1
|
Losa M, Emmenegger M, De Rossi P, Schürch PM, Serdiuk T, Pengo N, Capron D, Bieli D, Bargenda N, Rupp NJ, Carta MC, Frontzek KJ, Lysenko V, Reimann RR, Schwarz P, Nuvolone M, Westermark GT, Nilsson KPR, Polymenidou M, Theocharides AP, Hornemann S, Picotti P, Aguzzi A. The ASC inflammasome adapter governs SAA-derived protein aggregation in inflammatory amyloidosis. EMBO Mol Med 2024; 16:2024-2042. [PMID: 39080493 PMCID: PMC11393341 DOI: 10.1038/s44321-024-00107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/14/2024] Open
Abstract
Extracellularly released molecular inflammasome assemblies -ASC specks- cross-seed Aβ amyloid in Alzheimer's disease. Here we show that ASC governs the extent of inflammation-induced amyloid A (AA) amyloidosis, a systemic disease caused by the aggregation and peripheral deposition of the acute-phase reactant serum amyloid A (SAA) in chronic inflammatory conditions. Using super-resolution microscopy, we found that ASC colocalized tightly with SAA in human AA amyloidosis. Recombinant ASC specks accelerated SAA fibril formation and mass spectrometry after limited proteolysis showed that ASC interacts with SAA via its pyrin domain (PYD). In a murine model of inflammatory AA amyloidosis, splenic amyloid load was conspicuously decreased in Pycard-/- mice which lack ASC. Treatment with anti-ASCPYD antibodies decreased amyloid loads in wild-type mice suffering from AA amyloidosis. The prevalence of natural anti-ASC IgG (-logEC50 ≥ 2) in 19,334 hospital patients was <0.01%, suggesting that anti-ASC antibody treatment modalities would not be confounded by natural autoimmunity. These findings expand the role played by ASC and IL-1 independent inflammasome employments to extraneural proteinopathies and suggest that anti-ASC immunotherapy may contribute to resolving such diseases.
Collapse
Affiliation(s)
- Marco Losa
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Niklas Bargenda
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Manfredi C Carta
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Karl J Frontzek
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Regina R Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | - Simone Hornemann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Emmenegger M, De Cecco E, Lamparter D, Jacquat RP, Riou J, Menges D, Ballouz T, Ebner D, Schneider MM, Morales IC, Doğançay B, Guo J, Wiedmer A, Domange J, Imeri M, Moos R, Zografou C, Batkitar L, Madrigal L, Schneider D, Trevisan C, Gonzalez-Guerra A, Carrella A, Dubach IL, Xu CK, Meisl G, Kosmoliaptsis V, Malinauskas T, Burgess-Brown N, Owens R, Hatch S, Mongkolsapaya J, Screaton GR, Schubert K, Huck JD, Liu F, Pojer F, Lau K, Hacker D, Probst-Müller E, Cervia C, Nilsson J, Boyman O, Saleh L, Spanaus K, von Eckardstein A, Schaer DJ, Ban N, Tsai CJ, Marino J, Schertler GF, Ebert N, Thiel V, Gottschalk J, Frey BM, Reimann RR, Hornemann S, Ring AM, Knowles TP, Puhan MA, Althaus CL, Xenarios I, Stuart DI, Aguzzi A. Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region. iScience 2023; 26:105928. [PMID: 36619367 PMCID: PMC9811913 DOI: 10.1016/j.isci.2023.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - David Lamparter
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Raphaël P.B. Jacquat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Julien Riou
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Matthias M. Schneider
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Berre Doğançay
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Julie Domange
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Marigona Imeri
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chryssa Zografou
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Leyla Batkitar
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Dezirae Schneider
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | | | | | - Irina L. Dubach
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Catherine K. Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomas Malinauskas
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | | | - Ray Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- The Rosalind Franklin Institute, Harwell Campus, Oxford OX11 0FA, UK
| | - Stephanie Hatch
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gavin R. Screaton
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - John D. Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Florence Pojer
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - David Hacker
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | | | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Lanja Saleh
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ching-Ju Tsai
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Jacopo Marino
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Gebhard F.X. Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jochen Gottschalk
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tuomas P.J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Christian L. Althaus
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
- Agora Center, University of Lausanne, 25 Avenue du Bugnon, 1005 Lausanne, Switzerland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
4
|
Reimann RR, Puzio M, Rosati A, Emmenegger M, Schneider BL, Valdés P, Huang D, Caflisch A, Aguzzi A. Rapid ex vivo reverse genetics identifies the essential determinants of prion protein toxicity. Brain Pathol 2022; 33:e13130. [PMID: 36329611 PMCID: PMC10041163 DOI: 10.1111/bpa.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein PrPC mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrPC (GDL) can also initiate neurotoxicity by inducing an intramolecular R208 -H140 hydrogen bond ("H-latch") between the α2-α3 and β2-α2 loops of PrPC . Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways. To define the structural underpinnings of these phenomena, we transduced 19 individual PrPC variants to PrPC -deficient cerebellar organotypic cultured slices using adenovirus-associated viral vectors (AAV). We report that GDL toxicity requires a single N-proximal cationic residue (K27 or R27 ) within PrPC . Alanine substitution of K27 also prevented the toxicity of PrPC mutants that induce Shmerling syndrome, a neurodegenerative disease that is suppressed by co-expression of wild-type PrPC . K27 may represent an actionable target for compounds aimed at preventing prion-related neurodegeneration.
Collapse
Affiliation(s)
| | - Martina Puzio
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Antonella Rosati
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Pamela Valdés
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Danzhi Huang
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Zurich Switzerland
| |
Collapse
|
5
|
Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res 2022; 392:63-80. [PMID: 35581386 DOI: 10.1007/s00441-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Moura-Sampaio J, Faustino AF, Boeuf R, Antunes MA, Ewert S, Batista AP. Reconstruction of full antibody sequences in NGS datasets and accurate VL:VH coupling by cluster coordinate matching of non-overlapping reads. Comput Struct Biotechnol J 2022; 20:2723-2727. [PMID: 35832623 PMCID: PMC9168528 DOI: 10.1016/j.csbj.2022.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022] Open
Abstract
Next-generation sequencing (NGS) is an indispensable tool in antibody discovery projects. However, the limits on NGS read length make it difficult to reconstruct full antibody sequences from the sequencing runs, especially if the six CDRs are randomized. To overcome that, we took advantage of Illumina’s cluster mapping capabilities to pair non-overlapping reads and reconstruct full Fab sequences with accurate VL:VH pairings. The method relies on in silico cluster coordinate information, and not on extensive in vitro manipulation, making the protocol easily deployable and less prone to PCR-derived errors. This work maintains the throughput necessary for antibody discovery campaigns, and a high degree of fidelity, which potentiates not only phage-display and synthetic library-based discovery methods, but also the NGS-driven analysis of naïve and immune libraries.
Collapse
|
7
|
Novel regulators of PrPC biosynthesis revealed by genome-wide RNA interference. PLoS Pathog 2021; 17:e1010013. [PMID: 34705895 PMCID: PMC8575309 DOI: 10.1371/journal.ppat.1010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
The cellular prion protein PrPC is necessary for prion replication, and its reduction greatly increases life expectancy in animal models of prion infection. Hence the factors controlling the levels of PrPC may represent therapeutic targets against human prion diseases. Here we performed an arrayed whole-transcriptome RNA interference screen to identify modulators of PrPC expression. We cultured human U251-MG glioblastoma cells in the presence of 64’752 unique siRNAs targeting 21’584 annotated human genes, and measured PrPC using a one-pot fluorescence-resonance energy transfer immunoassay in 51’128 individual microplate wells. This screen yielded 743 candidate regulators of PrPC. When downregulated, 563 of these candidates reduced and 180 enhanced PrPC expression. Recursive candidate attrition through multiple secondary screens yielded 54 novel regulators of PrPC, 9 of which were confirmed by CRISPR interference as robust regulators of PrPC biosynthesis and degradation. The phenotypes of 6 of the 9 candidates were inverted in response to transcriptional activation using CRISPRa. The RNA-binding post-transcriptional repressor Pumilio-1 was identified as a potent limiter of PrPC expression through the degradation of PRNP mRNA. Because of its hypothesis-free design, this comprehensive genetic-perturbation screen delivers an unbiased landscape of the genes regulating PrPC levels in cells, most of which were unanticipated, and some of which may be amenable to pharmacological targeting in the context of antiprion therapies. The cellular prion protein (PrPC) acts as both, the substrate for prion formation and mediator of prion toxicity during the progression of all prion diseases. Suppressing the levels of PrPC is a viable therapeutic strategy as PRNP null animals are resistant to prion disease and the knockout of PRNP is not associated with any severe phenotypes. Motivated by the scarcity of knowledge regarding the molecular regulators of PrPC biosynthesis and degradation, which might serve as valuable targets to control its expression, here, we present a cell-based genome wide RNAi screen in arrayed format. The screening effort led to the identification of 54 regulators, nine of which were confirmed by an independent CRISPR-based method. Among the final nine targets, we identified PUM1 as a regulator of PRNP mRNA by acting on the 3’UTR promoting its degradation. The newly identified factors involved in the life cycle of PrPC provided by our study may also represent themselves as therapeutic targets for the intervention of prion diseases.
Collapse
|
8
|
Adhikari UK, Tayebi M. Epitope-specific anti-PrP antibody toxicity: a comparative in-silico study of human and mouse prion proteins. Prion 2021; 15:155-176. [PMID: 34632945 PMCID: PMC8900626 DOI: 10.1080/19336896.2021.1964326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Despite having therapeutic potential, anti-PrP antibodies caused a major controversy due to their neurotoxic effects. For instance, treating mice with ICSM antibodies delayed prion disease onset, but both were found to be either toxic or innocuous to neurons by researchers following cross-linking PrPC. In order to elucidate and understand the reasons that led to these contradictory outcomes, we conducted a comprehensive in silico study to assess the antibody-specific toxicity. Since most therapeutic anti-PrP antibodies were generated against human truncated recombinant PrP91-231 or full-length mouse PrP23-231, we reasoned that host specificity (human vs murine) of PrPC might influence the nature of the specific epitopes recognized by these antibodies at the structural level possibly explaining the 'toxicity' discrepancies reported previously. Initially, molecular dynamics simulation and pro-motif analysis of full-length human (hu)PrP and mouse (mo)PrP 3D structure displayed conspicuous structural differences between huPrP and moPrP. We identified 10 huPrP and 6 moPrP linear B-cell epitopes from the prion protein 3D structure where 5 out of 10 huPrP and 3 out of 6 moPrP B-cell epitopes were predicted to be potentially toxic in immunoinformatics approaches. Herein, we demonstrate that some of the predicted potentially 'toxic' epitopes identified by the in silico analysis were similar to the epitopes recognized by the toxic antibodies such as ICSM18 (146-159), POM1 (138-147), D18 (133-157), ICSM35 (91-110), D13 (95-103) and POM3 (95-100). This in silico study reveals the role of host specificity of PrPC in epitope-specific anti-PrP antibody toxicity.
Collapse
Affiliation(s)
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
9
|
Carta M, Aguzzi A. Molecular foundations of prion strain diversity. Curr Opin Neurobiol 2021; 72:22-31. [PMID: 34416480 DOI: 10.1016/j.conb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Despite being caused by a single protein, prion diseases are strikingly heterogenous. Individual prion variants, known as strains, possess distinct biochemical properties, form aggregates with characteristic morphologies and preferentially seed certain brain regions, causing markedly different disease phenotypes. Strain diversity is determined by protein structure, post-translational modifications and the presence of extracellular matrix components, with single amino acid substitutions or altered protein glycosylation exerting dramatic effects. Here, we review recent advances in the study of prion strains and discuss how a deeper knowledge of the molecular origins of strain heterogeneity is providing a foundation for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Manfredi Carta
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| |
Collapse
|
10
|
Kamali-Jamil R, Vázquez-Fernández E, Tancowny B, Rathod V, Amidian S, Wang X, Tang X, Fang A, Senatore A, Hornemann S, Dudas S, Aguzzi A, Young HS, Wille H. The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLoS Pathog 2021; 17:e1009628. [PMID: 34061899 PMCID: PMC8195424 DOI: 10.1371/journal.ppat.1009628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a β-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100-110 to 227-237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung β-solenoid fold.
Collapse
Affiliation(s)
- Razieh Kamali-Jamil
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Ester Vázquez-Fernández
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Tancowny
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xiongyao Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xinli Tang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Assunta Senatore
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Sandor Dudas
- Canadian BSE Reference Laboratory, Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice. PLoS One 2020; 15:e0242137. [PMID: 33180885 PMCID: PMC7660510 DOI: 10.1371/journal.pone.0242137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.
Collapse
|
12
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
13
|
Senatore A, Frontzek K, Emmenegger M, Chincisan A, Losa M, Reimann R, Horny G, Guo J, Fels S, Sorce S, Zhu C, George N, Ewert S, Pietzonka T, Hornemann S, Aguzzi A. Protective anti-prion antibodies in human immunoglobulin repertoires. EMBO Mol Med 2020; 12:e12739. [PMID: 32776637 PMCID: PMC7506995 DOI: 10.15252/emmm.202012739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Prion immunotherapy may hold great potential, but antibodies against certain PrP epitopes can be neurotoxic. Here, we identified > 6,000 PrP-binding antibodies in a synthetic human Fab phage display library, 49 of which we characterized in detail. Antibodies directed against the flexible tail of PrP conferred neuroprotection against infectious prions. We then mined published repertoires of circulating B cells from healthy humans and found antibodies similar to the protective phage-derived antibodies. When expressed recombinantly, these antibodies exhibited anti-PrP reactivity. Furthermore, we surveyed 48,718 samples from 37,894 hospital patients for the presence of anti-PrP IgGs and found 21 high-titer individuals. The clinical files of these individuals did not reveal any enrichment of specific pathologies, suggesting that anti-PrP autoimmunity is innocuous. The existence of anti-prion antibodies in unbiased human immunological repertoires suggests that they might clear nascent prions early in life. Combined with the reported lack of such antibodies in carriers of disease-associated PRNP mutations, this suggests a link to the low incidence of spontaneous prion diseases in human populations.
Collapse
Affiliation(s)
- Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andra Chincisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Regina Reimann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Geraldine Horny
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Sylvie Fels
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Caihong Zhu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Nathalie George
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Ewert
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|