1
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
2
|
Zeng C, Chen M. Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:1079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
Affiliation(s)
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
3
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
4
|
Du S, Zhu X, Zhou N, Zheng W, Zhou W, Li X. Curcumin alleviates hepatic steatosis by improving mitochondrial function in postnatal overfed rats and fatty L02 cells through the SIRT3 pathway. Food Funct 2022; 13:2155-2171. [PMID: 35113098 DOI: 10.1039/d1fo03752h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Postnatal overfeeding could increase the risk of non-alcoholic fatty liver disease (NAFLD) in adulthood. This study investigated the effects of curcumin (CUR) on hepatic steatosis in postnatal overfed rats and elucidated potential mechanisms in mitochondrial functions. Male rats were adjusted to ten (normal litter, NL) or three (small litter, SL) at postnatal day 3. After weaning, NL rats were fed with normal diet (NL) or a high-fat diet (NH) for 10 weeks. SL rats were fed with normal diet (SL), a high-fat diet (SH), a normal diet supplemented with 2% CUR (SL-CUR) or a high-fat diet supplemented with 2% CUR (SH-CUR). At week 13, compared with NL rats, SL and NH rats showed increased body weight, glucose intolerance, dyslipidemia and hepatic lipid accumulation, and these changes were more obvious in SH rats. The opposite trends were observed in SL-CUR and SH-CUR rats. Moreover, CUR could preserve mitochondrial biogenesis and antioxidant response in postnatal overfed rats, and upregulated the mRNA and protein levels of SIRT3. In vitro, L02 cells were exposed to free fatty acids and/or CUR. CUR decreased the levels of cellular lipids and mitochondrial reactive oxygen species, and increased the mitochondrial DNA copy number and superoxide dismutase activity in fatty L02 cells. However, these effects were blocked after SIRT3 silencing. It was concluded that postnatal overfeeding damaged mitochondrial biogenesis and antioxidant response, and increased hepatic lipids and the severity of high-fat-induced NAFLD, while CUR alleviated hepatic steatosis, at least partially, by enhancing mitochondrial function through SIRT3.
Collapse
Affiliation(s)
- Susu Du
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaolei Zhu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Nan Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wen Zheng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China. .,Institute of Pediatric Research, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
5
|
Veeriah V, Lee SH, Levine F. Long-term oral administration of an HNF4α agonist prevents weight gain and hepatic steatosis by promoting increased mitochondrial mass and function. Cell Death Dis 2022; 13:89. [PMID: 35087037 PMCID: PMC8795379 DOI: 10.1038/s41419-022-04521-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
We report here that the potent HNF4α agonist N-trans-caffeoyltyramine (NCT) promotes weight loss by inducing an increase in mitochondrial mass and function, including fatty acid oxidation. Previously, we found in a short term trial in obese mice that NCT promoted reversal of hepatic steatosis through a mechanism involving the stimulation of lipophagy by dihydroceramides. NCT led to increased dihydroceramide levels by inhibiting dihydroceramide conversion to ceramides. Here, we were able to administer NCT orally, permitting longer term administration. Mice fed NCT mixed with high fat diet exhibited decreased weight. Examination of RNA-seq data revealed an increase in PPARGC1A, a central regulator of mitochondrial biogenesis. In addition to the decreased hepatic steatosis that we found previously, mice fed a high fat diet containing NCT mice weighed substantially less than control mice fed high fat diet alone. They had increased mitochondrial mass, exhibited increased fatty acid oxidation, and had an increased level of NAD. Markers of liver inflammation such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), which are important in the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis were decreased by NCT. There was no evidence of any toxicity from NCT consumption. These results indicate that HNF4α is an important regulator of mitochondrial mass and function and support that use of HNF4α to treat disorders of fatty acid excess, potentially including obesity, NAFLD, and NASH.
Collapse
|
6
|
Watroba M, Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front Physiol 2021; 12:724506. [PMID: 34899370 PMCID: PMC8656451 DOI: 10.3389/fphys.2021.724506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sirtuins may counteract at least six hallmarks of organismal aging: neurodegeneration, chronic but ineffective inflammatory response, metabolic syndrome, DNA damage, genome instability, and cancer incidence. Moreover, caloric restriction is believed to slow down aging by boosting the activity of some sirtuins through activating adenosine monophosphate-activated protein kinase (AMPK), thus raising the level of intracellular nicotinamide adenine dinucleotide (NAD+) by stimulating NAD+ biosynthesis. Sirtuins and their downstream effectors induce intracellular signaling pathways related to a moderate caloric restriction within cells, mitigating reactive oxygen species (ROS) production, cell senescence phenotype (CSP) induction, and apoptosis as forms of the cellular stress response. Instead, it can promote DNA damage repair and survival of cells with normal, completely functional phenotypes. In this review, we discuss mechanisms of sirtuins action toward cell-conserving phenotype associated with intracellular signaling pathways related to moderate caloric restriction, as well as some tissue-specific functions of sirtuins, especially in the central nervous system, heart muscle, skeletal muscles, liver, kidneys, white adipose tissue, hematopoietic system, and immune system. In this context, we discuss the possibility of new therapeutic approaches.
Collapse
Affiliation(s)
- Mateusz Watroba
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
SIRT3-mediated mitochondrial unfolded protein response weakens breast cancer sensitivity to cisplatin. Genes Genomics 2021; 43:1433-1444. [PMID: 34338986 DOI: 10.1007/s13258-021-01145-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mitochondrial unfolded protein response plays an important role in the occurrence and development of breast cancer. However, the role of mitochondrial unfolded protein response (UPRmt) in the sensitivity of breast cancer to cisplatin chemotherapy has not yet been cleared. OBJECTIVES The purpose of this study is to explore the role of mitochondrial unfolded protein response in breast cancer sensitivity to cisplatin. METHODS In this study, qRT-PCR, Western blotting, Immunofluorescence, CCK-8, Colony formation, Transwell assay and TUNEL staining assay were used to confirm the role of UPRmt in breast cancer cells treated with cisplatin. RESULTS Cisplatin increased the levels of UPRmt including CLPP, HSP60, LONP1 in MCF7 and MDA-MB-231 cells. UPRmt inducer Nicotinamide ribose (NR) could promote the proliferation and invasion of breast cancer cells treated with cisplatin. Importantly, SIRT3 was discovered to increase UPRmt in breast cancer cells and silencing of SIRT3 could inhibit the effect of NR in breast cancer. CONCLUSIONS UPRmt regulated by SIRT3 could protect breast cancer cell from cisplatin. Controlling SIRT3-induced UPR may be a potential therapeutic target to increase the sensitivity of breast cancer chemotherapy.
Collapse
|
8
|
Staňková P, Kučera O, Peterová E, Elkalaf M, Rychtrmoc D, Melek J, Podhola M, Zubáňová V, Červinková Z. Western Diet Decreases the Liver Mitochondrial Oxidative Flux of Succinate: Insight from a Murine NAFLD Model. Int J Mol Sci 2021; 22:6908. [PMID: 34199098 PMCID: PMC8268937 DOI: 10.3390/ijms22136908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an essential role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Previously, we found that succinate-activated respiration was the most affected mitochondrial parameter in mice with mild NAFLD. In this study, we focused on the role of succinate dehydrogenase (SDH) in NAFLD pathogenesis. To induce the progression of NAFLD to nonalcoholic steatohepatitis (NASH), C57BL/6J mice were fed a Western-style diet (WD) or control diet for 30 weeks. NAFLD severity was evaluated histologically and the expression of selected proteins and genes was assessed. Mitochondrial respiration was measured by high-resolution respirometry. Liver redox status was assessed using glutathione, malondialdehyde, and mitochondrial production of reactive oxygen species (ROS). Metabolomic analysis was performed by GC/MS. WD consumption for 30 weeks led to reduced succinate-activated respiration. We also observed decreased SDH activity, decreased expression of the SDH activator sirtuin 3, decreased gene expression of SDH subunits, and increased levels of hepatic succinate, an important signaling molecule. Succinate receptor 1 (SUCNR1) gene and protein expression were reduced in the livers of WD-fed mice. We did not observe signs of oxidative damage compared to the control group. The changes observed in WD-fed mice appear to be adaptive to prevent mitochondrial respiratory chain overload and massive ROS production.
Collapse
Affiliation(s)
- Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Eva Peterová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University Prague, Ruská 87, 100 00 Prague, Czech Republic
| | - David Rychtrmoc
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Jan Melek
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| | - Miroslav Podhola
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Veronika Zubáňová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (P.S.); (E.P.); (M.E.); (D.R.); (J.M.); (V.Z.); (Z.Č.)
| |
Collapse
|
9
|
Weng H, Ma Y, Chen L, Cai G, Chen Z, Zhang S, Ye Q. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr Neuropharmacol 2021; 18:613-623. [PMID: 31976838 PMCID: PMC7457425 DOI: 10.2174/1570159x18666200123165002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial damage is involved in many pathophysiological processes, such as tumor development, metabolism, and neurodegenerative diseases. The mitochondrial unfolded protein response (mtUPR) is the first stress-protective response initiated by mitochondrial damage, and it repairs or clears misfolded proteins to alleviate this damage. Studies have confirmed that the sirtuin family is essential for the mitochondrial stress response; in particular, SIRT1, SIRT3, and SIRT7 participate in the mtUPR in different axes. This article summarizes the associations of sirtuins with the mtUPR as well as specific molecular targets related to the mtUPR in different disease models, which will provide new inspiration for studies on mitochondrial stress, mitochondrial function protection, and mitochondria-related diseases, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China,The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Zhiting Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| |
Collapse
|
10
|
Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res 2021; 167:105484. [PMID: 33771699 DOI: 10.1016/j.phrs.2021.105484] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Recently non-alcoholic fatty liver disease (NAFLD) has grabbed considerable scientific attention, owing to its rapid increase in prevalence worldwide and growing burden on end-stage liver diseases. Metabolic syndrome including obesity, diabetes, and hypertension poses a grave risk to NAFLD etiology and progression. With no drugs available, the mainstay of NAFLD management remains lifestyle changes with exercise and dietary modifications. Nonselective drugs such as metformin, thiazolidinediones (TZDs), ursodeoxycholic acid (UDCA), silymarin, etc., are also being used to target the interrelated pathways for treating NAFLD. Considering the enormous disease burden and the unmet need for drugs, fresh insights into pathogenesis and drug discovery are required. The emergence of the field of epigenetics offers a convincing explanation for the basis of lifestyle, environmental, and other risk factors to influence NAFLD pathogenesis. Therefore, understanding these epigenetic modifications to target the primary cause of the disease might prove a rational strategy to prevent the disease and develop novel therapeutic interventions. Apart from describing the role of epigenetics in the pathogenesis of NAFLD as in other reviews, this review additionally provides an elaborate discussion on exploiting the high plasticity of epigenetic modifications in response to environmental cues, for developing novel therapeutics for NAFLD. Besides, this extensive review provides evidence for epigenetic mechanisms utilized by several potential drugs for NAFLD.
Collapse
|
11
|
Zhu L, Zhou Q, He L, Chen L. Mitochondrial unfolded protein response: An emerging pathway in human diseases. Free Radic Biol Med 2021; 163:125-134. [PMID: 33347985 DOI: 10.1016/j.freeradbiomed.2020.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which the transcriptional activation programs of mitochondrial chaperone proteins and proteases are initiated to maintain proteostasis in mitochondria. Additionally, the activation of UPRmt delays aging and extends lifespan by maintaining mitochondrial proteostasis. Growing evidences suggests that UPRmt plays an important role in diverse human diseases, especially ageing-related diseases. Therefore, this review focuses on the role of UPRmt in ageing and ageing-related neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease. The activation of UPRmt and the high expression of UPRmt components contribute to longevity extension. The activation of UPRmt may ameliorate Alzheimer's disease, Parkinson's disease and Huntington's disease. Besides, UPRmt is also involved in the occurrence and development of cancers and heart diseases. UPRmt contributes to the growth, invasive and metastasis of cancers. UPRmt has paradoxical roles in heart diseases. UPRmt not only protects against heart damage, but may sometimes aggravates the development of heart diseases. Considering the pleiotropic actions of UPRmt system, targeting UPRmt pathway may be a potent therapeutic avenue for neurodegenerative diseases, cancers and heart diseases.
Collapse
Affiliation(s)
- Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
12
|
Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155266. [PMID: 32722262 PMCID: PMC7432223 DOI: 10.3390/ijms21155266] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the metabolic hubs that process a number of reactions including tricarboxylic acid cycle, β-oxidation of fatty acids and part of the urea cycle and pyrimidine nucleotide biosynthesis. Mitochondrial dysfunction impairs redox homeostasis and metabolic adaptation, leading to aging and metabolic disorders like insulin resistance and type 2 diabetes. SIRT3, SIRT4 and SIRT5 belong to the sirtuin family proteins and are located at mitochondria and also known as mitochondrial sirtuins. They catalyze NAD+-dependent deacylation (deacetylation, demalonylation and desuccinylation) and ADP-ribosylation and modulate the function of mitochondrial targets to regulate the metabolic status in mammalian cells. Emerging evidence has revealed that mitochondrial sirtuins coordinate the regulation of gene expression and activities of a wide spectrum of enzymes to orchestrate oxidative metabolism and stress responses. Mitochondrial sirtuins act in synergistic or antagonistic manners to promote respiratory function, antioxidant defense, insulin response and adipogenesis to protect individuals from aging and aging-related metabolic abnormalities. In this review, we focus on the molecular mechanisms by which mitochondrial sirtuins regulate oxidative metabolism and antioxidant defense and discuss the roles of their deficiency in the impairment of mitochondrial function and pathogenesis of insulin resistance and type 2 diabetes.
Collapse
|
13
|
Gomes P, Viana SD, Nunes S, Rolo AP, Palmeira CM, Reis F. The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. Ageing Res Rev 2020; 57:100983. [PMID: 31740222 DOI: 10.1016/j.arr.2019.100983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Aging, the most important risk factor for many of the chronic diseases affecting Western society, is associated with a decline in mitochondrial function and dynamics. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase that has emerged as a key regulator of fundamental processes which are frequently dysregulated in aging and related disorders. This review highlights recent advances and controversies regarding the yin and yang functions of SIRT3 in metabolic, cardiovascular and neurodegenerative diseases, as well as the use of SIRT3 modulators as a therapeutic strategy against those disorders. Although most studies point to a protective role upon SIRT3 activation, there are conflicting findings that need a better elucidation. The discovery of novel SIRT3 modulators with higher selectivity together with the assessment of the relative importance of different SIRT3 enzymatic activities and the relevance of crosstalk between distinct sirtuin isoforms will be pivotal to validate SIRT3 as a useful drug target for the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal; CINTESIS - Center for Health Technology and Services Research, University of Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Anabela P Rolo
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | - Carlos M Palmeira
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
14
|
Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. J Mol Cell Cardiol 2019; 138:304-317. [PMID: 31836543 DOI: 10.1016/j.yjmcc.2019.11.159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Succinylation is a post-translational modification of protein lysine residues with succinyl groups derived from succinyl CoA. Succinylation is considered a significant post-translational modification with the potential to impact protein function which is highly conserved across numerous species. The role of succinylation in the heart, especially in heart failure and myofibril mechanics, remains largely unexplored. Mechanical parameters were measured in myofibrils isolated from failing hearts of ischemic cardiomyopathy patients and non-failing donor controls. We employed mass spectrometry to quantify differential protein expression in myofibrils from failing ischemic cardiomyopathy hearts compared to non-failing hearts. In addition, we combined peptide enrichment by immunoprecipitation with liquid chromatography tandem mass spectrometry to quantitatively analyze succinylated lysine residues in these myofibrils. Several key parameters of sarcomeric mechanical interactions were altered in myofibrils isolated from failing ischemic cardiomyopathy hearts, including lower resting tension and a faster rate of activation. Of the 100 differentially expressed proteins, 46 showed increased expression in ischemic heart failure, while 54 demonstrated decreased expression in ischemic heart failure. Our quantitative succinylome analysis identified a total of 572 unique succinylated lysine sites located on 181 proteins, with 307 significantly changed succinylation events. We found that 297 succinyl-Lys demonstrated decreased succinylation on 104 proteins, while 10 residues demonstrated increased succinylation on 4 proteins. Investigating succinyl CoA generation, enzyme activity assays demonstrated that α-ketoglutarate dehydrogenase and succinate dehydrogenase activities were significantly decreased in ischemic heart failure. An activity assay for succinyl CoA synthetase demonstrated a significant increase in ischemic heart failure. Taken together, our findings support the hypothesis that succinyl CoA production is decreased and succinyl CoA turnover is increased in ischemic heart failure, potentially resulting in an overall decrease in the mitochondrial succinyl CoA pool, which may contribute to decreased myofibril protein succinylation in heart failure.
Collapse
|
15
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
16
|
Ali HR, Assiri MA, Harris PS, Michel CR, Yun Y, Marentette JO, Huynh FK, Orlicky DJ, Shearn CT, Saba LM, Reisdorph R, Reisdorph N, Hirschey MD, Fritz KS. Quantifying Competition among Mitochondrial Protein Acylation Events Induced by Ethanol Metabolism. J Proteome Res 2019; 18:1513-1531. [PMID: 30644754 DOI: 10.1021/acs.jproteome.8b00800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation. Mitochondrial fractions were examined by label-free quantitative HPLC-MS/MS to reveal competition between lysine acetylation and succinylation. A class of proteins defined as "differential acyl switching proteins" demonstrate select sensitivity to alcohol-induced protein acylation. A number of these proteins reveal saturated lysine-site occupancy, suggesting a significant level of differential stoichiometry in the setting of ethanol consumption. We hypothesize that ethanol downregulates numerous mitochondrial metabolic pathways through differential acyl switching proteins. Data are available via ProteomeXchange with identifier PXD012089.
Collapse
Affiliation(s)
- Hadi R Ali
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Mohammed A Assiri
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Peter S Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Cole R Michel
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Youngho Yun
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - John O Marentette
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Frank K Huynh
- Department of Biological Sciences , San Jose State University , San Jose , California 95192 , United States
| | - David J Orlicky
- Department of Pathology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Colin T Shearn
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Laura M Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Matthew D Hirschey
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
17
|
Zeng X, Yang J, Hu O, Huang J, Ran L, Chen M, Zhang Y, Zhou X, Zhu J, Zhang Q, Yi L, Mi M. Dihydromyricetin Ameliorates Nonalcoholic Fatty Liver Disease by Improving Mitochondrial Respiratory Capacity and Redox Homeostasis Through Modulation of SIRT3 Signaling. Antioxid Redox Signal 2019; 30:163-183. [PMID: 29310441 DOI: 10.1089/ars.2017.7172] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Our previous clinical trial indicated that the flavonoid dihydromyricetin (DHM) could improve hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD), altough the potential mechanisms of these effects remained elusive. Here, we investigated the hepatoprotective role of DHM on high-fat diet (HFD)-induced NAFLD. Results: DHM supplementation could effectively ameliorate the development of NAFLD by inhibiting hepatic lipid accumulation both in HFD-fed wild-type mice and in palmitic acid-induced hepatocytes. We reveal for the first time that mitochondrial dysfunction characterized by ATP depletion and augmented oxidative stress could be reversed by DHM treatment. Moreover, DHM enhanced the mitochondrial respiratory capacity by increasing the expression and enzymatic activities of mitochondrial complexes and increased mitochondrial reactive oxygen species scavenging by restoring manganese superoxide dismutase (SOD2) activity. Interestingly, the benefits of DHM were abrogated in SIRT3 knockout (SIRT3KO) mice and in hepatocytes transfected with SIRT3 siRNA or treated with an SIRT3-specific inhibitor. We further showed that DHM could increase SIRT3 expression by activating the adenosine monophosphate-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC1α)/estrogen-related receptor-α (ERRα) signaling pathway. Innovation: Our work indicates that SIRT3 plays a critical role in the DHM-mediated beneficial effects that include ameliorating mitochondrial dysfunction and oxidative stress in a nutritional NAFLD model both in vivo and in vitro.Conclusion: Our results suggest that DHM prevents NAFLD by improving mitochondrial respiratory capacity and redox homeostasis in hepatocytes through a SIRT3-dependent mechanism. These results could provide a foundation to identify new DHM-based preventive and therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Xianglong Zeng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Jining Yang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Ou Hu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Juan Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Mengting Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Yu Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Xi Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Li M, Ma X, Zhou SL, Ren ZW, Qiu YS. GADD45β-I attenuates oxidative stress and apoptosis via Sirt3-mediated inhibition of ER stress in osteoarthritis chondrocytes. Chem Biol Interact 2018; 296:76-82. [PMID: 30237062 DOI: 10.1016/j.cbi.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/23/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) is one of the most characterized joint diseases associated with chondrocyte apoptosis. JNK plays an important role in apoptosis in many pathological conditions, but systemic inhibition of JNK was shown to result in detrimental side effects. MAPK kinase 7 (MKK7) is a direct upstream kinase that regulates JNK and has been shown to activate JNK specifically under toxic conditions. In this study, we investigated the effect of GADD45β-I, a cell-permeable inhibitor targeted for MKK7, on IL-1β-induced cytotoxicity in rat chondrocytes. The results showed that IL-1β exposure resulted in toxicity in a dose-dependent manner, which was nullified by endoplasmic reticulum (ER) stress inhibitors. GADD45β-I significantly preserved cell survival, inhibited oxidative injury and reduced apoptosis after IL-1β treatment. ER stress in chondrocytes was attenuated by GADD45β-I, as evidenced by reduced levels of GRP78 and CHOP, as well as decreased caspase-12 cleavage. In addition, GADD45β-I increased the enzymatic activities of mitochondrial antioxidant enzymes, including IDH2, GSH-Px and SOD2. GADD45β-I significantly upregulated the expression of Sirt3 and attenuated IL-1β-induced acetylation of SOD2. Furthermore, GADD45β-I-induced inhibition of ER stress and protection in chondrocytes were partially reversed by knockdown of Sirt3. In conclusion, our data indicated that GADD45β-I protected chondrocytes against IL-1β through Sirt3-mediated inhibition of ER stress. Targeting MKK7 might be an ideal therapeutic strategy for reducing chondrocyte apoptosis in OA.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuang-Li Zhou
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhi-Wei Ren
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yu-Sheng Qiu
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
19
|
Nassir F, Arndt JJ, Johnson SA, Ibdah JA. Regulation of mitochondrial trifunctional protein modulates nonalcoholic fatty liver disease in mice. J Lipid Res 2018; 59:967-973. [PMID: 29581157 PMCID: PMC5983392 DOI: 10.1194/jlr.m080952] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial trifunctional protein (MTP) plays a critical role in the oxidation of long-chain fatty acids. We previously reported that aging mice (>9 months old) heterozygous for an MTP defect (MTP+/-) develop nonalcoholic fatty liver disease (NAFLD). We tested whether a high-fat diet (HFD) accelerates NAFLD in young MTP+/-mice, and whether overexpression of the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 3 (SIRT3) deacetylates MTP and improves mitochondrial function and NAFLD. Three-month-old WT and MTP+/- mice were fed HFD (60% cal fat) for 16 weeks and livers were assessed for fatty acid oxidation (FAO) and NAFLD. Compared with WT, MTP+/- mice displayed reduced hepatic SIRT3 levels and reduced FAO, with increased hepatic steatosis and the inflammatory marker CD68. Hepatic overexpression of SIRT3 in HFD-fed MTP+/- mice increased hepatic MTP protein levels at the posttranscriptional level. Immunoprecipitation of MTP from liver mitochondria followed by Western blot with acetyl-lysine antibody showed higher acetylation of MTP in MTP+/- compared with WT mice. Overexpression of SIRT3 in MTP+/- mice significantly reduced the acetylation of MTP compared with β-galactosidase controls, increased mitochondrial FAO, and reduced hepatic steatosis, CD68, and serum ALT levels. Taken together, our data indicate that deacetylation of MTP by SIRT3 improves mitochondrial function and rescues NAFLD in MTP+/- mice.
Collapse
Affiliation(s)
- Fatiha Nassir
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO; Nutrition and Exercise Physiology, University of Missouri, Columbia, MO; United States Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Justin J Arndt
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - Sarah A Johnson
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO; United States Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Jamal A Ibdah
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO; Nutrition and Exercise Physiology, University of Missouri, Columbia, MO; Medical Pharmacology & Physiology, University of Missouri, Columbia, MO; United States Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO.
| |
Collapse
|
20
|
De Matteis S, Granato AM, Napolitano R, Molinari C, Valgiusti M, Santini D, Foschi FG, Ercolani G, Vespasiani Gentilucci U, Faloppi L, Scartozzi M, Frassineti GL, Casadei Gardini A. Interplay Between SIRT-3, Metabolism and Its Tumor Suppressor Role in Hepatocellular Carcinoma. Dig Dis Sci 2017; 62:1872-1880. [PMID: 28527050 DOI: 10.1007/s10620-017-4615-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Abstract
Sirtuins (SIRT), first described as nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylases, are produced by cells to support in the defense against chronic stress conditions such as metabolic syndromes, neurodegeneration, and cancer. SIRT-3 is one of the most studied members of the mitochondrial sirtuins family. In particular, its involvement in metabolic diseases and its dual role in cancer have been described. In the present review, based on the evidence of SIRT-3 involvement in metabolic dysfunctions, we aimed to provide an insight into the multifaceted role of SIRT-3 in many solid and hematological tumors with a particular focus on hepatocellular carcinoma (HCC). SIRT-3 regulatory effect and involvement in metabolism dysfunctions may have strong implications in HCC development and treatment. Research literature widely reports the relationship between metabolic disorders and HCC development. This evidence suggests a putative bridge role of SIRT-3 between metabolic diseases and HCC. However, further studies are necessary to demonstrate such interconnection.
Collapse
Affiliation(s)
- Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy.
| | - Anna Maria Granato
- Immunotherapy and Cell Therapy Unit, IRST IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, IRST IRCCS, Via Maroncelli, 40, 47014, Meldola, Italy
| | - Daniele Santini
- Campus Bio-Medico, University of Rome, Via Àlvaro del Portillo, 21, 00128, Rome, Italy
| | | | - Giorgio Ercolani
- Department of General Surgery, Morgagni-Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| | - Umberto Vespasiani Gentilucci
- Internal Medicine and Hepatology Unit, University Campus Bio-Medico, Via Àlvaro del Portillo, 21, 00128, Rome, Italy
| | - Luca Faloppi
- Medical Oncology, University Hospital, University of Cagliari, SS 554 km 4.500, Monserrato, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology, University Hospital, University of Cagliari, SS 554 km 4.500, Monserrato, Cagliari, Italy
| | | | | |
Collapse
|
21
|
Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 2017; 13:852-867. [PMID: 28808418 PMCID: PMC5555103 DOI: 10.7150/ijbs.19370] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Fatty liver diseases, which are commonly associated with high-fat/calorie diet, heavy alcohol consumption and/or other metabolic disorder causes, lead to serious medical concerns worldwide in recent years. It has been demonstrated that metabolic homeostasis disruption is most likely to be responsible for this global epidemic. Sirtuins are a group of conserved nicotinamide adenine dinucleotide (NAD+) dependent histone and/or protein deacetylases belonging to the silent information regulator 2 (Sir2) family. Among seven mammalian sirtuins, sirtuin 1 (SIRT 1) is the most extensively studied one and is involved in both alcoholic and nonalcoholic fatty liver diseases. SIRT1 plays beneficial roles in regulating hepatic lipid metabolism, controlling hepatic oxidative stress and mediating hepatic inflammation through deacetylating some transcriptional regulators against the progression of fatty liver diseases. Here we summarize the latest advances of the biological roles of SIRT1 in regulating lipid metabolism, oxidative stress and inflammation in the liver, and discuss the potential of SIRT1 as a therapeutic target for treating alcoholic and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Ren-Bo Ding
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jiaolin Bao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
22
|
He Q, Li F, Li J, Li R, Zhan G, Li G, Du W, Tan H. MicroRNA-26a-interleukin (IL)-6-IL-17 axis regulates the development of non-alcoholic fatty liver disease in a murine model. Clin Exp Immunol 2016; 187:174-184. [PMID: 27377869 DOI: 10.1111/cei.12838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic presentation of obesity and metabolic syndrome. MicroRNA 26a (Mir-26a) has been reported to play functions in cellular differentiation, cell growth, cell apoptosis and metastasis. A recent paper indicated that Mir-26a regulated insulin sensitivity and metabolism of glucose and lipids. However, the role of Mir-26a in NAFLD still needs to be investigated further. In our current study, vectors encoding pre-Mir-26a (LV-26a) and an empty lentiviral vector (LV-Con) delivered approximately 2 × 107 transforming units of recombinant lentivirus were injected into mice through the tail vein. LV-26a-infected mice were protected from glucose dysmetabolism and showed markedly decreased total liver weight, hepatic triglyceride deposition and serum alanine transaminase (ALT) concentration when compared with LV-Con-treated mice. LV-26a-treated mice also exhibited decreased infiltration of immune cells in the liver - something attributed to reduce infiltration of T cell receptor (TCR)-γδ+ , granulocyte-differentiation antigen-1 (Gr-1)+ cells and CD11b+ cells. Next, we found that Mir-26a inhibited the expression of interleukin (IL)-17 and IL-6 in vivo and in vitro. Furthermore, the decreased expression of IL-17 in the liver tissue induced by Mir-26a was abrogated completely by IL-6 overexpression. The decreased total liver weight, hepatic triglyceride deposition and serum ALT concentration induced by Mir-26a was also abrogated completely by IL-6 over-expression. In conclusion, the Mir-26a-IL-6-IL-17 axis regulates the development of NAFLD in a murine model.
Collapse
Affiliation(s)
- Q He
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - F Li
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - J Li
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - R Li
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - G Zhan
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - G Li
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - W Du
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| | - H Tan
- Department of Infectious Disease, and Laboratory of Liver Disease, Renmin Hospital, Hubei University of Medicine, China
| |
Collapse
|
23
|
Li YH, Choi DH, Lee EH, Seo SR, Lee S, Cho EH. Sirtuin 3 (SIRT3) Regulates α-Smooth Muscle Actin (α-SMA) Production through the Succinate Dehydrogenase-G Protein-coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells. J Biol Chem 2016; 291:10277-92. [PMID: 26912655 DOI: 10.1074/jbc.m115.692244] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 3 (SIRT3) is an NAD(+)-dependent protein deacetylase. Recent studies have shown that SIRT3 expression is decreased in nonalcoholic fatty liver disease (NAFLD). Moreover, SIRT3 is a key regulator of succinate dehydrogenase (SDH), which catalyzes the oxidation of succinate to fumarate. Increased succinate concentrations and the specific G protein-coupled receptor 91 (GPR91) are involved in the activation of hepatic stellate cells (HSCs). In this study, we aimed to establish whether SIRT3 regulated the SDH activity, succinate, and GPR91 expression in HSCs and an animal model of NAFLD. Our goal was also to determine whether succinate released from hepatocytes regulated HSC activation. Inhibiting SIRT3 using SIRT3 siRNA exacerbated HSC activation via the SDH-succinate-GPR91 pathway, and SIRT3 overexpression or honokiol treatment attenuated HSC activation in vitro In isolated liver and HSCs from methionine- and choline-deficient (MCD) diet-induced NAFLD, the expression of SIRT3 and SDH activity was decreased, and the succinate concentrations and GPR91 expression were increased. Moreover, we found that GPR91 knockdown or resveratrol treatment improved the steatosis in MCD diet-fed mice. This investigation revealed a novel mechanism of the SIRT3-SDH-GPR91 cascade in MCD diet-induced HSC activation in NAFLD. These findings highlight the biological significance of novel strategies aimed at targeting SIRT3 and GPR91 in HSCs with the goal of improving NAFLD treatment.
Collapse
Affiliation(s)
- Ying Hui Li
- From the Departments of Internal Medicine and
| | | | - Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | | | - Eun-Hee Cho
- From the Departments of Internal Medicine and
| |
Collapse
|