1
|
Sun R, Zhao Y, Liu Y, Zhang M, Qiu Z, Ma X, Wei L, Lu W, Liu Z, Jiang J. Extracellular matrix stiffness in endometrial cancer: driving progression and modulating treatment sensitivity via the ROCK1/YAP1 axis. Cell Death Dis 2025; 16:380. [PMID: 40368918 PMCID: PMC12078694 DOI: 10.1038/s41419-025-07697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Endometrial cancer (EC) is among the most prevalent gynecological malignancies, with advanced or recurrent cases posing significant treatment challenges due to limited responses to conventional therapies. Growing evidence highlights the critical role of extracellular matrix (ECM) stiffness in driving tumor progression by shaping the tumor microenvironment. In this study, we demonstrate that ECM stiffness is significantly higher in EC tissues compared to normal endometrium, correlating with elevated expression of ROCK1, a mechanosensitive kinase. Using atomic force microscopy (AFM), we quantified ECM stiffness, while polyacrylamide gels with varying stiffness were employed to mimic ECM conditions in vitro. Bioinformatics analyses, immunofluorescence, Western blotting, and co-immunoprecipitation experiments revealed that ROCK1 modulates the phosphorylation of YAP1, promoting its nuclear localization and transcriptional activity, thereby driving aggressive tumor behaviors, including enhanced proliferation, migration, invasion, and reduced apoptosis. Pharmacological inhibition of ROCK1 with Y-27632 mitigated these effects, suppressing tumor growth, restoring apoptosis, and inducing cell cycle arrest. Treatment with Y-27632 improved sensitivity to chemotherapy and radiotherapy, and significantly enhanced macrophage-mediated phagocytosis, thereby boosting anti-tumor immune responses. In hormone-resistant EC cells, ROCK1 inhibition restored sensitivity to progesterone therapy. Notably, in vivo experiments in a xenograft mouse model confirmed the therapeutic potential of Y-27632, as combination therapy with progesterone showed superior tumor-suppressive effects compared to monotherapy. These findings underscore the dual role of ECM stiffness and ROCK1 in driving tumor progression and influencing treatment outcomes. By elucidating the relationship between ECM stiffness, ROCK1/YAP1 signaling, and treatment sensitivity, this study highlights the potential of targeting the ROCK1/YAP1 axis as a therapeutic strategy. ROCK1 serves as both a biomarker for prognosis and a target for improving personalized treatment approaches, offering new avenues to enhance clinical outcomes for EC patients.
Collapse
Affiliation(s)
- Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Mengyao Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lina Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
3
|
Barcelo J, Samain R, Sanz-Moreno V. Preclinical to clinical utility of ROCK inhibitors in cancer. Trends Cancer 2023; 9:250-263. [PMID: 36599733 DOI: 10.1016/j.trecan.2022.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
ROCK belongs to the AGC family of Ser/Thr protein kinases that are involved in many cellular processes. ROCK-driven actomyosin contractility regulates cytoskeletal dynamics underpinning cell migration, proliferation, and survival in many cancer types. ROCK1/2 play key protumorigenic roles in several subtypes and stages of cancer development. Therefore, successfully targeting ROCK and its downstream effectors presents an interesting avenue for cancer treatment. Because local use of ROCK inhibitors will reduce the side effects of systemic administration, we propose different therapeutic strategies and latest-generation ROCK inhibitors for use in the clinic.
Collapse
Affiliation(s)
- Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
4
|
Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol 2022; 12:961733. [PMID: 36185198 PMCID: PMC9520704 DOI: 10.3389/fonc.2022.961733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chaperonin containing TCP1 Subunit 3 (CCT3) is an important member of the chaperone protein family, providing a favorable environment for the correct folding of proteins in cell division, proliferation, and apoptosis pathways, which is involved in a variety of biological processes as well as the development and invasion of many malignant tumors. Many malignancies have been extensively examined with CCT3. It is presently used as a possible target for the treatment of many malignancies since it is not only a novel biomarker for the screening and diagnosis of different tumors, but it is also closely associated with tumor progression, prognosis, and survival. Recent studies have shown that the expression of CCT3 is up-regulated in some tumors, such as liver cancer, breast cancer, colon cancer, acute myeloid leukemia, etc. In this paper, we review the role of CCT3 in various tumors.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Yan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quansheng Lu
- Department of Dermatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, China
| | - Yujin Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Wan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yizhi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaqin Zhao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
5
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
6
|
Barreno A, Orgaz JL. Cytoskeletal Remodelling as an Achilles’ Heel for Therapy Resistance in Melanoma. Cells 2022; 11:cells11030518. [PMID: 35159327 PMCID: PMC8834185 DOI: 10.3390/cells11030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Melanoma is an aggressive skin cancer with a poor prognosis when diagnosed late. MAPK-targeted therapies and immune checkpoint blockers benefit a subset of melanoma patients; however, acquired therapy resistance inevitably arises within a year. In addition, some patients display intrinsic (primary) resistance and never respond to therapy. There is mounting evidence that resistant cells adapt to therapy through the rewiring of cytoskeleton regulators, leading to a profound remodelling of the actomyosin cytoskeleton. Importantly, this renders therapy-resistant cells highly dependent on cytoskeletal signalling pathways for sustaining their survival under drug pressure, which becomes a vulnerability that can be exploited therapeutically. Here, we discuss the current knowledge on cytoskeletal pathways involved in mainly targeted therapy resistance and future avenues, as well as potential clinical interventions.
Collapse
|
7
|
Yu Y, Tao M, Xu L, Cao L, Le B, An N, Dong J, Xu Y, Yang B, Li W, Liu B, Wu Q, Lu Y, Xie Z, Lian X. Systematic screening reveals synergistic interactions that overcome MAPK inhibitor resistance in cancer cells. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0560. [PMID: 34106558 PMCID: PMC8832956 DOI: 10.20892/j.issn.2095-3941.2020.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Effective adjuvant therapeutic strategies are urgently needed to overcome MAPK inhibitor (MAPKi) resistance, which is one of the most common forms of resistance that has emerged in many types of cancers. Here, we aimed to systematically identify the genetic interactions underlying MAPKi resistance, and to further investigate the mechanisms that produce the genetic interactions that generate synergistic MAPKi resistance. METHODS We conducted a comprehensive pair-wise sgRNA-based high-throughput screening assay to identify synergistic interactions that sensitized cancer cells to MAPKi, and validated 3 genetic combinations through competitive growth, cell viability, and spheroid formation assays. We next conducted Kaplan-Meier survival analysis based on The Cancer Genome Atlas database and conducted immunohistochemistry to determine the clinical relevance of these synergistic combinations. We also investigated the MAPKi resistance mechanisms of these validated synergistic combinations by using co-immunoprecipitation, Western blot, qRT-PCR, and immunofluorescence assays. RESULTS We constructed a systematic interaction network of MAPKi resistance and identified 3 novel synergistic combinations that effectively targeted MAPKi resistance (ITGB3 + IGF1R, ITGB3 + JNK, and HDGF + LGR5). We next analyzed their clinical relevance and the mechanisms by which they sensitized cancer cells to MAPKi exposure. Specifically, we discovered a novel protein complex, HDGF-LGR5, that adaptively responded to MAPKi to enhance cancer cell stemness, which was up- or downregulated by the inhibitors of ITGB3 + JNK or ITGB3 + IGF1R. CONCLUSIONS Pair-wise sgRNA library screening provided systematic insights into elucidating MAPKi resistance in cancer cells. ITGB3- + IGF1R-targeting drugs (cilengitide + linsitinib) could be used as an effective therapy for suppressing the adaptive formation of the HDGF-LGR5 protein complex, which enhanced cancer stemness during MAPKi stress.
Collapse
Affiliation(s)
- Yu Yu
- Department of Cell Biology, Basic Medical College, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minzhen Tao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Libin Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Baoyu Le
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Na An
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Jilin Dong
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Yajie Xu
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Baoxing Yang
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Wei Li
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Bing Liu
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinying Lu
- The Comprehensive Liver Cancer Center, The 5th Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xiaohua Lian
- Department of Cell Biology, Basic Medical College, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
8
|
Goh CJH, Wong JH, El Farran C, Tan BX, Coffill CR, Loh YH, Lane D, Arumugam P. Identification of pathways modulating vemurafenib resistance in melanoma cells via a genome-wide CRISPR/Cas9 screen. G3 (BETHESDA, MD.) 2021; 11:jkaa069. [PMID: 33604667 PMCID: PMC8022920 DOI: 10.1093/g3journal/jkaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Vemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression. Sequence analysis of drug-resistant tumor cells and functional genomic screens has identified several genes that regulate vemurafenib resistance. Reactivation of mitogen-activated protein kinase (MAPK) pathway is a recurrent feature of cells that develop resistance to vemurafenib. We performed a genome-scale CRISPR-based knockout screen to identify modulators of vemurafenib resistance in melanoma cells with a highly improved CRISPR sgRNA library called Brunello. We identified 33 genes that regulate resistance to vemurafenib out of which 14 genes have not been reported before. Gene ontology enrichment analysis showed that the hit genes regulate histone modification, transcription and cell cycle. We discuss how inactivation of hit genes might confer resistance to vemurafenib and provide a framework for follow-up investigations.
Collapse
Affiliation(s)
| | - Jin Huei Wong
- Bioinformatics Institute (BII), A*STAR, Singapore 138671, Singapore
| | - Chadi El Farran
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Ban Xiong Tan
- Experimental Drug Development Centre, A*STAR, Singapore 138670, Singapore
| | | | - Yuin-Hain Loh
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - David Lane
- p53Lab, A*STAR, Singapore 138648, Singapore
| | - Prakash Arumugam
- Bioinformatics Institute (BII), A*STAR, Singapore 138671, Singapore
- Singapore Institute for Food and Biotechnology Innovation, Singapore 138632, Singapore
| |
Collapse
|
9
|
Arnaud G, García-de León FJ, Beltrán LF, Carbajal-Saucedo A. Proteomic comparison of adult and juvenile Santa Catalina rattlesnake (Crotalus catalinensis) venom. Toxicon 2021; 193:55-62. [PMID: 33545227 DOI: 10.1016/j.toxicon.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
Rattlesnake's venom constitutes an important ecological trait that dynamically changes over time. Venoms of adult and juvenile rattleless rattlesnakes, Crotalus catalinensis, an endemic insular species from the Gulf of California, were compared by electrophoretic profile, fibrinogenolytic activity, and proteomic composition to assess ontogenetic variability. The SDS-PAGE profiles show important differences at 12, 22, and 45 kDa, which were prominent in adult samples and absent in juvenile samples, while bands around 20, 25, and 70 kDa are almost absent in adults. Both venoms hydrolyze Aa and Bb chains of fibrinogen generating different patterns of degradation products. This activity was partially inhibited by EDTA and PMSF and completely abolished only in the presence of both inhibitors. More than 260 proteins were identified and quantified in both venoms by proteomic analysis. Metalloproteinases (more than 60%), serine proteinases (14.5% in adult venom and 17.7% in juvenile venom), and C-type lectins (7.1 and 5.9%) represent the three most abundant toxin-related protein families. Bradykinin inhibitor peptides and L-amino acid oxidases were not detected in juvenile venom. A protein-specific comparison shows that adult and juvenile venom share about 30.5% of total toxin-related proteins, while 32% and 35% are exclusively present in adult and juvenile venoms, respectively. This work represents one of the first efforts to understand phenotypic diversity in the venom composition of insular rattlesnake species from Mexico.
Collapse
Affiliation(s)
- Gustavo Arnaud
- Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP, 23096, Mexico
| | - Francisco J García-de León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP, 23096, Mexico
| | - Luis F Beltrán
- Centro de Investigaciones Biológicas del Noroeste S.C. Instituto Politécnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP, 23096, Mexico
| | | |
Collapse
|
10
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
11
|
Li X, Zhou Q, Wang S, Wang P, Li J, Xie Z, Liu C, Wen J, Wu X. Prolonged treatment with Y-27632 promotes the senescence of primary human dermal fibroblasts by increasing the expression of IGFBP-5 and transforming them into a CAF-like phenotype. Aging (Albany NY) 2020; 12:16621-16646. [PMID: 32843583 PMCID: PMC7485707 DOI: 10.18632/aging.103910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
The Rho-kinases (ROCK) inhibitor Y-27632 has been shown to promote the growth of epidermal cells, however, its potential effects on human dermal fibroblasts (HDFs) need to be clarified. Here we show that prolonged treatment of HDFs with Y-27632 decreased their growth by inducing senescence, which was associated with induction of the senescence markers p16 and p21, and downmodulation of the ERK pathways. The senescent HDFs induced by Y-27632 acquired a cancer-associated-fibroblast (CAF)-like phenotype to promote squamous cell carcinoma (SCC) cell growth in vitro. Expression of a newly identified target of Y-27632 by RNA-seq, insulin growth factor binding protein 5 (IGFBP-5), was dramatically increased after 24 h of treatment with Y-27632. Adding recombinant IGFBP-5 protein to the culture medium produced similar phenotypes of HDFs as did treatment with Y-27632, and knockdown of IGFBP-5 blocked the Y-27632-induced senescence. Furthermore, Y-27632 induced the expression of an IGFBP-5 upstream gene, GATA4, and knockdown of GATA4 also reduced the Y-27632-induced senescence. In summary, these results demonstrate for the first time that Y-27632 promotes cellular senescence in primary HDFs by inducing the expression of IGFBP-5 and that prolonged treatment with Y-27632 potentially transforms primary HDFs into CAF-like cells.
Collapse
Affiliation(s)
- Xiangyong Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Key Laboratory of Biotechnology and Biological Resource Utilization in Universities of Shandong and College of Life Science, Dezhou University, Dezhou, China
| | - Qian Zhou
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ping Wang
- Department of Outpatient Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Key Laboratory of Biotechnology and Biological Resource Utilization in Universities of Shandong and College of Life Science, Dezhou University, Dezhou, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
12
|
Yin D, Wei G, Yang F, Sun X. Circular RNA has circ 0001591 promoted cell proliferation and metastasis of human melanoma via ROCK1/PI3K/AKT by targeting miR-431-5p. Hum Exp Toxicol 2020; 40:310-324. [PMID: 32830578 DOI: 10.1177/0960327120950014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Melanoma a common skin tumor induced by excessive hyperplasia of abnormal melanocyte. Circular RNAs (circRNAs) play critical roles in various diseases and presented as the prognostic markers of melanoma. The present study was designed to confirm the effect of circ 0001591 on human melanoma cell growth and to elucidate its mechanism. Patient with melanoma was obtained from Shaanxi Provincial People's Hospital. Cell viability of A2058 cell was detected by MTT assay. The expression of circ 0001591 in serum of patients with melanoma was increased. Up-regulation of circ 0001591 promoted cell growth and cell invasion, and reduced apoptotic rate of melanoma. Down-regulation of circ 0001591 reduced cell growth and cell invasion, and promoted apoptotic rate of melanoma.Up-regulation of circ 0001591 induced PI3 K and p-Akt protein expressions in melanoma through induction of ROCK1 by suppression of miR-431-5p. Over-expression of circ 0001591 suppressed PI3 K and p-Akt protein expressions via suppression of ROCK1 in melanoma by induction of miR-431-5p. MiR-431-5p reduced the effects of circ 0001591 down-regulation on cell growth of melanoma through PI3K/AKT signal pathway. ROCK1 reduced the effects of circ 0001591 on cell growth of melanoma through PI3K/AKT signal pathway. Our findings demonstrated that circ 0001591 inhibits the progression of human melanoma through ROCK1/PI3K/AKT signal pathway by targeting ROCK1 by miR-431-5p.
Collapse
Affiliation(s)
- Dong Yin
- Department of Dermatology, 159431Shaanxi Provincial People's Hospital, China
| | - Guo Wei
- Department of Dermatology, 531675The Second Hospital of Shandong University, China
| | - Fan Yang
- Department of Dermatology, 159431Shaanxi Provincial People's Hospital, China
| | - Xiaoyan Sun
- Department of Dermatology, 159431Shaanxi Provincial People's Hospital, China
| |
Collapse
|
13
|
Diazzi S, Tartare-Deckert S, Deckert M. Bad Neighborhood: Fibrotic Stroma as a New Player in Melanoma Resistance to Targeted Therapies. Cancers (Basel) 2020; 12:cancers12061364. [PMID: 32466585 PMCID: PMC7352197 DOI: 10.3390/cancers12061364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Current treatments for metastatic cutaneous melanoma include immunotherapies and drugs targeting key molecules of the mitogen-activated protein kinase (MAPK) pathway, which is often activated by BRAF driver mutations. Overall responses from patients with metastatic BRAF mutant melanoma are better with therapies combining BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors. However, most patients that initially respond to therapies develop drug resistance within months. Acquired resistance to targeted therapies can be due to additional genetic alterations in melanoma cells and to non-genetic events frequently associated with transcriptional reprogramming and a dedifferentiated cell state. In this second scenario, it is possible to identify pro-fibrotic responses induced by targeted therapies that contribute to the alteration of the melanoma tumor microenvironment. A close interrelationship between chronic fibrosis and cancer has been established for several malignancies including breast and pancreatic cancers. In this context, the contribution of fibrosis to drug adaptation and therapy resistance in melanoma is rapidly emerging. In this review, we summarize recent evidence underlining the hallmarks of fibrotic diseases in drug-exposed and resistant melanoma, including increased remodeling of the extracellular matrix, enhanced actin cytoskeleton plasticity, high sensitivity to mechanical cues, and the establishment of an inflammatory microenvironment. We also discuss several potential therapeutic options for manipulating this fibrotic-like response to combat drug-resistant and invasive melanoma.
Collapse
Affiliation(s)
- Serena Diazzi
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
| | - Sophie Tartare-Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| | - Marcel Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| |
Collapse
|
14
|
Vanneste M, Feddersen CR, Varzavand A, Zhu EY, Foley T, Zhao L, Holt KH, Milhem M, Piper R, Stipp CS, Dupuy AJ, Henry MD. Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Front Oncol 2020; 10:442. [PMID: 32346533 PMCID: PMC7169429 DOI: 10.3389/fonc.2020.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with malignant melanoma have a 5-year survival rate of only 15-20% once the tumor has metastasized to distant tissues. While MAP kinase pathway inhibitors (MAPKi) are initially effective for the majority of patients with melanoma harboring BRAFV600E mutation, over 90% of patients relapse within 2 years. Thus, there is a critical need for understanding MAPKi resistance mechanisms. In this manuscript, we performed a forward genetic screen using a whole genome shRNA library to identify negative regulators of vemurafenib resistance. We identified loss of NF1 and CUL3 as drivers of vemurafenib resistance. NF1 is a known driver of vemurafenib resistance in melanoma through its action as a negative regulator of RAS. However, the mechanism by which CUL3, a key protein in E3 ubiquitin ligase complexes, is involved in vemurafenib resistance was unknown. We found that loss of CUL3 was associated with an increase in RAC1 activity and MEKS298 phosphorylation. However, the addition of the Src family inhibitor saracatinib prevented resistance to vemurafenib in CUL3KD cells and reversed RAC1 activation. This finding suggests that inhibition of the Src family suppresses MAPKi resistance in CUL3KD cells by inactivation of RAC1. Our results also indicated that the loss of CUL3 does not promote the activation of RAC1 through stabilization, suggesting that CUL3 is involved in the stability of upstream regulators of RAC1. Collectively, our study identifies the loss of CUL3 as a driver of MAPKi resistance through activation of RAC1 and demonstrates that inhibition of the Src family can suppress the MAPKi resistance phenotype in CUL3KD cells by inactivating RAC1 protein.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Charlotte R. Feddersen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Afshin Varzavand
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Elliot Y. Zhu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Tyler Foley
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Kathleen H. Holt
- Viral Vector Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohammed Milhem
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Robert Piper
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Christopher S. Stipp
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
- Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Cheng Y, Shen P. miR-335 Acts as a Tumor Suppressor and Enhances Ionizing Radiation-Induced Tumor Regression by Targeting ROCK1. Front Oncol 2020; 10:278. [PMID: 32219065 PMCID: PMC7078682 DOI: 10.3389/fonc.2020.00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Recent development of integrative therapy against melanoma combines surgery, radiotherapy, targeted therapy, and immunotherapy; however, the clinical outcomes of advanced stage and recurrent melanoma are poor. As a skin cancer, melanoma is generally resistant to radiotherapy. Hence, there is an urgent need for evaluation of the mechanisms of radioresistance. The present study identified miR-335 as one of the differential expression of miRNAs in recurrent melanoma biopsies post-radiotherapy. The expression of miR-335 declined in melanoma tissues compared to the adjacent tissues. Moreover, miR-335 expression correlated with advanced stages of melanoma negatively. Consistent with the prediction of STARBASE and miRDB database, miR-335 targeted ROCK1 via binding with 3′-UTR of ROCK1 directly, resulting in attenuation of proliferation, migration, and radioresistance of melanoma cells. The authors validated that overexpression of miR-335 enhanced X-ray-induced tumor regression by B16 mouse models. Briefly, the present findings gained insights into miR-335/ROCK1-mediated radiosensitivity and provided a promising therapeutic strategy for improving radiotherapy against melanoma.
Collapse
Affiliation(s)
- Yanfeng Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Shen
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Gupta S, Gangenahalli G. Analysis of molecular switch between leukocyte and substrate adhesion in bone marrow endothelial cells. Life Sci 2019; 238:116981. [DOI: 10.1016/j.lfs.2019.116981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023]
|
17
|
Gil J, Betancourt LH, Pla I, Sanchez A, Appelqvist R, Miliotis T, Kuras M, Oskolas H, Kim Y, Horvath Z, Eriksson J, Berge E, Burestedt E, Jönsson G, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Murillo JR, Sugihara Y, Welinder C, Wieslander E, Lee B, Lindberg H, Pawłowski K, Kwon HJ, Doma V, Timar J, Karpati S, Szasz AM, Németh IB, Nishimura T, Corthals G, Rezeli M, Knudsen B, Malm J, Marko-Varga G. Clinical protein science in translational medicine targeting malignant melanoma. Cell Biol Toxicol 2019; 35:293-332. [PMID: 30900145 PMCID: PMC6757020 DOI: 10.1007/s10565-019-09468-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Collapse
Affiliation(s)
- Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tasso Miliotis
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henriette Oskolas
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Ethan Berge
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Elisabeth Burestedt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, SUS, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yutaka Sugihara
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Krzysztof Pawłowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ho Jeong Kwon
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Viktoria Doma
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Jozsef Timar
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Sarolta Karpati
- Department of Dermatology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
- MTA-TTK Momentum Oncology Biomarker Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, H-6720, Hungary
| | - Toshihide Nishimura
- Clinical Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| | - Garry Corthals
- Van't Hoff Institute of Molecular Sciences, 1090 GS, Amsterdam, The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Beatrice Knudsen
- Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| |
Collapse
|
18
|
Liu P, Du R, Yu X. LncRNA HAND2-AS1 overexpression inhibits cancer cell proliferation in melanoma by downregulating ROCK1. Oncol Lett 2019; 18:1005-1010. [PMID: 31423160 PMCID: PMC6607374 DOI: 10.3892/ol.2019.10402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/01/2019] [Indexed: 01/20/2023] Open
Abstract
Long non-coding (lnc)RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1), an lncRNA antisense transcript adjacent to the heart and neural crest derivatives expressed 2 protein (HAND2), inhibits the development of several types of cancer; however, its role in melanoma is currently unknown. In the present study, it was revealed that lncRNA HAND2-AS1 was downregulated, whereas Rho-associated protein kinase 1 (ROCK1) mRNA was upregulated in tumor tissues when compared with the healthy tissues of patients with melanoma. Expression levels of lncRNA HAND2-AS1 and ROCK1 were inversely correlated in tumor tissues, but not in healthy tissues. LncRNA HAND2-AS1 expression levels were affected by tumor thickness, but not by tumor metastasis. LncRNA HAND2-AS1 overexpression led to inhibited melanoma cancer cell proliferation and an increased expression level of ROCK1. ROCK1 overexpression caused no evident effects on lncRNA HAND2-AS1 expression, but promoted cancer cell proliferation and decreased the effects of lncRNA HAND2-AS1 overexpression on cancer cell proliferation. Thus, it is possible that lncRNA HAND2-AS1 overexpression leads to inhibited cancer cell proliferation in melanoma cells through the downregulation of ROCK1.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin 130021, P.R. China
| | - Ruili Du
- Department of Clinical Laboratory, The Second Hospital of Changchun City, Changchun, Jilin 130022, P.R. China
| | - Xin Yu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
19
|
Abstract
The study aimed to measure the presence of rho-associated protein kinase 1 (ROCK1) mRNA in serum samples collected from glioma and investigate its diagnostic significance in glioma.The presence of ROCK1 mRNA was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between ROCK1 mRNA and clinical characteristics was analyzed via Chi-square test. The criteria of diagnosis evaluation, including sensitivity, specificity, optimal cutoff point, and area under the curve (AUC) were determined through the receiver operating characteristic (ROC) curve analysis.ROCK1 mRNA was significantly increased in serum samples collected from glioma patients compared to the controls (P <.05). Besides, high ROCK1 mRNA expression was tightly related with Karnofsky Performance Status (KPS) score (P = .024) and World Health Organization (WHO) grade (P = .029). However, there was no association between ROCK1 expression and gender, neurological disorders, family history and cigarette smoking (all, P >.05). In addition, the optimal cutoff point was 3.025, with the sensitivity and specificity of 88.89% and 79.25%, respectively. The AUC was 0.881, indicating that ROCK1 was a diagnostic biomarker for glioma patients (P <.0001, 95% CI = 0.829-0.933).Serum ROCK1 mRNA is significantly up-regulated in glioma cases compared to healthy controls. ROCK1 may be a potential diagnostic biomarker in glioma.
Collapse
Affiliation(s)
- Yunyang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital
- Department of Neurosurgery, Tianjin First Central Hospital
| | - Jianjun Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital
- Department of Neurosurgery, Tianjin 4th Center Hospital, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin 4th Center Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital
| |
Collapse
|
20
|
Wang W, Nakashima S, Nakamura S, Oda Y, Matsuda H. Anti-proliferative effect of auriculataoside A on B16 melanoma 4A5 cells by suppression of Cdc42-Rac1-RhoA signaling protein levels. J Nat Med 2019; 73:450-455. [PMID: 30627935 DOI: 10.1007/s11418-018-01278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/27/2018] [Indexed: 01/24/2023]
Abstract
Auriculataoside A, an anthracenone dimer glycoside isolated from Cassia auriculata seed, shows anti-proliferative effects on cell line B16 melanoma 4A5 cells with an IC50 value of 0.82 μM. However, it shows no such effect on normal human dermal fibroblast (HDF) cells. To evaluate the mode of action underlying the anti-proliferative effect of auriculataoside A on cells, we examined changes in whole protein expression after treatment with auriculataoside A and found that the expression Cdc42, RhoA, and Rac1, which are Rho family GTPases, was reduced. Auriculataoside A also arrested the cell cycle at G1 phase. These results suggest that the suppression of the above proteins induced G1 arrest. In addition, auriculataoside A also suppressed the expression of β-catenin and c-Myc proteins. This action of auriculataoside A could be one of the mechanisms underlying its selective anti-proliferative effect on B16 melanoma cells.
Collapse
Affiliation(s)
- Weicheng Wang
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Souichi Nakashima
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Seikou Nakamura
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yoshimi Oda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.,N.T.H Co., Ltd., 4F Sky-Ebisu Bldg., 1-8-11 Ebisu, Shibuya-ku, Tokyo, 150-0013, Japan
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
21
|
Ressa A, Fitzpatrick M, van den Toorn H, Heck AJR, Altelaar M. PaDuA: A Python Library for High-Throughput (Phospho)proteomics Data Analysis. J Proteome Res 2018; 18:576-584. [PMID: 30525654 PMCID: PMC6364269 DOI: 10.1021/acs.jproteome.8b00576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The increased speed
and sensitivity in mass spectrometry-based
proteomics has encouraged its use in biomedical research in recent
years. Large-scale detection of proteins in cells, tissues, and whole
organisms yields highly complex quantitative data, the analysis of
which poses significant challenges. Standardized proteomic workflows
are necessary to ensure automated, sharable, and reproducible proteomics
analysis. Likewise, standardized data processing workflows are also
essential for the overall reproducibility of results. To this purpose,
we developed PaDuA, a Python package optimized for the processing
and analysis of (phospho)proteomics data. PaDuA provides a collection
of tools that can be used to build scripted workflows within Jupyter
Notebooks to facilitate bioinformatics analysis by both end-users
and developers.
Collapse
Affiliation(s)
- Anna Ressa
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science and Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science and Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science and Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science and Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Science and Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
22
|
Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue. PLoS One 2018; 13:e0208562. [PMID: 30532160 PMCID: PMC6287822 DOI: 10.1371/journal.pone.0208562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
To acquire a deeper understanding of malignant melanoma (MM), it is essential to study the proteome of patient tissues. In particular, phosphoproteomics of MM has become of significant importance because of the central role that phosphorylation plays in the development of MM. Investigating clinical samples, however, is an extremely challenging task as there is usually only very limited quantities of material available to perform targeted enrichment approaches. Here, an automated phosphopeptide enrichment protocol using the AssayMap Bravo platform was applied to MM tissues and assessed for performance. The strategy proved to be highly-sensitive, less prone to variability, less laborious than existing techniques and adequate for starting quantities at the microgram level. An Fe(III)-NTA-IMAC-based enrichment workflow was applied to a dilution series of MM tissue lysates. The workflow was efficient in terms of sensitivity, reproducibility and phosphosite localization; and from only 12.5 μg of sample, more than 1,000 phosphopeptides were identified. In addition, from 60 μg of protein material the number of identified phosphoproteins from individual MM samples was comparable to previous reports that used extensive fractionation methods. Our data set included key pathways that are involved in MM progression; such as MAPK, melanocyte development and integrin signaling. Moreover, tissue-specific immunological proteins were identified, that have not been previously observed in the proteome of MM-derived cell lines. In conclusion, this workflow is suitable to study large cohorts of clinical samples that demand automatic and careful handling.
Collapse
|
23
|
Chang F, Zhang Y, Mi J, Zhou Q, Bai F, Xu X, Fisher DE, Sun Q, Wu X. ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Sci 2018; 109:3428-3437. [PMID: 30168234 PMCID: PMC6215891 DOI: 10.1111/cas.13786] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/19/2022] Open
Abstract
Rho-associated protein kinase (ROCK) plays crucial roles in the proliferation and migration of different types of cells. ROCK inhibitor Y-27632 was previously reported to inhibit melanoma cell growth, and ROCK signaling was suggested to be a therapeutic target for treating melanoma. However, the negative effect of Y-27632 on melanoma cells was mainly seen in studies on murine B16 melanoma cells. Here, we reported that ROCK inhibitor actually promoted human melanoma cell growth and migration in vitro. Y-27632 increased the growth and migration of BRAF-mutated melanoma cells but had a negative effect on wild-type melanoma cells or primary melanocytes. We discovered that Y-27632 enhanced the growth of BRAF-mutated melanoma cells through increased ATK and ERK activity. The in vivo study further confirmed the in vitro finding. These data suggested that the effect of ROCK inhibitor on melanoma cells is cell-context dependent, and the application of ROCK inhibitor in the treatment of melanoma requires further study.
Collapse
Affiliation(s)
- Fei Chang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Stomatology, The Second Hospital of Shandong University, Jinan, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Jun Mi
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Qian Zhou
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Fuxiang Bai
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Qinfeng Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Xunwei Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Wang J, Li W, Zhao Y, Kang D, Fu W, Zheng X, Pang X, Du G. Members of FOX family could be drug targets of cancers. Pharmacol Ther 2017; 181:183-196. [PMID: 28830838 DOI: 10.1016/j.pharmthera.2017.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOX families play important roles in biological processes, including metabolism, development, differentiation, proliferation, apoptosis, migration, invasion and longevity. Here we are focusing on roles of FOX members in cancers, FOX members and drug resistance, FOX members and stem cells. Finally, FOX members as drug targets of cancer treatment were discussed. Future perspectives of FOXC1 research were described in the end.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Wan Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Ying Zhao
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Weiqi Fu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiangjin Zheng
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
25
|
Arozarena I, Wellbrock C. Targeting invasive properties of melanoma cells. FEBS J 2017; 284:2148-2162. [PMID: 28196297 DOI: 10.1111/febs.14040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/11/2024]
Abstract
Melanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic. In this review, we assess the major contributions towards the understanding of the molecular biology of melanoma cell invasion with a focus on melanoma specific traits. These traits are based on the neural crest origin of melanoma cells and explain their intrinsic invasive nature. A particular emphasis is given not only to lineage specific signalling mediated by TGFβ, and noncanonical and canonical WNT signalling, but also to the role of PDE5A and RHO-GTPases in modulating modes of melanoma cell invasion. We discuss existing caveats in the current understanding of the metastatic properties of melanoma cells, as well as the relevance of the 'phenotype switch' model and 'co-operativity' between different phenotypes in heterogeneous tumours. At the centre of these phenotypes is the lineage commitment factor microphthalmia-associated transcription factor, one of the most crucial regulators of the balance between de-differentiation (neural crest specific gene expression) and differentiation (melanocyte specific gene expression) that defines invasive and noninvasive melanoma cell phenotypes. Finally, we provide insight into the current evidence linking resistance to targeted therapies to invasive properties of melanoma cells.
Collapse
Affiliation(s)
- Imanol Arozarena
- Cancer Signalling Group, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
26
|
Murray HC, Dun MD, Verrills NM. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer. Expert Opin Drug Discov 2017; 12:431-447. [PMID: 28286965 DOI: 10.1080/17460441.2017.1304377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Genomic and transcriptomic profiling of tumours has revolutionised our understanding of cancer. However, the majority of tumours possess multiple mutations, and determining which oncogene, or even which pathway, to target is difficult. Proteomics is emerging as a powerful approach to identify the functionally important pathways driving these cancers, and how they can be targeted therapeutically. Areas covered: The authors provide a technical overview of mass spectrometry based approaches for proteomic profiling, and review the current and emerging strategies available for the identification of dysregulated networks, pathways, and drug targets in cancer cells, with a key focus on the ability to profile cancer kinomes. The potential applications of mass spectrometry in the clinic are also highlighted. Expert opinion: The addition of proteomic information to genomic platforms - 'proteogenomics' - is providing unparalleled insight in cancer cell biology. Application of improved mass spectrometry technology and methodology, in particular the ability to analyse post-translational modifications (the PTMome), is providing a more complete picture of the dysregulated networks in cancer, and uncovering novel therapeutic targets. While the application of proteomics to discovery research will continue to rise, improved workflow standardisation and reproducibility is required before mass spectrometry can enter routine clinical use.
Collapse
Affiliation(s)
- Heather C Murray
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| | - Matthew D Dun
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| | - Nicole M Verrills
- a School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation , University of Newcastle , Callaghan , NSW , Australia.,b Cancer Research Program , Hunter Medical Research Institute , Newcastle , NSW , Australia
| |
Collapse
|
27
|
Thompson N, Adams DJ, Ranzani M. Synthetic lethality: emerging targets and opportunities in melanoma. Pigment Cell Melanoma Res 2017; 30:183-193. [PMID: 28097822 PMCID: PMC5396340 DOI: 10.1111/pcmr.12573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Great progress has been made in the treatment of melanoma through use of targeted therapies and immunotherapy. One approach that has not been fully explored is synthetic lethality, which exploits somatically acquired changes, usually driver mutations, to specifically kill tumour cells. We outline the various approaches that may be applied to identify synthetic lethal interactions and define how these interactions may drive drug discovery efforts.
Collapse
Affiliation(s)
- Nicola Thompson
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Marco Ranzani
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| |
Collapse
|
28
|
Casado P, Hijazi M, Britton D, Cutillas PR. Impact of phosphoproteomics in the translation of kinase-targeted therapies. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Pedro Casado
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - Maruan Hijazi
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - David Britton
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| |
Collapse
|
29
|
Spender LC, Ferguson GJ, Liu S, Cui C, Girotti MR, Sibbet G, Higgs EB, Shuttleworth MK, Hamilton T, Lorigan P, Weller M, Vincent DF, Sansom OJ, Frame M, Dijke PT, Marais R, Inman GJ. Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells. Oncotarget 2016; 7:81995-82012. [PMID: 27835901 PMCID: PMC5347669 DOI: 10.18632/oncotarget.13226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Recent data implicate elevated transforming growth factor-β (TGFβ) signalling in BRAF inhibitor drug-resistance mechanisms, but the potential for targeting TGFβ signalling in cases of advanced melanoma has not been investigated. We show that mutant BRAFV600E confers an intrinsic dependence on TGFβ/TGFβ receptor 1 (TGFBR1) signalling for clonogenicity of murine melanocytes. Pharmacological inhibition of the TGFBR1 blocked the clonogenicity of human mutant BRAF melanoma cells through SMAD4-independent inhibition of mitosis, and also inhibited metastasis in xenografted zebrafish. When investigating the therapeutic potential of combining inhibitors of mutant BRAF and TGFBR1, we noted that unexpectedly, low-dose PLX-4720 (a vemurafenib analogue) promoted proliferation of drug-naïve melanoma cells. Pharmacological or pharmacogenetic inhibition of TGFBR1 blocked growth promotion and phosphorylation of SRC, which is frequently associated with vemurafenib-resistance mechanisms. Importantly, vemurafenib-resistant patient derived cells retained sensitivity to TGFBR1 inhibition, suggesting that TGFBR1 could be targeted therapeutically to combat the development of vemurafenib drug-resistance.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Indoles/pharmacology
- Melanocytes/drug effects
- Melanocytes/enzymology
- Melanocytes/pathology
- Melanoma/drug therapy
- Melanoma/enzymology
- Melanoma/genetics
- Melanoma/pathology
- Mice, Nude
- Mitosis/drug effects
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins B-raf/antagonists & inhibitors
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA Interference
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Sulfonamides/pharmacology
- Time Factors
- Transfection
- Transforming Growth Factor beta1/pharmacology
- Vemurafenib
- Xenograft Model Antitumor Assays
- Zebrafish
Collapse
Affiliation(s)
- Lindsay C. Spender
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - G. John Ferguson
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune Limited, Cambridge, United Kingdom
| | - Sijia Liu
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg, Leiden, Netherlands
| | - Chao Cui
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg, Leiden, Netherlands
| | - Maria Romina Girotti
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Withington, Manchester, United Kingdom
| | - Gary Sibbet
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Ellen B. Higgs
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Morven K. Shuttleworth
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tom Hamilton
- Biological Services, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Paul Lorigan
- The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse, Zurich, Switzerland
| | - David F. Vincent
- Colorectal Cancer and Wnt Signalling, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Owen J. Sansom
- Colorectal Cancer and Wnt Signalling, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | - Margaret Frame
- The Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Peter ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg, Leiden, Netherlands
| | - Richard Marais
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Withington, Manchester, United Kingdom
| | - Gareth J. Inman
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
30
|
Sharma R, Fedorenko I, Spence PT, Sondak VK, Smalley KSM, Koomen JM. Activity-Based Protein Profiling Shows Heterogeneous Signaling Adaptations to BRAF Inhibition. J Proteome Res 2016; 15:4476-4489. [PMID: 27934295 DOI: 10.1021/acs.jproteome.6b00613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with BRAF V600E mutant melanoma are typically treated with targeted BRAF kinase inhibitors, such as vemurafenib and dabrafenib. Although these drugs are initially effective, they are not curative. Most of the focus to date has been upon genetic mechanisms of acquired resistance; therefore, we must better understand the global signaling adaptations that mediate escape from BRAF inhibition. In the current study, we have used activity-based protein profiling (ABPP) with ATP-analogue probes to enrich kinases and other enzyme classes that contribute to BRAF inhibitor (BRAFi) resistance in four paired isogenic BRAFi-naïve/resistant cell line models. Our analysis showed these cell line models, which also differ in their PTEN status, have considerable heterogeneity in their kinase ATP probe uptake in comparing both naïve cells and adaptations to chronic drug exposure. A number of kinases including FAK1, SLK, and TAOK2 had increased ATP probe uptake in BRAFi resistant cells, while KHS1 (M4K5) and BRAF had decreased ATP probe uptake in the BRAFi-resistant cells. Gene ontology (GO) enrichment analysis revealed BRAFi resistance is associated with a significant enhancement in ATP probe uptake in proteins implicated in cytoskeletal organization and adhesion, and decreases in ATP probe uptake in proteins associated with cell metabolic processes. The ABPP approach was able to identify key phenotypic mediators critical for each BRAFi resistant cell line. Together, these data show that common phenotypic adaptations to BRAF inhibition can be mediated through very different signaling networks, suggesting considerable redundancy within the signaling of BRAF mutant melanoma cells.
Collapse
Affiliation(s)
- Ritin Sharma
- Molecular Oncology, ‡Tumor Biology, §Cutaneous Oncology, and ∥The Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Inna Fedorenko
- Molecular Oncology, ‡Tumor Biology, §Cutaneous Oncology, and ∥The Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Paige T Spence
- Molecular Oncology, ‡Tumor Biology, §Cutaneous Oncology, and ∥The Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Vernon K Sondak
- Molecular Oncology, ‡Tumor Biology, §Cutaneous Oncology, and ∥The Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Keiran S M Smalley
- Molecular Oncology, ‡Tumor Biology, §Cutaneous Oncology, and ∥The Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - John M Koomen
- Molecular Oncology, ‡Tumor Biology, §Cutaneous Oncology, and ∥The Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| |
Collapse
|
31
|
Delmonico L, Bravo M, Silvestre RT, Ornellas MHF, De Azevedo CM, Alves G. Proteomic profile of saliva and plasma from women with impalpable breast lesions. Oncol Lett 2016; 12:2145-2152. [PMID: 27602154 PMCID: PMC4998569 DOI: 10.3892/ol.2016.4828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 12/22/2022] Open
Abstract
The present study evaluated the proteomic profile of saliva and plasma from women with impalpable breast lesions using nano-liquid chromatography-quadrupole-time-of-flight (nLC-Q-TOF) technology. Plasma and saliva from patients with fibroadenoma (n=10), infiltrating ductal carcinoma (n=10) and healthy control groups (n=8) were assessed by combinations of inter/intra-group analyses, revealing significant quantitative and qualitative differences. The major differentially-expressed proteins in the saliva of patients compared with the controls were α2-macroglobulin and ceruloplasmin, but the proteins that met the minimum fold-change and P-value cut-offs were leukocyte elastase inhibitor and α-enolase, and deleted in malignant brain tumors 1. Concerning plasma, α-2-macroglobulin and ceruplasmin were upregulated, while other proteins such as haptoglobin, hemopexin and vitamin D-binding protein were downregulated compared with the control. The changes in immune, molecular transport and signaling pathways were the most representative in the proteomic profile of the saliva and plasma. This is the first study to describe the proteome of saliva and plasma from the same women with impalpable breast lesions.
Collapse
Affiliation(s)
- Lucas Delmonico
- Research Coordination, National Cancer Institute, Rio de Janeiro 20230-130, Brazil
- Graduate Program of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Circulating Markers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Maryah Bravo
- Research Coordination, National Cancer Institute, Rio de Janeiro 20230-130, Brazil
- Circulating Markers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Rafaele Tavares Silvestre
- Research Coordination, National Cancer Institute, Rio de Janeiro 20230-130, Brazil
- Graduate Program of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Circulating Markers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Maria Helena Faria Ornellas
- Graduate Program of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Circulating Markers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | | | - Gilda Alves
- Research Coordination, National Cancer Institute, Rio de Janeiro 20230-130, Brazil
- Graduate Program of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Circulating Markers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
32
|
Iskit S, Lieftink C, Halonen P, Shahrabi A, Possik PA, Beijersbergen RL, Peeper DS. Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer. Oncotarget 2016; 7:42859-42872. [PMID: 27374095 PMCID: PMC5189992 DOI: 10.18632/oncotarget.10230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.
Collapse
Affiliation(s)
- Sedef Iskit
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Cor Lieftink
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Pasi Halonen
- Drug Discovery Research and Screening Services, BioFocus, Darwinweg, Leiden
| | - Aida Shahrabi
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | | | - Roderick L. Beijersbergen
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Daniel S. Peeper
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Schmidlin T, Garrigues L, Lane CS, Mulder TC, van Doorn S, Post H, de Graaf EL, Lemeer S, Heck AJR, Altelaar AFM. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics 2016; 16:2193-205. [DOI: 10.1002/pmic.201500453] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Luc Garrigues
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | | | - T. Celine Mulder
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Sander van Doorn
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Erik L. de Graaf
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
- Current address: Erik L. de Graaf, Fondazione Pisana per la Scienza ONLUS; Via Panfilo Castaldi 2; 56121 Pisa Italy
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| |
Collapse
|
34
|
Abstract
Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA; Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
35
|
Wilkinson S, Frame MC. The ROCKs on which tumour cells thrive. eLife 2016; 5:e14511. [PMID: 26950944 PMCID: PMC4798958 DOI: 10.7554/elife.14511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/26/2022] Open
Abstract
A new study reveals that the ROCK proteins play key roles in the formation of tumours in mice.
Collapse
Affiliation(s)
- Simon Wilkinson
- CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret C Frame
- CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Abstract
Over the past decade, rapid advances in genomics, proteomics and functional genomics technologies that enable in-depth interrogation of cancer genomes and proteomes and high-throughput analysis of gene function have enabled characterization of the kinome 'at large' in human cancers, providing crucial insights into how members of the protein kinase superfamily are dysregulated in malignancy, the context-dependent functional role of specific kinases in cancer and how kinome remodelling modulates sensitivity to anticancer drugs. The power of these complementary approaches, and the insights gained from them, form the basis of this Analysis article.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianmin Wu
- Cancer Division, Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
37
|
Dias MH, Kitano ES, Zelanis A, Iwai LK. Proteomics and drug discovery in cancer. Drug Discov Today 2016; 21:264-77. [PMID: 26484434 DOI: 10.1016/j.drudis.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
|
38
|
Kümper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, Worboys J, Sadok A, Jørgensen C, Guichard S, Marshall CJ. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. eLife 2016; 5:e12994. [PMID: 26765561 PMCID: PMC4798951 DOI: 10.7554/elife.12203] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.
Collapse
Affiliation(s)
- Sandra Kümper
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Faraz K Mardakheh
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Afshan McCarthy
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Maggie Yeo
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Gordon W Stamp
- Experimental Pathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Angela Paul
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Jonathan Worboys
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Amine Sadok
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Sabrina Guichard
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
39
|
Raaijmakers LM, Giansanti P, Possik PA, Mueller J, Peeper DS, Heck AJR, Altelaar AFM. PhosphoPath: Visualization of Phosphosite-centric Dynamics in Temporal Molecular Networks. J Proteome Res 2015; 14:4332-41. [DOI: 10.1021/acs.jproteome.5b00529] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Linsey M. Raaijmakers
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Piero Giansanti
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Patricia A. Possik
- Division
of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Judith Mueller
- Division
of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Daniel S. Peeper
- Division
of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
40
|
Ramsdale R, Jorissen RN, Li FZ, Al-Obaidi S, Ward T, Sheppard KE, Bukczynska PE, Young RJ, Boyle SE, Shackleton M, Bollag G, Long GV, Tulchinsky E, Rizos H, Pearson RB, McArthur GA, Dhillon AS, Ferrao PT. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal 2015; 8:ra82. [PMID: 26286024 DOI: 10.1126/scisignal.aab1111] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients with BRAF-mutant metastatic melanoma display remarkable but incomplete and short-lived responses to inhibitors of the BRAF kinase or the mitogen-activated protein kinase kinase (MEK), collectively BRAF/MEK inhibitors. We found that inherent resistance to these agents in BRAF(V600)-mutant melanoma cell lines was associated with high abundance of c-JUN and characteristics of a mesenchymal-like phenotype. Early drug adaptation in drug-sensitive cell lines grown in culture or as xenografts, and in patient samples during therapy, was consistently characterized by down-regulation of SPROUTY4 (a negative feedback regulator of receptor tyrosine kinases and the BRAF-MEK signaling pathway), increased expression of JUN and reduced expression of LEF1. This coincided with a switch in phenotype that resembled an epithelial-mesenchymal transition (EMT). In cultured cells, these BRAF inhibitor-induced changes were reversed upon removal of the drug. Knockdown of SPROUTY4 was sufficient to increase the abundance of c-JUN in the absence of drug treatment. Overexpressing c-JUN in drug-naïve melanoma cells induced similar EMT-like phenotypic changes to BRAF inhibitor treatment, whereas knocking down JUN abrogated the BRAF inhibitor-induced early adaptive changes associated with resistance and enhanced cell death. Combining the BRAF inhibitor with an inhibitor of c-JUN amino-terminal kinase (JNK) reduced c-JUN phosphorylation, decreased cell migration, and increased cell death in melanoma cells. Gene expression data from a panel of melanoma cell lines and a patient cohort showed that JUN expression correlated with a mesenchymal gene signature, implicating c-JUN as a key mediator of the mesenchymal-like phenotype associated with drug resistance.
Collapse
Affiliation(s)
- Rachel Ramsdale
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Robert N Jorissen
- Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Frederic Z Li
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Sheren Al-Obaidi
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Teresa Ward
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Karen E Sheppard
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Patricia E Bukczynska
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Richard J Young
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Samantha E Boyle
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Mark Shackleton
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Gideon Bollag
- Plexxikon Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | - Georgina V Long
- Melanoma Institute Australia, Sydney, New South Wales 2060, Australia. University of Sydney, Sydney, New South Wales 2006, Australia
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Helen Rizos
- Melanoma Institute Australia, Sydney, New South Wales 2060, Australia. Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Grant A McArthur
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Amardeep S Dhillon
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia
| | - Petranel T Ferrao
- Molecular Oncology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia. Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia. Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
41
|
Ferrao PT, Behren A, Anderson RL, Thompson EW. Editorial: Cellular and Phenotypic Plasticity in Cancer. Front Oncol 2015; 5:171. [PMID: 26301202 PMCID: PMC4523780 DOI: 10.3389/fonc.2015.00171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023] Open
Affiliation(s)
- Petranel T Ferrao
- Oncogenic Signalling and Growth Control Program and Cancer Therapeutics Program, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; The Sir Peter MacCallum Department of Oncology, The University of Melbourne , East Melbourne, VIC , Australia
| | - Andreas Behren
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute , Heidelberg, VIC , Australia ; School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Robin L Anderson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne , East Melbourne, VIC , Australia ; Metastasis Research Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia
| |
Collapse
|
42
|
BRAF inhibitors: the current and the future. Curr Opin Pharmacol 2015; 23:68-73. [PMID: 26072431 DOI: 10.1016/j.coph.2015.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/07/2023]
Abstract
The introduction of BRAF inhibitors (BRAFi), vemurafenib and dabrafenib, revolutionized BRAFV600-mutated metastatic melanoma treatment with improved response rate and overall survival compared to standard chemotherapy. However, the mechanism related cutaneous toxicity remains a concern. In addition, intrinsic and acquired resistance remain the key challenges in BRAFi therapy. Extensive efforts to elucidate the mechanisms have led to an improved understanding of disease biology and resulted in exploration of multiple new therapeutic options. While the future looks bright with multiple new therapeutic strategies in exploration and possible new generations of BRAFi, there are questions remaining to be answered to enable more efficient use of BRAFi in cancer therapy.
Collapse
|
43
|
Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. J Proteomics 2015; 126:54-67. [PMID: 26054784 DOI: 10.1016/j.jprot.2015.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/18/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023]
Abstract
Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers.
Collapse
|
44
|
Parker R, Vella LJ, Xavier D, Amirkhani A, Parker J, Cebon J, Molloy MP. Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma. Front Oncol 2015; 5:95. [PMID: 26029660 PMCID: PMC4432663 DOI: 10.3389/fonc.2015.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/07/2015] [Indexed: 01/01/2023] Open
Abstract
The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process, high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, protein kinase C, IGF signaling, and melanosome maturation were highly divergent after transition to a drug resistant phenotype.
Collapse
Affiliation(s)
- Robert Parker
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Laura J Vella
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Dylan Xavier
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Jimmy Parker
- NHS Trust Southport and Ormskirk General Hospital , Ormskirk , UK
| | - Jonathan Cebon
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
45
|
Vogel CJ, Smit MA, Maddalo G, Possik PA, Sparidans RW, van der Burg SH, Verdegaal EM, Heck AJR, Samatar AA, Beijnen JH, Altelaar AFM, Peeper DS. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res 2015; 28:307-17. [PMID: 25728708 DOI: 10.1111/pcmr.12364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
No effective targeted therapy is currently available for NRAS mutant melanoma. Experimental MEK inhibition is rather toxic and has only limited efficacy in clinical trials. At least in part, this is caused by the emergence of drug resistance, which is commonly seen for single agent treatment and shortens clinical responses. Therefore, there is a dire need to identify effective companion drug targets for NRAS mutant melanoma. Here, we show that at concentrations where single drugs had little effect, ROCK inhibitors GSK269962A or Fasudil, in combination with either MEK inhibitor GSK1120212 (Trametinib) or ERK inhibitor SCH772984 cooperatively caused proliferation inhibition and cell death in vitro. Simultaneous inhibition of MEK and ROCK caused induction of BimEL , PARP, and Puma, and hence apoptosis. In vivo, MEK and ROCK inhibition suppressed growth of established tumors. Our findings warrant clinical investigation of the effectiveness of combinatorial targeting of MAPK/ERK and ROCK in NRAS mutant melanoma.
Collapse
Affiliation(s)
- Celia J Vogel
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|