by PFF. Collectively, these findings support the potential of miR-7 as a disease modifying biologic agent for Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Jie Zhang
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Mengyuan Zhao
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Run Yan
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
- Current address: Sanyou Biopharmaceuticals Co., Ltd., 3rd Floor, Building 6B-C, No. 188 Xinjunhuan Road, Minhang District, Shanghai, 201114, China
| | - Jun Liu
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Santhosh Maddila
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Eunsung Junn
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA.
| |
Collapse
|
32
|
Berry JK, Cox D. Increased oscillatory power in a computational model of the olfactory bulb due to synaptic degeneration. Phys Rev E 2021; 104:024405. [PMID: 34525666 DOI: 10.1103/physreve.104.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022]
Abstract
Several neurodegenerative diseases impact the olfactory system, and in particular the olfactory bulb, early in disease progression. One mechanism by which damage occurs is via synaptic dysfunction. Here, we implement a computational model of the olfactory bulb and investigate the effect of weakened connection weights on network oscillatory behavior. Olfactory bulb network activity can be modeled by a system of equations that describes a set of coupled nonlinear oscillators. In this modeling framework, we propagate damage to synaptic weights using several strategies, varying from localized to global. Damage propagated in a dispersed or spreading manner leads to greater oscillatory power at moderate levels of damage. This increase arises from a higher average level of mitral cell activity due to a shift in the balance between excitation and inhibition. That this shift leads to greater oscillations depends critically on the nonlinearity of the activation function. Linearized analysis of the network dynamics predicts when this shift leads to loss of oscillatory activity. We thus demonstrate one potential mechanism involved in the increased gamma oscillations seen in some animal models of Alzheimer's disease, and we highlight the potential that pathological olfactory bulb behavior presents as an early biomarker of disease.
Collapse
Affiliation(s)
- J Kendall Berry
- University of California, Davis, Davis, California 95616, USA
| | - Daniel Cox
- University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
33
|
Polinski NK. A Summary of Phenotypes Observed in the In Vivo Rodent Alpha-Synuclein Preformed Fibril Model. JOURNAL OF PARKINSONS DISEASE 2021; 11:1555-1567. [PMID: 34486988 PMCID: PMC8609716 DOI: 10.3233/jpd-212847] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of wildtype recombinant alpha-synuclein preformed fibrils (aSyn PFFs) to induce endogenous alpha-synuclein to form pathological phosphorylation and trigger neurodegeneration is a popular model for studying Parkinson's disease (PD) biology and testing therapeutic strategies. The strengths of this model lie in its ability to recapitulate the phosphorylation/aggregation of aSyn and nigrostriatal degeneration seen in PD, as well as its suitability for studying the progressive nature of PD and the spread of aSyn pathology. Although the model is commonly used and has been adopted by many labs, variability in observed phenotypes exists. Here we provide summaries of the study design and reported phenotypes from published reports characterizing the aSyn PFF in vivo model in rodents following injection into the brain, gut, muscle, vein, peritoneum, and eye. These summaries are designed to facilitate an introduction to the use of aSyn PFFs to generate a rodent model of PD-highlighting phenotypes observed in papers that set out to thoroughly characterize the model. This information will hopefully improve the understanding of this model and clarify when the aSyn PFF model may be an appropriate choice for one's research.
Collapse
Affiliation(s)
- Nicole K Polinski
- The Michael J. Fox Foundation for Parkinson'sResearch, New York, NY, USA
| |
Collapse
|
34
|
Huntington TE, Srinivasan R. Adeno-Associated Virus Expression of α-Synuclein as a Tool to Model Parkinson's Disease: Current Understanding and Knowledge Gaps. Aging Dis 2021; 12:1120-1137. [PMID: 34221553 PMCID: PMC8219504 DOI: 10.14336/ad.2021.0517] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the aging population and is characterized by a constellation of motor and non-motor symptoms. The abnormal aggregation and spread of alpha-synuclein (α-syn) is thought to underlie the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc), leading to the development of PD. It is in this context that the use of adeno-associated viruses (AAVs) to express a-syn in the rodent midbrain has become a popular tool to model SNc DA neuron loss during PD. In this review, we summarize results from two decades of experiments using AAV-mediated a-syn expression in rodents to model PD. Specifically, we outline aspects of AAV vectors that are particularly relevant to modeling a-syn dysfunction in rodent models of PD such as changes in striatal neurochemistry, a-syn biochemistry, and PD-related behaviors resulting from AAV-mediated a-syn expression in the midbrain. Finally, we discuss the emerging role of astrocytes in propagating a-syn pathology, and point to future directions for employing AAVs as a tool to better understand how astrocytes contribute to a-syn pathology during the development of PD. We envision that lessons learned from two decades of utilizing AAVs to express a-syn in the rodent brain will enable us to develop an optimized set of parameters for gaining a better understanding of how a-syn leads to the development of PD.
Collapse
Affiliation(s)
- Taylor E Huntington
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| |
Collapse
|
35
|
Demmings MD, Tennyson EC, Petroff GN, Tarnowski-Garner HE, Cregan SP. Activating transcription factor-4 promotes neuronal death induced by Parkinson's disease neurotoxins and α-synuclein aggregates. Cell Death Differ 2021; 28:1627-1643. [PMID: 33277577 PMCID: PMC8167173 DOI: 10.1038/s41418-020-00688-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra resulting in severe and progressive motor impairments. However, the mechanisms underlying this neuronal loss remain largely unknown. Oxidative stress and ER stress have been implicated in PD and these factors are known to activate the integrated stress response (ISR). Activating transcription factor 4 (ATF4), a key mediator of the ISR, and has been reported to induce the expression of genes involved in cellular homeostasis. However, during prolonged activation ATF4 can also induce the expression of pro-death target genes. Therefore, in the present study, we investigated the role of ATF4 in neuronal cell death in models of PD. We demonstrate that PD neurotoxins (MPP+ and 6-OHDA) and α-synuclein aggregation induced by pre-formed human alpha-synuclein fibrils (PFFs) cause sustained upregulation of ATF4 expression in mouse cortical and mesencephalic dopaminergic neurons. Furthermore, we demonstrate that PD neurotoxins induce the expression of the pro-apoptotic factors Chop, Trb3, and Puma in dopaminergic neurons in an ATF4-dependent manner. Importantly, we have determined that PD neurotoxin and α-synuclein PFF induced neuronal death is attenuated in ATF4-deficient dopaminergic neurons. Furthermore, ectopic expression of ATF4 but not transcriptionally defective ATF4ΔRK restores sensitivity of ATF4-deficient neurons to PD neurotoxins. Finally, we demonstrate that the eIF2α kinase inhibitor C16 suppresses MPP+ and 6-OHDA induced ATF4 activation and protects against PD neurotoxin induced dopaminergic neuronal death. Taken together these results indicate that ATF4 promotes dopaminergic cell death induced by PD neurotoxins and pathogenic α-synuclein aggregates and highlight the ISR factor ATF4 as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Elizabeth C Tennyson
- Neuroscience Program, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Gillian N Petroff
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Heather E Tarnowski-Garner
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Sean P Cregan
- Neuroscience Program, University of Western Ontario, London, ON, Canada.
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- University of Western Ontario, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
36
|
Tavassoly O, Del Cid Pellitero E, Larroquette F, Cai E, Thomas RA, Soubannier V, Luo W, Durcan TM, Fon EA. Pharmacological Inhibition of Brain EGFR Activation By a BBB-penetrating Inhibitor, AZD3759, Attenuates α-synuclein Pathology in a Mouse Model of α-Synuclein Propagation. Neurotherapeutics 2021; 18:979-997. [PMID: 33713002 PMCID: PMC8423974 DOI: 10.1007/s13311-021-01017-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Aggregation and deposition of α-synuclein (α-syn) in Lewy bodies within dopamine neurons of substantia nigra (SN) is the pathological hallmark of Parkinson's disease (PD). These toxic α-syn aggregates are believed to propagate from neuron-to-neuron and spread the α-syn pathology throughout the brain beyond dopamine neurons in a prion-like manner. Targeting propagation of such α-syn aggregates is of high interest but requires identifying pathways involving in this process. Evidence from previous Alzheimer's disease reports suggests that EGFR may be involved in the prion-like propagation and seeding of amyloid-β. We show here that EGFR regulates the uptake of exogenous α-syn-PFFs and the levels of endogenous α-syn in cell cultures and a mouse model of α-syn propagation, respectively. Thus, we tested the therapeutic potentials of AZD3759, a highly selective BBB-penetrating EGFR inhibitor, in a preclinical mouse model of α-syn propagation. AZD3759 decreases activated EGFR levels in the brain and reduces phosphorylated α-synuclein (pSyn) pathology in brain sections, including striatum and SN. As AZD3759 is already in the clinic, this paper's results suggest a possible repositioning of AZD3759 as a disease-modifying approach for PD.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Esther Del Cid Pellitero
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Frederique Larroquette
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Eddie Cai
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Vincent Soubannier
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
37
|
Han MH, Kwon MJ, Ko BS, Hyeon DY, Lee D, Kim HJ, Hwang D, Lee SB. NF-κB disinhibition contributes to dendrite defects in fly models of neurodegenerative diseases. J Cell Biol 2021; 219:211484. [PMID: 33090185 PMCID: PMC7588142 DOI: 10.1083/jcb.202004107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Dendrite pathology is frequently observed in various neurodegenerative diseases (NDs). Although previous studies identified several pathogenic mediators of dendrite defects that act through loss of function in NDs, the underlying pathogenic mechanisms remain largely unexplored. Here, our search for additional pathogenic contributors to dendrite defects in NDs identifies Relish/NF-κB as a novel gain-of-toxicity–based mediator of dendrite defects in animal models for polyglutamine (polyQ) diseases and amyotrophic lateral sclerosis (ALS). In a Drosophila model for polyQ diseases, polyQ-induced dendrite defects require Dredd/Caspase-8–mediated endoproteolytic cleavage of Relish to generate the N-terminal fragment, Rel68, and subsequent Charon-mediated nuclear localization of Rel68. Rel68 alone induced neuronal toxicity causing dendrite and behavioral defects, and we identify two novel transcriptional targets, Tup and Pros, that mediate Rel68-induced neuronal toxicity. Finally, we show that Rel68-induced toxicity also contributes to dendrite and behavioral defects in a Drosophila model for ALS. Collectively, our data propose disinhibition of latent toxicity of Relish/NF-κB as a novel pathogenic mechanism underlying dendrite pathology in NDs.
Collapse
Affiliation(s)
- Myeong Hoon Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Min Jee Kwon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Byung Su Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Do Young Hyeon
- School of Biological Science, Seoul National University, Seoul, Republic of Korea
| | - Davin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Daehee Hwang
- School of Biological Science, Seoul National University, Seoul, Republic of Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea.,Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| |
Collapse
|
38
|
Gcwensa NZ, Russell DL, Cowell RM, Volpicelli-Daley LA. Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Front Cell Neurosci 2021; 15:626128. [PMID: 33737866 PMCID: PMC7960781 DOI: 10.3389/fncel.2021.626128] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease that impairs movement as well as causing multiple other symptoms such as autonomic dysfunction, rapid eye movement (REM) sleep behavior disorder, hyposmia, and cognitive changes. Loss of dopamine neurons in the substantia nigra pars compacta (SNc) and loss of dopamine terminals in the striatum contribute to characteristic motor features. Although therapies ease the symptoms of PD, there are no treatments to slow its progression. Accumulating evidence suggests that synaptic impairments and axonal degeneration precede neuronal cell body loss. Early synaptic changes may be a target to prevent disease onset and slow progression. Imaging of PD patients with radioligands, post-mortem pathologic studies in sporadic PD patients, and animal models of PD demonstrate abnormalities in presynaptic terminals as well as postsynaptic dendritic spines. Dopaminergic and excitatory synapses are substantially reduced in PD, and whether other neuronal subtypes show synaptic defects remains relatively unexplored. Genetic studies implicate several genes that play a role at the synapse, providing additional support for synaptic dysfunction in PD. In this review article we: (1) provide evidence for synaptic defects occurring in PD before neuron death; (2) describe the main genes implicated in PD that could contribute to synapse dysfunction; and (3) show correlations between the expression of Snca mRNA and mouse homologs of PD GWAS genes demonstrating selective enrichment of Snca and synaptic genes in dopaminergic, excitatory and cholinergic neurons. Altogether, these findings highlight the need for novel therapeutics targeting the synapse and suggest that future studies should explore the roles for PD-implicated genes across multiple neuron types and circuits.
Collapse
Affiliation(s)
- Nolwazi Z Gcwensa
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Drèson L Russell
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Rita M Cowell
- Department of Neuroscience, Southern Research, Birmingham, AL, United States
| | - Laura A Volpicelli-Daley
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| |
Collapse
|
39
|
Thomsen MB, Ferreira SA, Schacht AC, Jacobsen J, Simonsen M, Betzer C, Jensen PH, Brooks DJ, Landau AM, Romero-Ramos M. PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. Neurobiol Dis 2020; 149:105229. [PMID: 33352233 DOI: 10.1016/j.nbd.2020.105229] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Alpha-synuclein (a-syn) can aggregate and form toxic oligomers and insoluble fibrils which are the main component of Lewy bodies. Intra-neuronal Lewy bodies are a major pathological characteristic of Parkinson's disease (PD). These fibrillar structures can act as seeds and accelerate the aggregation of monomeric a-syn. Indeed, recent studies show that injection of preformed a-syn fibrils (PFF) into the rodent brain can induce aggregation of the endogenous monomeric a-syn resulting in neuronal dysfunction and eventual cell death. We injected 8 μg of murine a-syn PFF, or soluble monomeric a-syn into the right striatum of rats. The animals were monitored behaviourally using the cylinder test, which measures paw asymmetry, and the corridor task that measures lateralized sensorimotor response to sugar treats. In vivo PET imaging was performed after 6, 13 and 22 weeks using [11C]DTBZ, a marker of the vesicular monoamine 2 transporter (VMAT2), and after 15 and 22 weeks using [11C]UCB-J, a marker of synaptic SV2A protein in nerve terminals. Histology was performed at the three time points using antibodies against dopaminergic markers, aggregated a-syn, and MHCII to evaluate the immune response. While the a-syn PFF injection caused only mild behavioural changes, [11C]DTBZ PET showed a significant and progressive decrease of VMAT2 binding in the ipsilateral striatum. This was accompanied by a small progressive decrease in [11C]UCB-J binding in the same area. In addition, our histological analysis revealed a gradual spread of misfolded a-syn pathology in areas anatomically connected to striatum that became bilateral with time. The striatal a-syn PFF injection resulted in a progressive unilateral degeneration of dopamine terminals, and an early and sustained presence of MHCII positive ramified microglia in the ipsilateral striatum and substantia nigra. Our study shows that striatal injections of a-syn fibrils induce progressive pathological synaptic dysfunction prior to cell death that can be detected in vivo with PET. We confirm that intrastriatal injection of a-syn PFFs provides a model of progressive a-syn pathology with loss of dopaminergic and synaptic function accompanied by neuroinflammation, as found in human PD.
Collapse
Affiliation(s)
- Majken B Thomsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Sara A Ferreira
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Anna C Schacht
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Mette Simonsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Cristine Betzer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul H Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark; Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark; Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
40
|
Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. ACTA ACUST UNITED AC 2020; 91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
42
|
Oliveira da Silva MI, Liz MA. Linking Alpha-Synuclein to the Actin Cytoskeleton: Consequences to Neuronal Function. Front Cell Dev Biol 2020; 8:787. [PMID: 32903460 PMCID: PMC7434970 DOI: 10.3389/fcell.2020.00787] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Alpha-Synuclein (αSyn), a protein highly enriched in neurons where it preferentially localizes at the pre-synapse, has been in the spotlight because its intraneuronal aggregation is a central phenomenon in Parkinson's disease. However, the consequences of αSyn accumulation to neuronal function are not fully understood. Considering the crucial role of actin on synaptic function and the fact that dysregulation of this cytoskeleton component is emerging in neurodegenerative disorders, the impact of αSyn on actin is a critical point to be addressed. In this review we explore the link between αSyn and actin and its significance for physiology and pathology. We discuss the relevance of αSyn-actin interaction for synaptic function and highlight the actin-depolymerizing protein cofilin-1 as a key player on αSyn-induced actin dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Marina I Oliveira da Silva
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Neurodegeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Nerve Regeneration Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Márcia A Liz
- Neurodegeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Nerve Regeneration Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Kasongo DW, de Leo G, Vicario N, Leanza G, Legname G. Chronic α-Synuclein Accumulation in Rat Hippocampus Induces Lewy Bodies Formation and Specific Cognitive Impairments. eNeuro 2020; 7:ENEURO.0009-20.2020. [PMID: 32393581 PMCID: PMC7307628 DOI: 10.1523/eneuro.0009-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Occurrence of Lewy bodies (LBs)/Lewy neurites (LNs) containing misfolded fibrillar α-synuclein (α-syn) is one of the pathologic hallmarks of memory impairment-linked synucleinopathies, such as Parkinson's disease (PD) and dementia with LBs (DLB). While it has been shown that brainstem LBs may contribute to motor symptoms, the neuropathological substrates for cognitive symptoms are still elusive. Here, recombinant mouse α-syn fibrils were bilaterally injected in the hippocampus of female Sprague Dawley rats, which underwent behavioral testing for sensorimotor and spatial learning and memory abilities. No sensorimotor deficits affecting Morris water maze task performance were observed, nor was any reference memory disturbances detectable in injected animals. By contrast, significant impairments in working memory performance became evident at 12 months postinjection. These deficits were associated to a time-dependent increase in the levels of phosphorylated α-syn at Ser129 and in the stereologically estimated numbers of proteinase K (PK)-resistant α-syn aggregates within the hippocampus. Interestingly, pathologic α-syn aggregates were found in the entorhinal cortex and, by 12 months postinjection, also in the vertical limb of the diagonal band and the piriform cortices. No pathologic α-syn deposits were found within the substantia nigra (SN), the ventral tegmental area (VTA), or the striatum, nor was any loss of dopaminergic, noradrenergic, or cholinergic neurons detected in α-syn-injected animals, compared with controls. This would suggest that the behavioral impairments seen in the α-syn-injected animals might be determined by the long-term α-syn neuropathology, rather than by neurodegeneration per se, thus leading to the onset of working memory deficits.
Collapse
Affiliation(s)
- Danielle Walu Kasongo
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste 34127, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste 34127, Italy
| | - Gioacchino de Leo
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Giampiero Leanza
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste 34127, Italy
- Molecular Preclinical and Translational Imaging Research Centre - IMPRonTE, University of Catania, Catania 95125, Italy
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste 34127, Italy
| |
Collapse
|
44
|
Wagner LM, Nathwani SM, Ten Eyck PP, Aldridge GM. Local cortical overexpression of human wild-type alpha-synuclein leads to increased dendritic spine density in mouse. Neurosci Lett 2020; 733:135051. [PMID: 32417387 DOI: 10.1016/j.neulet.2020.135051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Lewy body dementias are characterized by deposition of alpha-synuclein (α-syn) protein aggregates known as Lewy bodies and Lewy neurites in cortical regions, in addition to brainstem. These aggregates are thought to cause the death of dopaminergic neurons in the substantia nigra and other vulnerable cell types in patients, leading to parkinsonism. There is evidence from mice that localized overexpression of wild-type α-syn leads to dopaminergic cell death in the substantia nigra. However, it is not known how cortical neurons are affected by α-syn. In this study, we used viral overexpression of α-syn to investigate whether localized overexpression within the cortex affects the density, length, and morphology of dendritic spines, which serve as a measure of synaptic connectivity. An AAV2/6 viral vector coding for wild-type human α-syn was used to target overexpression bilaterally to the medial prefrontal cortex within adult mice. After ten weeks the brain was stained using the Golgi-Cox method. Density of dendritic spines in the injected region was increased in layer V pyramidal neurons compared with animals injected with control virus. Immunohistochemistry in separate animals showed human α-syn expression throughout the region of interest, especially in presynaptic terminals. However, phosphorylated α-syn was seen in a discrete number of cells at the region of highest overexpression, localized mainly to the soma and nucleus. These findings demonstrate that at early timepoints, α-syn overexpression may alter connectivity in the cortex, which may be relevant to early stages of the disease. In addition, these findings contribute to the understanding of α-syn, which when overexpressed in the wildtype, non-aggregated state may promote spine formation. Loss of spines secondary to α-syn in cortex may require higher expression, longer incubation, cellular damage, concomitant dopaminergic dysfunction or other two-hit factors to lead to synaptic degeneration.
Collapse
|
45
|
Advances in modelling alpha-synuclein-induced Parkinson’s diseases in rodents: Virus-based models versus inoculation of exogenous preformed toxic species. J Neurosci Methods 2020; 338:108685. [DOI: 10.1016/j.jneumeth.2020.108685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
|
46
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
47
|
Sanderson JB, De S, Jiang H, Rovere M, Jin M, Zaccagnini L, Hays Watson A, De Boni L, Lagomarsino VN, Young-Pearse TL, Liu X, Pochapsky TC, Hyman BT, Dickson DW, Klenerman D, Selkoe DJ, Bartels T. Analysis of α-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies. Brain Commun 2020; 2:fcaa010. [PMID: 32280944 PMCID: PMC7130446 DOI: 10.1093/braincomms/fcaa010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Since researchers identified α-synuclein as the principal component of Lewy bodies and Lewy neurites, studies have suggested that it plays a causative role in the pathogenesis of dementia with Lewy bodies and other 'synucleinopathies'. While α-synuclein dyshomeostasis likely contributes to the neurodegeneration associated with the synucleinopathies, few direct biochemical analyses of α-synuclein from diseased human brain tissue currently exist. In this study, we analysed sequential protein extracts from a substantial number of patients with neuropathological diagnoses of dementia with Lewy bodies and corresponding controls, detecting a shift of cytosolic and membrane-bound physiological α-synuclein to highly aggregated forms. We then fractionated aqueous extracts (cytosol) from cerebral cortex using non-denaturing methods to search for soluble, disease-associated high molecular weight species potentially associated with toxicity. We applied these fractions and corresponding insoluble fractions containing Lewy-type aggregates to several reporter assays to determine their bioactivity and cytotoxicity. Ultimately, high molecular weight cytosolic fractions enhances phospholipid membrane permeability, while insoluble, Lewy-associated fractions induced morphological changes in the neurites of human stem cell-derived neurons. While the concentrations of soluble, high molecular weight α-synuclein were only slightly elevated in brains of dementia with Lewy bodies patients compared to healthy, age-matched controls, these observations suggest that a small subset of soluble α-synuclein aggregates in the brain may drive early pathogenic effects, while Lewy body-associated α-synuclein can drive neurotoxicity.
Collapse
Affiliation(s)
- John B Sanderson
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, Department of Chemistry, University of Cambridge, Cambridge CB2 0AH, UK
| | - Haiyang Jiang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ludovica Zaccagnini
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Aurelia Hays Watson
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Laura De Boni
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Chemistry, Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Thomas C Pochapsky
- Department of Chemistry, Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Massachusetts Institute for Neurodegenerative Disease, Boston, MA 02129, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, Department of Chemistry, University of Cambridge, Cambridge CB2 0AH, UK
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
48
|
Shrivastava AN, Bousset L, Renner M, Redeker V, Savistchenko J, Triller A, Melki R. Differential Membrane Binding and Seeding of Distinct α-Synuclein Fibrillar Polymorphs. Biophys J 2020; 118:1301-1320. [PMID: 32059758 PMCID: PMC7091477 DOI: 10.1016/j.bpj.2020.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
The aggregation of the protein α-synuclein (α-Syn) leads to different synucleinopathies. We recently showed that structurally distinct fibrillar α-Syn polymorphs trigger either Parkinson’s disease or multiple system atrophy hallmarks in vivo. Here, we establish a structural-molecular basis for these observations. We show that distinct fibrillar α-Syn polymorphs bind to and cluster differentially at the plasma membrane in both primary neuronal cultures and organotypic hippocampal slice cultures from wild-type mice. We demonstrate a polymorph-dependent and concentration-dependent seeding. We show a polymorph-dependent differential synaptic redistribution of α3-Na+/K+-ATPase, GluA2 subunit containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and GluN2B-subunit containing N-methyl-D-aspartate receptors, but not GluA1 subunit containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and metabotropic glutamate receptor 5 receptors. We also demonstrate polymorph-dependent alteration in neuronal network activity upon seeded aggregation of α-Syn. Our findings bring new, to our knowledge, insight into how distinct α-Syn polymorphs differentially bind to and seed monomeric α-Syn aggregation within neurons, thus affecting neuronal homeostasis through the redistribution of synaptic proteins.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France.
| | - Luc Bousset
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Marianne Renner
- INSERM, UMR- S 839 Institut du Fer à Moulin, Sorbonne Université, Paris, France
| | - Virginie Redeker
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Jimmy Savistchenko
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL, Research University, Paris, France.
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France.
| |
Collapse
|
49
|
Zhang J, Park ES, Park HJ, Yan R, Grudniewska M, Zhang X, Oh S, Yang X, Baum J, Mouradian MM. Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice. Neurobiol Aging 2020; 85:49-57. [PMID: 31734439 PMCID: PMC7064162 DOI: 10.1016/j.neurobiolaging.2019.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-Syn) is a key pathogenic protein in α-synucleinopathies including Parkinson disease and dementia with Lewy bodies. Accumulating evidence has shown that misfolded fibrillar α-Syn is transmitted from cell-to-cell, a phenomenon that correlates with clinical progression of the disease. We previously showed that deleting the MAP3 kinase apoptosis signal-regulating kinase 1 (ASK1), which is a central player linking oxidative stress with neuroinflammation, mitigates the phenotype of α-Syn transgenic mice. However, whether ASK1 impacts pathology and disease progression induced by recombinant α-Syn pre-formed fibrils (PFF) remains unknown. Here, we compared the neuropathological and behavioral phenotype of ASK1 knock-out mice with that of wild-type mice following intrastriatal injections of α-Syn PFF. At 6 months post-injections, ASK1 null mice exhibited reduced amount of phosphorylated α-Syn aggregates in the striatum and cortex, and less pronounced degeneration of the nigrostriatal pathway. Additionally, the neuroinflammatory reaction to α-Syn PFF injection and propagation seen in wild-type mice was attenuated in ASK1 knock-out animals. These neuropathological markers were associated with better behavioral performance. These data suggest that ASK1 plays an important role in pathological α-Syn fibril transmission and, consequently, may impact disease progression. These findings collectively support inhibiting ASK1 as a disease modifying therapeutic strategy for Parkinson disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Jie Zhang
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Eun S Park
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Hye-Jin Park
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Run Yan
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Magda Grudniewska
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Xiaopei Zhang
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Stephanie Oh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Xue Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
50
|
Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded α-synuclein inclusions. Neurobiol Dis 2019; 134:104708. [PMID: 31837424 PMCID: PMC7206936 DOI: 10.1016/j.nbd.2019.104708] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is defined by motor symptoms such as tremor at rest, bradykinesia, postural instability, and stiffness. In addition to the classical motor defects that define PD, up to 80% of patients experience cognitive changes and psychiatric disturbances, referred to as PD dementia (PDD). Pathologically, PD is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein. Much of PD research has focused on the role of α-synuclein aggregates in degeneration of SNpc dopamine neurons because of the impact of loss of striatal dopamine on the classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the cortex and limbic brain regions such as the amygdala, which may contribute to non-motor phenotypes. Little is known about the consequences of α-synuclein inclusions in these brain regions, or in neuronal subtypes other than dopamine neurons. This project expands knowledge on how α-synuclein inclusions disrupt behavior, specifically non-motor symptoms of synucleinopathies. We show that bilateral injections of fibrils into the striatum results in robust bilateral α-synuclein inclusion formation in the cortex and amygdala. Inclusions in the amygdala and prefrontal cortex primarily localize to excitatory neurons, but unbiased stereology shows no significant loss of neurons in the amygdala or cortex. Fibril injected mice show defects in a social dominance behavioral task and fear conditioning, tasks that are associated with prefrontal cortex and amygdala function. Together, these observations suggest that seeded α-synuclein inclusion formation impairs behaviors associated with cortical and amygdala function, without causing cell loss, in brain areas that may play important roles in the complex cognitive features of PDD
Collapse
|