1
|
Chemla Y, Sweeney CJ, Wozniak CA, Voigt CA. Design and regulation of engineered bacteria for environmental release. Nat Microbiol 2025; 10:281-300. [PMID: 39905169 DOI: 10.1038/s41564-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Emerging products of biotechnology involve the release of living genetically modified microbes (GMMs) into the environment. However, regulatory challenges limit their use. So far, GMMs have mainly been tested in agriculture and environmental cleanup, with few approved for commercial purposes. Current government regulations do not sufficiently address modern genetic engineering and limit the potential of new applications, including living therapeutics, engineered living materials, self-healing infrastructure, anticorrosion coatings and consumer products. Here, based on 47 global studies on soil-released GMMs and laboratory microcosm experiments, we discuss the environmental behaviour of released bacteria and offer engineering strategies to help improve performance, control persistence and reduce risk. Furthermore, advanced technologies that improve GMM function and control, but lead to increases in regulatory scrutiny, are reviewed. Finally, we propose a new regulatory framework informed by recent data to maximize the benefits of GMMs and address risks.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor J Sweeney
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Florez‐Cardona V, Khani J, McNutt E, Manta B, Berkmen M. Plasmid Library Construction From Genomic DNA. Curr Protoc 2025; 5:e70088. [PMID: 39840693 PMCID: PMC11752411 DOI: 10.1002/cpz1.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Functional genomic approaches have been effective at uncovering the function of uncharacterized genes and identifying new functions for known genes. Often these approaches rely on an in vivo screen or selection to associate genes with a phenotype of interest. These selections and screens are dependent upon the expression of proteins encoded in genomic DNA from an expression vector, such as a plasmid. Despite the utility of genomic DNA plasmid libraries, the protocols for their construction have remained unchanged in the past 40 years. Here, we present a procedure for constructing plasmid libraries from genomic DNA. This procedure is scalable and relies on simple techniques and common laboratory equipment and reagents. Briefly, the genomic DNA is extracted and then physically fragmented with a g-TUBE, overhangs are repaired, and fragments are selectively purified with magnetic beads to obtain an average fragment size of 2.5 kb. Blunted fragments are ligated into a blunt-end-digested and dephosphorylated vector. Finally, the library is amplified by electroporating the ligation into a high-transformation-efficiency Escherichia coli strain and extracting the plasmid DNA from the transformants. As a proof of concept, we built and sequenced three genomic libraries from different genomes and calculated their coverage using a next-generation sequencing (NGS) workflow. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Plasmid library construction Alternate Protocol: Selection of gDNA fragments using SageELF gel fractionator Support Protocol 1: Extraction of gDNA with phenol/chloroform Support Protocol 2: Vector preparation.
Collapse
Affiliation(s)
| | | | | | - Bruno Manta
- Institut Pasteur de MontevideoMontevideoUruguay
| | | |
Collapse
|
3
|
Huang YY, Price MN, Hung A, Gal-Oz O, Tripathi S, Smith CW, Ho D, Carion H, Deutschbauer AM, Arkin AP. Barcoded overexpression screens in gut Bacteroidales identify genes with roles in carbon utilization and stress resistance. Nat Commun 2024; 15:6618. [PMID: 39103350 DOI: 10.1038/s41467-024-50124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
A mechanistic understanding of host-microbe interactions in the gut microbiome is hindered by poorly annotated bacterial genomes. While functional genomics can generate large gene-to-phenotype datasets to accelerate functional discovery, their applications to study gut anaerobes have been limited. For instance, most gain-of-function screens of gut-derived genes have been performed in Escherichia coli and assayed in a small number of conditions. To address these challenges, we develop Barcoded Overexpression BActerial shotgun library sequencing (Boba-seq). We demonstrate the power of this approach by assaying genes from diverse gut Bacteroidales overexpressed in Bacteroides thetaiotaomicron. From hundreds of experiments, we identify new functions and phenotypes for 29 genes important for carbohydrate metabolism or tolerance to antibiotics or bile salts. Highlights include the discovery of a D-glucosamine kinase, a raffinose transporter, and several routes that increase tolerance to ceftriaxone and bile salts through lipid biosynthesis. This approach can be readily applied to develop screens in other strains and additional phenotypic assays.
Collapse
Affiliation(s)
- Yolanda Y Huang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Allison Hung
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Omree Gal-Oz
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Surya Tripathi
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Christopher W Smith
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Davian Ho
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Héloïse Carion
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Kim K, Kang M, Cho BK. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front Bioeng Biotechnol 2023; 11:1267378. [PMID: 37929193 PMCID: PMC10620806 DOI: 10.3389/fbioe.2023.1267378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The past decade has seen growing interest in bacterial engineering for therapeutically relevant applications. While early efforts focused on repurposing genetically tractable model strains, such as Escherichia coli, engineering gut commensals is gaining traction owing to their innate capacity to survive and stably propagate in the intestine for an extended duration. Although limited genetic tractability has been a major roadblock, recent advances in systems and synthetic biology have unlocked our ability to effectively harness native gut commensals for therapeutic and diagnostic purposes, ranging from the rational design of synthetic microbial consortia to the construction of synthetic cells that execute "sense-and-respond" logic operations that allow real-time detection and therapeutic payload delivery in response to specific signals in the intestine. In this review, we outline the current progress and latest updates on microbial therapeutics, with particular emphasis on gut commensal engineering driven by synthetic biology and systems understanding of their molecular phenotypes. Finally, the challenges and prospects of engineering gut commensals for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
6
|
Sidebottom AM. A Brief History of Microbial Study and Techniques for Exploring the Gastrointestinal Microbiome. Clin Colon Rectal Surg 2023; 36:98-104. [PMID: 36844714 PMCID: PMC9946713 DOI: 10.1055/s-0042-1760678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past 20 years, the study of microbial communities has benefited from simultaneous advancements across several fields resulting in a high-resolution view of human consortia. Although the first bacterium was described in the mid-1600s, the interest in community membership and function has not been a focus or feasible until recent decades. With strategies such as shotgun sequencing, microbes can be taxonomically profiled without culturing and their unique variants defined and compared across phenotypes. Approaches such as metatranscriptomics, metaproteomics, and metabolomics can define the current functional state of a population through the identification of bioactive compounds and significant pathways. Prior to sample collection in microbiome-based studies it is critical to evaluate the requirements of downstream analyses to ensure accurate processing and storage for generation of high data quality. A common pipeline for the analysis of human samples includes approval of collection protocols and method finalization, patient sample collection, sample processing, data analysis, and visualization. Human-based microbiome studies are inherently challenging but with the application of complementary multi-omic strategies there is an unbounded potential for discovery.
Collapse
|
7
|
Abstract
Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
McGivern BB, McDonell RK, Morris SK, LaPara TM, Donato JJ. Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics. Plasmid 2021; 114:102563. [PMID: 33515651 DOI: 10.1016/j.plasmid.2021.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/15/2022]
Abstract
Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments.
Collapse
Affiliation(s)
- Bridget B McGivern
- Chemistry Department, University of St. Thomas, St. Paul, MN 55105, United States of America
| | - Rylie K McDonell
- Chemistry Department, University of St. Thomas, St. Paul, MN 55105, United States of America
| | - Sydney K Morris
- Chemistry Department, University of St. Thomas, St. Paul, MN 55105, United States of America
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Justin J Donato
- Chemistry Department, University of St. Thomas, St. Paul, MN 55105, United States of America.
| |
Collapse
|
9
|
Ho H, Fang JR, Cheung J, Wang HH. Programmable CRISPR-Cas transcriptional activation in bacteria. Mol Syst Biol 2020; 16:e9427. [PMID: 32657546 PMCID: PMC7356669 DOI: 10.15252/msb.20199427] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Programmable gene activation enables fine-tuned regulation of endogenous and synthetic gene circuits to control cellular behavior. While CRISPR-Cas-mediated gene activation has been extensively developed for eukaryotic systems, similar strategies have been difficult to implement in bacteria. Here, we present a generalizable platform for screening and selection of functional bacterial CRISPR-Cas transcription activators. Using this platform, we identified a novel CRISPR activator, dCas9-AsiA, that could activate gene expression by more than 200-fold across genomic and plasmid targets with diverse promoters after directed evolution. The evolved dCas9-AsiA can simultaneously mediate activation and repression of bacterial regulons in E. coli. We further identified hundreds of promoters with varying basal expression that could be induced by dCas9-AsiA, which provides a rich resource of genetic parts for inducible gene activation. Finally, we show that dCas9-AsiA can be ported to other bacteria of clinical and bioindustrial relevance, thus enabling bacterial CRISPRa in more application areas. This work expands the toolbox for programmable gene regulation in bacteria and provides a useful resource for future engineering of other bacterial CRISPR-based gene regulators.
Collapse
Affiliation(s)
- Hsing‐I Ho
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Jennifer R Fang
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Jacky Cheung
- Department of Computer Science and BiologyColumbia UniversityNew YorkNYUSA
| | - Harris H Wang
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
10
|
Abstract
The composite members of the microbiota face a range of selective pressures and must adapt to persist in the host. We highlight recent work characterizing the evolution and transfer of genetic information across nested scales of host-associated microbiota, which enable resilience to biotic and abiotic perturbations. At the strain level, we consider the preservation and diversification of adaptive information in progeny lineages. At the community level, we consider genetic exchange between distinct microbes in the ecosystem. Finally, we frame microbiomes as open systems subject to acquisition of novel information from foreign ecosystems through invasion by outsider microbes.
Collapse
|
11
|
Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat Commun 2019; 10:308. [PMID: 30659179 PMCID: PMC6338753 DOI: 10.1038/s41467-018-08177-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
A major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase experimental throughput. As a demonstration of this approach, we construct a Dub-seq library with Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental conditions, and identified overexpression phenotypes for 813 genes. We show that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified with assays of individual strains. Dub-seq provides complementary information to loss-of-function approaches and will facilitate rapid and systematic functional characterization of microbial genomes. Gain of function methods based on gene overexpression are not easily applied to high-throughput screening across different experimental conditions. Here, the authors present Dub-seq, which separates overexpression library characterization from functional screening and uses random DNA barcodes to increase the experimental throughput.
Collapse
|
12
|
Cao X, Hamilton JJ, Venturelli OS. Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry 2019; 58:94-107. [PMID: 30457843 PMCID: PMC6733022 DOI: 10.1021/acs.biochem.8b01006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbiomes impact nearly every environment on Earth by modulating the molecular composition of the environment. Temporally changing environmental stimuli and spatial organization are major variables shaping the structure and function of microbiomes. The web of interactions among members of these communities and between the organisms and the environment dictates microbiome functions. Microbial interactions are major drivers of microbiomes and are modulated by spatiotemporal parameters. A mechanistic and quantitative understanding of ecological, molecular, and environmental forces shaping microbiomes could inform strategies to control microbiome dynamics and functions. Major challenges for harnessing the potential of microbiomes for diverse applications include the development of predictive modeling frameworks and tools for precise manipulation of microbiome behaviors.
Collapse
Affiliation(s)
| | | | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Alves LDF, Westmann CA, Lovate GL, de Siqueira GMV, Borelli TC, Guazzaroni ME. Metagenomic Approaches for Understanding New Concepts in Microbial Science. Int J Genomics 2018; 2018:2312987. [PMID: 30211213 PMCID: PMC6126073 DOI: 10.1155/2018/2312987] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past thirty years, since the dawn of metagenomic studies, a completely new (micro) universe was revealed, with the potential to have profound impacts on many aspects of the society. Remarkably, the study of human microbiome provided a new perspective on a myriad of human traits previously regarded as solely (epi-) genetically encoded, such as disease susceptibility, immunological response, and social and nutritional behaviors. In this context, metagenomics has established a powerful framework for understanding the intricate connections between human societies and microbial communities, ultimately allowing for the optimization of both human health and productivity. Thus, we have shifted from the old concept of microbes as harmful organisms to a broader panorama, in which the signal of the relationship between humans and microbes is flexible and directly dependent on our own decisions and practices. In parallel, metagenomics has also been playing a major role in the prospection of "hidden" genetic features and the development of biotechnological applications, through the discovery of novel genes, enzymes, pathways, and bioactive molecules with completely new or improved biochemical functions. Therefore, this review highlights the major milestones over the last three decades of metagenomics, providing insights into both its potentialities and current challenges.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cauã Antunes Westmann
- Department of Cell Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Lencioni Lovate
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Praveschotinunt P, Dorval Courchesne NM, den Hartog I, Lu C, Kim JJ, Nguyen PQ, Joshi NS. Tracking of Engineered Bacteria In Vivo Using Nonstandard Amino Acid Incorporation. ACS Synth Biol 2018; 7:1640-1650. [PMID: 29791796 PMCID: PMC6415965 DOI: 10.1021/acssynbio.8b00135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.
Collapse
Affiliation(s)
- Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Noémie-Manuelle Dorval Courchesne
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- Department of Chemical Engineering , McGill University , Montréal , Québec H3A 0C5 , Canada
| | - Ilona den Hartog
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering , Eindhoven University of Technology , 5612 AZ Eindhoven , The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , 2311 EZ Leiden , The Netherlands
| | - Chaochen Lu
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- Dr. von Hauner Children's Hospital , 80337 Munich , Germany
- Medical Center of the University of Munich , 80539 Munich , Germany
- Ludwig Maximilians University , 80539 Munich , Germany
| | - Jessica J Kim
- Harvard College , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
| | - Neel S Joshi
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02138 , United States
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
15
|
Kenny DJ, Balskus EP. Engineering chemical interactions in microbial communities. Chem Soc Rev 2018; 47:1705-1729. [PMID: 29210396 DOI: 10.1039/c7cs00664k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.
Collapse
Affiliation(s)
- Douglas J Kenny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
16
|
Rosen CE, Palm NW. Functional Classification of the Gut Microbiota: The Key to Cracking the Microbiota Composition Code: Functional classifications of the gut microbiota reveal previously hidden contributions of indigenous gut bacteria to human health and disease. Bioessays 2017; 39. [PMID: 28976007 DOI: 10.1002/bies.201700032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/03/2017] [Indexed: 12/21/2022]
Abstract
The last decade has seen an explosion of research on the gut microbiota-the trillions of microorganisms that colonize the human gut. It is now clear that interindividual diversity in microbiota composition plays an important role in determining susceptibility to a wide variety of diseases. However, identifying the precise changes in microbiota composition that play causal roles has remained a largely unrealized goal. Here, we propose that functional classifications of microbes based on their interactions with and effects on the host-particularly the host immune system-will illuminate the role of the microbiota in shaping human physiology. We outline the benefits of "functional" classification compared to phylogenetic classifications, and review current efforts at functional classification of the microbiota. Finally, we outline a theoretical framework for classifying host-microbiota interactions. Future advances enabling broader functional classifications of the microbiota promise to revolutionize our understanding of the role of gut microbes in health and disease.
Collapse
Affiliation(s)
- Connor E Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Tanca A, Fraumene C, Manghina V, Palomba A, Abbondio M, Deligios M, Pagnozzi D, Addis MF, Uzzau S. Diversity and functions of the sheep faecal microbiota: a multi-omic characterization. Microb Biotechnol 2017; 10:541-554. [PMID: 28165194 PMCID: PMC5404191 DOI: 10.1111/1751-7915.12462] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Little is currently known on the microbial populations colonizing the sheep large intestine, despite their expected key role in host metabolism, physiology and immunity. This study reports the first characterization of the sheep faecal microbiota composition and functions, obtained through the application of a multi-omic strategy. An optimized protocol was first devised for DNA extraction and amplification from sheep stool samples. Then, 16S rDNA sequencing, shotgun metagenomics and shotgun metaproteomics were applied to unravel taxonomy, genetic potential and actively expressed functions and pathways respectively. Under a taxonomic perspective, the sheep faecal microbiota appeared globally comparable to that of other ruminants, with Firmicutes being the main phylum. In functional terms, we detected 2097 gene and 441 protein families, finding that the sheep faecal microbiota was primarily involved in catabolism. We investigated carbohydrate transport and degradation activities and identified phylum-specific pathways, such as methanogenesis for Euryarchaeota and acetogenesis for Firmicutes. Furthermore, our approach enabled the identification of proteins expressed by the eukaryotic component of the microbiota. Taken together, these findings unveil structure and role of the distal gut microbiota in sheep, and open the way to further studies aimed at elucidating its connections with management and dietary variables in sheep farming.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
18
|
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. OIKOS 2017. [DOI: 10.1111/oik.03900] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Macke
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | | | - François Massol
- Univ. Lille; CNRS UMR 8198 Evo-Eco-Paleo SPICI group Lille France
| | - Martijn Callens
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| |
Collapse
|
19
|
Abstract
Despite the wealth of metagenomic sequencing data, the functions of most bacterial genes from the mammalian microbiota have remained poorly understood. In their recent study (Yaung et al 2015), Wang, Gerber, and colleagues present a platform which allows functional mining of bacterial genomes for genes that contribute to fitness in vivo and holds great potential for forward engineering microbes with enhanced colonization abilities in the microbiota.
Collapse
Affiliation(s)
- Jeremiah J Faith
- Immunology Institute and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- E-mail:
| |
Collapse
|
20
|
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 2016; 8:39. [PMID: 27074706 PMCID: PMC4831151 DOI: 10.1186/s13073-016-0294-z] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The widespread use of antibiotics in the past 80 years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds.
Collapse
Affiliation(s)
- Amy Langdon
- Center for Genome Sciences, Washington University School of Medicine, Campus Box 8510, 4515 McKinley Research Building, St. Louis, MO, 63108, USA
- Clinical Research Training Center, Washington University School of Medicine, Campus Box 8051, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Nathan Crook
- Center for Genome Sciences, Washington University School of Medicine, Campus Box 8510, 4515 McKinley Research Building, St. Louis, MO, 63108, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Ave, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences, Washington University School of Medicine, Campus Box 8510, 4515 McKinley Research Building, St. Louis, MO, 63108, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Ave, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in Saint Louis, Campus Box 1097, 1 Brookings Drive, Saint Louis, MO, 63130, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell 2016; 163:1326-32. [PMID: 26638069 DOI: 10.1016/j.cell.2015.11.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/12/2022]
Abstract
One of the clearest functions of the gut microbiota in humans is resistance to colonization by enteric bacterial pathogens. Reconstitution of the microbiota offers an exciting therapeutic approach, but great challenges must be overcome.
Collapse
|
22
|
Sheth RU, Cabral V, Chen SP, Wang HH. Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends Genet 2016; 32:189-200. [PMID: 26916078 PMCID: PMC4828914 DOI: 10.1016/j.tig.2016.01.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
Microbial communities inhabit our entire planet and have a crucial role in biogeochemical processes, agriculture, biotechnology, and human health. Here, we argue that 'in situ microbiome engineering' represents a new paradigm of community-scale genetic and microbial engineering. We discuss contemporary applications of this approach to directly add, remove, or modify specific sets of functions and alter community-level properties in terrestrial, aquatic, and host-associated microbial communities. Specifically, we highlight emerging in situ genome engineering approaches as tractable techniques to manipulate microbial communities with high specificity and efficacy. Finally, we describe opportunities for technological innovation and ways to bridge existing knowledge gaps to accelerate the development of in situ approaches for microbiome manipulations.
Collapse
Affiliation(s)
- Ravi U Sheth
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Vitor Cabral
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Yaung SJ, Deng L, Li N, Braff JL, Church GM, Bry L, Wang HH, Gerber GK. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol Syst Biol 2016; 11:788. [PMID: 26148351 PMCID: PMC4380924 DOI: 10.15252/msb.20145866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large‐scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co‐evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.
Collapse
|
24
|
Gibson TE, Bashan A, Cao HT, Weiss ST, Liu YY. On the Origins and Control of Community Types in the Human Microbiome. PLoS Comput Biol 2016; 12:e1004688. [PMID: 26866806 PMCID: PMC4750989 DOI: 10.1371/journal.pcbi.1004688] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Microbiome-based stratification of healthy individuals into compositional categories, referred to as "enterotypes" or "community types", holds promise for drastically improving personalized medicine. Despite this potential, the existence of community types and the degree of their distinctness have been highly debated. Here we adopted a dynamic systems approach and found that heterogeneity in the interspecific interactions or the presence of strongly interacting species is sufficient to explain community types, independent of the topology of the underlying ecological network. By controlling the presence or absence of these strongly interacting species we can steer the microbial ecosystem to any desired community type. This open-loop control strategy still holds even when the community types are not distinct but appear as dense regions within a continuous gradient. This finding can be used to develop viable therapeutic strategies for shifting the microbial composition to a healthy configuration.
Collapse
Affiliation(s)
- Travis E. Gibson
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amir Bashan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong-Tai Cao
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
- Chu Kochen Honors College, College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Gray AN, Koo BM, Shiver AL, Peters JM, Osadnik H, Gross CA. High-throughput bacterial functional genomics in the sequencing era. Curr Opin Microbiol 2015; 27:86-95. [PMID: 26336012 DOI: 10.1016/j.mib.2015.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/17/2023]
Abstract
High-throughput functional genomic technologies are accelerating progress in understanding the diversity of bacterial life and in developing a systems-level understanding of model bacterial organisms. Here we highlight progress in deep-sequencing-based functional genomics, show how whole genome sequencing is enabling phenotyping in organisms recalcitrant to genetic approaches, recount the rapid proliferation of functional genomic approaches to non-growth phenotypes, and discuss how advances are enabling genome-scale resource libraries for many different bacteria.
Collapse
Affiliation(s)
- Andrew N Gray
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Anthony L Shiver
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|