1
|
Miroshnichenko MI, Kolpakov FA, Akberdin IR. A Modular Mathematical Model of the Immune Response for Investigating the Pathogenesis of Infectious Diseases. Viruses 2025; 17:589. [PMID: 40431602 PMCID: PMC12115727 DOI: 10.3390/v17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic highlighted the importance of mathematical modeling for understanding viral infection dynamics and accelerated its application into immunological research. Collaborative efforts among international research groups yielded a wealth of experimental data, which facilitated model development and validation. This study focuses on developing a modular mathematical model of the immune response, capturing the interactions between innate and adaptive immunity, with an application to SARS-CoV-2 infection. The model was validated using experimental data from middle-aged individuals with moderate COVID-19 progression, including measurements of viral load in the upper and lower airways, serum antibodies, CD4+ and CD8+ T cells, and interleukin-6 levels. Parameter optimization and sensitivity analysis were performed to improve the model accuracy. Additionally, identifiability analysis was conducted to assess whether the data were sufficient for reliable parameter estimation. The verified model simulates the dynamics of moderate, severe, and critical COVID-19 progressions using measured data on lung epithelium damage, viral load, and IL-6 levels as key indicators of disease severity. We also performed a series of validation scenarios to assess whether the model correctly reproduces biologically relevant behaviors under various conditions, such as immunity hyperactivation, co-infection with HIV, and interferon administration as a therapeutic strategy. The model was developed as a component of the Digital Twin project and represents a general immune module that integrates both innate and adaptive immunity. It can be utilized for further COVID-19 research or serve as a foundation for studying other infectious diseases, provided sufficient data are available.
Collapse
Affiliation(s)
- Maxim I. Miroshnichenko
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia; (F.A.K.); (I.R.A.)
| | | | | |
Collapse
|
2
|
Binh VD, Thi Thanh Nga H, Thanh NH, Thanh NH, Tai LP, Hung NQ. Characteristics of unexpected antibodies in patients with blood disorders: Evidence in Vietnam. Transfus Apher Sci 2024; 63:103878. [PMID: 38388334 DOI: 10.1016/j.transci.2024.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In Vietnam, a lack of evidence about the unexpected antibodies hinders the capabilities to prepare the necessary resources and personnel for treating patients with blood disorders. This study aimed to measure the rates of different unexpected antibodies in patients having blood orders in Vietnam. STUDY DESIGN AND METHODS A cross-sectional study was conducted at the National Institute of Hematology - Blood Transfusion, Vietnam on 5608 patients with blood disorders. Information was obtained from the medical records, blood transfusion forms, screening test forms. RESULTS The prevalence rate of unexpected antibodies in patients with haematological disorders was 9.3%. The most prevalent occurrence was the presence of an atypical antibody type, accounting for 61% of patients. The co-occurrence of this atypical antibody type and other types of antibodies was also observed, with the respective occurrence rates of 23.9%, 10.1%, 3.8%, and 1.2% for the combination of two, three, four, and five unexpected antibody types. The presence of one type of unexpected antibody was predominant, namely anti-E, accounting for the highest proportion (32.9%), followed by anti-Mia (18.4%). Among the 125 patients, the most frequently observed combination of abnormal antibodies was anti-E with anti-c (14.3%) and anti-E with anti-Mia (3.4%). Among the cohort of 53 patients exhibiting three types of unexpected antibodies, the most prevalent combination observed was anti-c, anti-E, and anti-Mia (5.7%). CONCLUSION This study revealed a prevalence rate of 9.3% in the presence of unexpected antibodies in patients with blood disorders. The occurrence of individual unexpected antibodies surpasses that of coordinated antibodies.
Collapse
Affiliation(s)
- Vu Duc Binh
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
| | | | - Nguyen Ha Thanh
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
| | - Nguyen Hoang Thanh
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Le Phu Tai
- Gastroenterology and Hepatology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Nguyen Quang Hung
- National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam
| |
Collapse
|
3
|
Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers (Basel) 2022; 14:cancers14051325. [PMID: 35267633 PMCID: PMC8909429 DOI: 10.3390/cancers14051325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Monoclonal antibodies are increasingly used for a broad range of diseases. Rising demand must face with time time-consuming and laborious processes to isolate novel monoclonal antibodies. Next-generation sequencing coupled to phage display provides timely and sustainable high throughput selection strategy to rapidly access novel target. Here, we describe the current NGS-guided strategies to identify potential binders from enriched sub-libraires by applying a user-friendly informatic pipeline to identify and discard false positive clones. Rescue step and strategies to boost mAb yield are also discussed to improve the limiting selection and screening steps. Abstract Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| | - Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Margherita Passariello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Claudia De Lorenzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marco J. Morelli
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| |
Collapse
|
4
|
Bhagavati S. Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Front Neurol 2021; 12:664664. [PMID: 33935958 PMCID: PMC8079742 DOI: 10.3389/fneur.2021.664664] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkable discoveries over the last two decades have elucidated the autoimmune basis of several, previously poorly understood, neurological disorders. Autoimmune disorders of the nervous system may affect any part of the nervous system, including the brain and spinal cord (central nervous system, CNS) and also the peripheral nerves, neuromuscular junction and skeletal muscle (peripheral nervous system, PNS). This comprehensive overview of this rapidly evolving field presents the factors which may trigger breakdown of self-tolerance and development of autoimmune disease in some individuals. Then the pathophysiological basis and clinical features of autoimmune diseases of the nervous system are outlined, with an emphasis on the features which are important to recognize for accurate clinical diagnosis. Finally the latest therapies for autoimmune CNS and PNS disorders and their mechanisms of action and the most promising research avenues for targeted immunotherapy are discussed.
Collapse
Affiliation(s)
- Satyakam Bhagavati
- Department of Neurology, Downstate Medical Center, State University of New York College of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Suzuki T, Sato Y, Sano K, Arashiro T, Katano H, Nakajima N, Shimojima M, Kataoka M, Takahashi K, Wada Y, Morikawa S, Fukushi S, Yoshikawa T, Saijo M, Hasegawa H. Severe fever with thrombocytopenia syndrome virus targets B cells in lethal human infections. J Clin Invest 2020; 130:799-812. [PMID: 31904586 DOI: 10.1172/jci129171] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by a tick-borne banyangvirus and is associated with high fatality. Despite increasing incidence of SFTS and serious public health concerns in East Asia, the pathogenesis of lethal SFTS virus (SFTSV) infection in humans is not fully understood. Numbers of postmortem examinations to determine target cells of the viral infection have so far been limited. Here we showed that B cells differentiating into plasmablasts and macrophages in secondary lymphoid organs were targets for SFTSV at the end stage of lethal infection, and the majority of SFTSV-infected cells were B cell-lineage lymphocytes. In affected individuals, B cell-lineage lymphocytes with SFTSV infection were widely distributed in both lymphoid and nonlymphoid organs, and infiltration of these cells into the capillaries of the organs could be observed occasionally. Moreover, a human plasmablastic lymphoma cell line, PBL-1, was susceptible to SFTSV propagation and had a similar immunophenotype to that of target cells of SFTSV in fatal SFTS. PBL-1 can therefore provide a potential in vitro model for human SFTSV infection. These results extend our understanding of the pathogenesis of human lethal SFTSV infection and can facilitate the development of SFTSV countermeasures.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeshi Arashiro
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku Graduate School of Medicine, Sendai, Miyagi, Japan.,Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
7
|
Ainai A, van Riet E, Ito R, Ikeda K, Senchi K, Suzuki T, Tamura SI, Asanuma H, Odagiri T, Tashiro M, Kurata T, Multihartina P, Setiawaty V, Pangesti KNA, Hasegawa H. Human immune responses elicited by an intranasal inactivated H5 influenza vaccine. Microbiol Immunol 2020; 64:313-325. [PMID: 31957054 PMCID: PMC7216874 DOI: 10.1111/1348-0421.12775] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 11/29/2022]
Abstract
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.
Collapse
Affiliation(s)
- Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Elly van Riet
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ryo Ito
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kazuyuki Ikeda
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kyosuke Senchi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shin-Ichi Tamura
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideki Asanuma
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Takeshi Kurata
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Pretty Multihartina
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Vivi Setiawaty
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | | | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan.,Global Virus Network, Baltimore, MD, USA
| |
Collapse
|
8
|
Wec AZ, Haslwanter D, Abdiche YN, Shehata L, Pedreño-Lopez N, Moyer CL, Bornholdt ZA, Lilov A, Nett JH, Jangra RK, Brown M, Watkins DI, Ahlm C, Forsell MN, Rey FA, Barba-Spaeth G, Chandran K, Walker LM. Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. Proc Natl Acad Sci U S A 2020; 117:6675-6685. [PMID: 32152119 PMCID: PMC7104296 DOI: 10.1073/pnas.1921388117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A comprehensive understanding of the development and evolution of human B cell responses induced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a high-throughput single B cell cloning technology to longitudinally track the human B cell response to the yellow fever virus 17D (YFV-17D) vaccine. The early memory B cell (MBC) response was mediated by both classical immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin (swIg+) MBC populations; however, classical IgM MBCs waned rapidly, whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination.
Collapse
Affiliation(s)
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | | | | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - David I Watkins
- Department of Pathology, University of Miami, Miami, FL 33146
| | - Clas Ahlm
- Division of Infection & Immunology, Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Mattias N Forsell
- Division of Infection & Immunology, Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Félix A Rey
- Structural Virology Unit, CNRS UMR 3569, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Giovanna Barba-Spaeth
- Structural Virology Unit, CNRS UMR 3569, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
9
|
Afroz S, Shama, Battu S, Matin S, Solouki S, Elmore JP, Minhas G, Huang W, August A, Khan N. Amino acid starvation enhances vaccine efficacy by augmenting neutralizing antibody production. Sci Signal 2019; 12:12/607/eaav4717. [PMID: 31719173 DOI: 10.1126/scisignal.aav4717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific reduction in the intake of proteins or amino acids (AAs) offers enormous health benefits, including increased life span, protection against age-associated disorders, and improved metabolic fitness and immunity. Cells respond to conditions of AA starvation by activating the amino acid starvation response (AAR). Here, we showed that mimicking AAR with halofuginone (HF) enhanced the magnitude and affinity of neutralizing, antigen-specific antibody responses in mice immunized with dengue virus envelope domain III protein (DENVrEDIII), a potent vaccine candidate against DENV. HF enhanced the formation of germinal centers (GCs) and increased the production of the cytokine IL-10 in the secondary lymphoid organs of vaccinated mice. Furthermore, HF promoted the transcription of genes associated with memory B cell formation and maintenance and maturation of GCs in the draining lymph nodes of vaccinated mice. The increased abundance of IL-10 in HF-preconditioned mice correlated with enhanced GC responses and may promote the establishment of long-lived plasma cells that secrete antigen-specific, high-affinity antibodies. Thus, these data suggest that mimetics of AA starvation could provide an alternative strategy to augment the efficacy of vaccines against dengue and other infectious diseases.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shama
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Srikanth Battu
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shaikh Matin
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gillipsie Minhas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India.
| |
Collapse
|
10
|
Lucchesi S, Nolfi E, Pettini E, Pastore G, Fiorino F, Pozzi G, Medaglini D, Ciabattini A. Computational Analysis of Multiparametric Flow Cytometric Data to Dissect B Cell Subsets in Vaccine Studies. Cytometry A 2019; 97:259-267. [PMID: 31710181 PMCID: PMC7079172 DOI: 10.1002/cyto.a.23922] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
The generation of the B cell response upon vaccination is characterized by the induction of different functional and phenotypic subpopulations and is strongly dependent on the vaccine formulation, including the adjuvant used. Here, we have profiled the different B cell subsets elicited upon vaccination, using machine learning methods for interpreting high‐dimensional flow cytometry data sets. The B cell response elicited by an adjuvanted vaccine formulation, compared to the antigen alone, was characterized using two automated methods based on clustering (FlowSOM) and dimensional reduction (t‐SNE) approaches. The clustering method identified, based on multiple marker expression, different B cell populations, including plasmablasts, plasma cells, germinal center B cells and their subsets, while this profiling was more difficult with t‐SNE analysis. When undefined phenotypes were detected, their characterization could be improved by integrating the t‐SNE spatial visualization of cells with the FlowSOM clusters. The frequency of some cellular subsets, in particular plasma cells, was significantly higher in lymph nodes of mice primed with the adjuvanted formulation compared to antigen alone. Thanks to this automatic data analysis it was possible to identify, in an unbiased way, different B cell populations and also intermediate stages of cell differentiation elicited by immunization, thus providing a signature of B cell recall response that can be hardly obtained with the classical bidimensional gating analysis. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Emanuele Nolfi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| |
Collapse
|
11
|
Nguyen DC, Joyner CJ, Sanz I, Lee FEH. Factors Affecting Early Antibody Secreting Cell Maturation Into Long-Lived Plasma Cells. Front Immunol 2019; 10:2138. [PMID: 31572364 PMCID: PMC6749102 DOI: 10.3389/fimmu.2019.02138] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Antibody secreting cells (ASCs) are terminally differentiated cells of the humoral immune response and must adapt morphologically, transcriptionally, and metabolically to maintain high-rates of antibody (Ab) secretion. ASCs differentiate from activated B cells in lymph nodes and transiently circulate in the blood. Most of the circulating ASCs undergo apoptosis, but a small fraction of early ASCs migrate to the bone marrow (BM) and eventually mature into long-lived plasma cells (LLPCs). LLPC survival is controlled both intrinsically and extrinsically. Their differentiation and maintenance programs are governed by many intrinsic mechanisms involving anti-apoptosis, autophagy, and metabolism. The extrinsic factors involved in LLPC generation include BM stromal cells, cytokines, and chemokines, such as APRIL, IL-6, and CXCL12. In humans, the BM CD19−CD38hiCD138+ ASC subset is the main repository of LLPCs, and our recent development of an in vitro BM mimic provides essential tools to study environmental cues that support LLPC survival and the critical molecular mechanisms of maturation from early minted blood ASCs to LLPCs. In this review, we summarize the evidence of LLPC generation and maintenance and provide novel paradigms of LLPC maturation.
Collapse
Affiliation(s)
- Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Chester J Joyner
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Iñaki Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States.,Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States.,Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Lyski ZL, Messer WB. Approaches to Interrogating the Human Memory B-Cell and Memory-Derived Antibody Repertoire Following Dengue Virus Infection. Front Immunol 2019; 10:1276. [PMID: 31244836 PMCID: PMC6562360 DOI: 10.3389/fimmu.2019.01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Memory B-cells (MBCs) are potential antibody secreting immune cells that differentiate and mature following host exposure to a pathogen. Following differentiation, MBCs remain in peripheral circulation after recovery and are poised to secrete antigen-specific antibodies if and when they are re-exposed to their cognate antigen. Consequently, MBCs form the founder population and provide one of the first lines of pathogen-specific defense against reinfection. The role MBCs play is complicated for viruses that are heterologous, such as dengue virus (DENV), which exist as antigenically different serotypes. On second infection with a different serotype, MBCs from initial dengue infection rapidly proliferate and secrete antibodies: many of these MBC derived antibodies will be cross-reactive and weakly neutralizing, while some antibodies may recognize epitopes conserved across serotypes and have the capacity to broadly neutralize 2 or more serotypes. It is also possible that a new population of MBCs and antibodies specific for the second virus serotype need to arise for long-term broader immunity to develop. Methods to interrogate and track memory B cell responses are important for evaluating both natural immunity and vaccine response. However, the low abundance of MBCs for any specific pathogen makes it challenging to interrogate frequency, specificity, and breadth for the pathogen of interest. This review discusses current approaches that have been used to interrogate the memory B cell immune response against viral pathogens in general and DENV specifically. Including strengths, limitations, and future directions. Single-cell approaches could help uncover the DENV specific MBC antibody repertoire, and improved methods for isolating DENV specific monoclonal antibodies from human peripheral blood cells would allow for a functional analysis of the anti-DENV repertoire.
Collapse
Affiliation(s)
- Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
13
|
Moormann AM, Nixon CE, Forconi CS. Immune effector mechanisms in malaria: An update focusing on human immunity. Parasite Immunol 2019; 41:e12628. [PMID: 30972776 DOI: 10.1111/pim.12628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed dramatic decreases in malaria-associated mortality and morbidity around the world. This progress has largely been due to intensified malaria control measures, implementation of rapid diagnostics and establishing a network to anticipate and mitigate antimalarial drug resistance. However, the ultimate tool for malaria prevention is the development and implementation of an effective vaccine. To date, malaria vaccine efforts have focused on determining which of the thousands of antigens expressed by Plasmodium falciparum are instrumental targets of protective immunity. The antigenic variation and antigenic polymorphisms arising in parasite genes under immune selection present a daunting challenge for target antigen selection and prioritization, and is a given caveat when interpreting immune recall responses or results from monovalent vaccine trials. Other immune evasion strategies executed by the parasite highlight the myriad of ways in which it can become a recurrent infection. This review provides an update on immune effector mechanisms in malaria and focuses on our improved ability to interrogate the complexity of human immune system, accelerated by recent methodological advances. Appreciating how the human immune landscape influences the effectiveness and longevity of antimalarial immunity will help explain which conditions are necessary for immune effector mechanisms to prevail.
Collapse
Affiliation(s)
- Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christina E Nixon
- Department of Pathology and Lab Medicine, Brown University, Providence, Rhode Island
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
14
|
Tan J, Piccoli L, Lanzavecchia A. The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies. Annu Rev Immunol 2018; 37:225-246. [PMID: 30566366 DOI: 10.1146/annurev-immunol-042617-053301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Collapse
Affiliation(s)
- Joshua Tan
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.,Current affiliation: National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,VIR Biotechnology, San Francisco, California 94158, USA
| |
Collapse
|