1
|
Bryan JS, Tashev SA, Fazel M, Scheckenbach M, Tinnefeld P, Herten DP, Pressé S. Bayesian Inference of Binding Kinetics from Fluorescence Time Series. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636267. [PMID: 39975252 PMCID: PMC11838460 DOI: 10.1101/2025.02.03.636267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The study of binding kinetics via the analysis of fluorescence time traces is often confounded by measurement noise and photophysics. Although photoblinking can be mitigated by using labels less likely to photoswitch, photobleaching generally cannot be eliminated. Current methods for measuring binding and unbinding rates are therefore limited by concurrent photobleaching events. Here, we propose a method to infer binding and unbinding rates alongside photobleaching rates using fluorescence intensity traces. Our approach is a two-stage process involving analyzing individual regions of interest (ROIs) with a Hidden Markov Model to infer the fluorescence intensity levels of each trace. We then use the inferred intensity level state trajectory from all ROIs to infer kinetic rates. Our method has several advantages, including the ability to analyze noisy traces, account for the presence of photobleaching events, and provide uncertainties associated with the inferred binding kinetics. We demonstrate the effectiveness and reliability of our method through simulations and data from DNA origami binding experiments.
Collapse
Affiliation(s)
| | - Stanimir Asenov Tashev
- College of Medical and Dental Sciences, University of Birmingham
- School of Chemistry, University of Birmingham
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham
| | | | | | - Philip Tinnefeld
- Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich
| | | | - Steve Pressé
- Department of Physics, Arizona State University
- School of Molecular Sciences, Arizona State University
| |
Collapse
|
2
|
Weber F, Axmann M, Sezgin E, Amaro M, Sych T, Hochreiner A, Hof M, Schütz GJ, Stangl H, Plochberger B. "Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein. MEMBRANES 2024; 14:261. [PMID: 39728711 PMCID: PMC11677176 DOI: 10.3390/membranes14120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.
Collapse
Affiliation(s)
- Florian Weber
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet,171 77 Solna, Sweden; (E.S.); (T.S.)
| | - Markus Axmann
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet,171 77 Solna, Sweden; (E.S.); (T.S.)
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Science, 182 00 Prague, Czech Republic; (M.A.); (M.H.)
| | - Taras Sych
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet,171 77 Solna, Sweden; (E.S.); (T.S.)
| | - Armin Hochreiner
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Science, 182 00 Prague, Czech Republic; (M.A.); (M.H.)
| | | | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Plochberger
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
- Research Group Nanoscopy, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| |
Collapse
|
3
|
Fouedji C, Etémé AS, Tabi CB, Fouda HPE, Kofané TC. Multisolitons-like patterns in a one-dimensional MARCKS protein cyclic model. J Theor Biol 2024; 579:111702. [PMID: 38096977 DOI: 10.1016/j.jtbi.2023.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In this paper, we study the nonlinear dynamics of the MARCKS protein between cytosol and cytoplasmic membrane through the modulational instability phenomenon. The reaction-diffusion generic model used here is firstly transformed into a cubic complex Ginzburg-Landau equation. Then, modulational instability (MI) is carried out in order to derive the MI criteria. We find the domains of some parameter space where nonlinear patterns are expected in the model. The analytical results on the MI growth rate predict that phosphorylation and binding rates affect MARCKS dynamics in opposite way: while the phosphorylation rate tends to support highly localized structures of MARCKS, the binding rate in turn tends to slow down such features. On the other hand, self-diffusion process always amplifies the MI phenomenon. These predictions are confirmed by numerical simulations. As a result, the cyclic transport of MARCKS protein from membrane to cytosol may be done by means of multisolitons-like patterns.
Collapse
Affiliation(s)
- Chenceline Fouedji
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Armand Sylvin Etémé
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Conrad Bertrand Tabi
- Botswana International University of Science and Technology, P/Bag 16 Palapye, Botswana.
| | - Henri Paul Ekobena Fouda
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Timoléon Crépin Kofané
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| |
Collapse
|
4
|
Kyrychenko A, Ladokhin AS. Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions. CHEM REC 2024; 24:e202300232. [PMID: 37695081 PMCID: PMC11113672 DOI: 10.1002/tcr.202300232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Fluorescence spectroscopy provides numerous methodological tools for structural and functional studies of biological macromolecules and their complexes. All fluorescence-based approaches require either existence of an intrinsic probe or an introduction of an extrinsic one. Moreover, studies of complex systems often require an additional introduction of a specific quencher molecule acting in combination with a fluorophore to provide structural or thermodynamic information. Here, we review the fundamentals and summarize the latest progress in applications of different classes of fluorescent probes and their specific quenchers, aimed at studies of protein folding and protein-membrane interactions. Specifically, we discuss various environment-sensitive dyes, FRET probes, probes for short-distance measurements, and several probe-quencher pairs for studies of membrane penetration of proteins and peptides. The goals of this review are: (a) to familiarize the readership with the general concept that complex biological systems often require both a probe and a quencher to decipher mechanistic details of functioning and (b) to provide example of the immediate applications of the described methods.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, United States
| |
Collapse
|
5
|
Vesga AG, Villegas L, Vequi-Suplicy CC, Sorzano COS, Requejo-Isidro J. Quantitative characterization of membrane-protein reversible association using FCS. Biophys J 2023:S0006-3495(23)00042-5. [PMID: 36698316 DOI: 10.1016/j.bpj.2023.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Functionally meaningful reversible protein-membrane interactions mediate many biological events. Fluorescence correlation spectroscopy (FCS) is increasingly used to quantitatively study the non-reversible binding of proteins to membranes using lipid vesicles in solution. However, the lack of a complete description of the phase and statistical equilibria in the case of reversible protein-membrane partitioning has hampered the application of FCS to quantify the partition coefficient (Kx). In this work, we further extend the theory that describes membrane-protein partitioning to account for spontaneous protein-membrane dissociation and reassociation to the same or a different lipid vesicle. We derive the probability distribution of proteins on lipid vesicles for reversible binding and demonstrate that FCS is a suitable technique for accurate Kx quantification of membrane-protein reversible association. We also establish the limits to Kx determination by FCS studying the Cramer-Rao bound on the variance of the retrieved parameters. We validate the mathematical formulation against reaction-diffusion simulations to study phase and statistical equilibria and compare the Kx obtained from a computational FCS titration experiment with the experimental ground truth. Finally, we demonstrate the application of our methodology studying the association of anti-HIV broadly neutralizing antibody (10E8-3R) to the membrane.
Collapse
Affiliation(s)
- Arturo G Vesga
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain; Unidad de Nanobiotecnología, CNB-CSIC-IMDEA Nanociencia Associated Unit, 28049 Madrid, Spain
| | - Lupe Villegas
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| | | | | | - Jose Requejo-Isidro
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain; Unidad de Nanobiotecnología, CNB-CSIC-IMDEA Nanociencia Associated Unit, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Yue Q, Al-Khalili O, Moseley A, Yoshigi M, Wynne BM, Ma H, Eaton DC. PIP 2 Interacts Electrostatically with MARCKS-like Protein-1 and ENaC in Renal Epithelial Cells. BIOLOGY 2022; 11:biology11121694. [PMID: 36552204 PMCID: PMC9774185 DOI: 10.3390/biology11121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1's strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 -binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
Collapse
Affiliation(s)
- Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Masaaki Yoshigi
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Brandi Michele Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Douglas C. Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-4533; Fax: +1-404-727-3425
| |
Collapse
|
7
|
Tempra C, Scollo F, Pannuzzo M, Lolicato F, La Rosa C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140767. [PMID: 35144022 DOI: 10.1016/j.bbapap.2022.140767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
8
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Ladokhin AS, Kyrychenko A, Rodnin MV, Vasquez-Montes V. Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain. Methods Enzymol 2021; 649:341-370. [PMID: 33712192 DOI: 10.1016/bs.mie.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diphtheria toxin is among many bacterial toxins that utilize the endosomal pathway of cellular entry, which is ensured by the bridging of the endosomal membrane by the toxin's translocation (T) domain. Endosomal acidification triggers a series of conformational changes of the T-domain, that take place first in aqueous and subsequently in membranous milieu. These rearrangements ultimately result in establishing membrane-inserted conformation(s) and translocation of the catalytic moiety of the toxin into the cytoplasm. We discuss here the strategy for combining site-selective labeling with various spectroscopic methods to characterize structural and thermodynamic aspects of protonation-dependent conformational switching and membrane insertion of the diphtheria toxin T-domain. Among the discussed methods are FRET, FCS and depth-dependent fluorescence quenching with lipid-attached bromine atoms and spin probes. The membrane-insertion pathway of the T-domain contains multiple intermediates and is governed by staggered pH-dependent transitions involving protonation of histidines and acidic residues. Presented data demonstrate that the lipid bilayer plays an active part in T-domain functioning and that the so-called Open-Channel State does not constitute the translocation pathway, but is likely to be a byproduct of the translocation. The spectroscopic approaches presented here are broadly applicable to many other systems of physiological and biomedical interest for which conformational changes can lead to membrane insertion (e.g., other bacterial toxins, host defense peptides, tumor-targeting pHLIP peptides and members of Bcl-2 family of apoptotic regulators).
Collapse
Affiliation(s)
- Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States.
| | - Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Jiang H, Cole PA. N-Terminal Protein Labeling with N-Hydroxysuccinimide Esters and Microscale Thermophoresis Measurements of Protein-Protein Interactions Using Labeled Protein. Curr Protoc 2021; 1:e14. [PMID: 33484499 PMCID: PMC7839251 DOI: 10.1002/cpz1.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein labeling strategies have been explored for decades to study protein structure, function, and regulation. Fluorescent labeling of a protein enables the study of protein-protein interactions through biophysical methods such as microscale thermophoresis (MST). MST measures the directed motion of a fluorescently labeled protein in response to microscopic temperature gradients, and the protein's thermal mobility can be used to determine binding affinity. However, the stoichiometry and site specificity of fluorescent labeling are hard to control, and heterogeneous labeling can generate inaccuracies in binding measurements. Here, we describe an easy-to-apply protocol for high-stoichiometric, site-specific labeling of a protein at its N-terminus with N-hydroxysuccinimide (NHS) esters as a means to measure protein-protein interaction affinity by MST. This protocol includes guidelines for NHS ester labeling, fluorescent-labeled protein purification, and MST measurement using a labeled protein. As an example of the entire workflow, we additionally provide a protocol for labeling a ubiquitin E3 enzyme and testing ubiquitin E2-E3 enzyme binding affinity. These methods are highly adaptable and can be extended for protein interaction studies in various biological and biochemical circumstances. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Labeling a protein of interest at its N-terminus with NHS esters through stepwise reaction Alternate Protocol: Labeling a protein of interest at its N-terminus with NHS esters through a one-pot reaction Basic Protocol 2: Purifying the N-terminal fluorescent-labeled protein and determining its concentration and labeling efficiency Basic Protocol 3: Using MST to determine the binding affinity of an N-terminal fluorescent-labeled protein to a binding partner. Basic Protocol 4: NHS ester labeling of ubiquitin E3 ligase WWP2 and measurement of the binding affinity between WWP2 and an E2 conjugating enzyme by the MST binding assay.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Brigham and Women’s Hospital,
Department of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard
Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns
Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Philip A. Cole
- Division of Genetics, Brigham and Women’s Hospital,
Department of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
12
|
Sato Y, Kuwahara K, Mogami K, Takahashi K, Nishizawa S. Amphipathic helical peptide-based fluorogenic probes for a marker-free analysis of exosomes based on membrane-curvature sensing. RSC Adv 2020; 10:38323-38327. [PMID: 35517518 PMCID: PMC9057301 DOI: 10.1039/d0ra07763a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023] Open
Abstract
With increasing knowledge about the diverse roles of exosomes in the biological process, much attention has been paid to develop analytical methods for detection and quantification of exosomes. Immunoassays based on the recognition of exosomal protein markers by antibodies were widely used. However, considering that exosomal protein composition varies with the cell type, the protein markers should be carefully selected for a sensitive and selective analysis of target exosomes. Herein, we developed a new class of exosome-binding fluorogenic probes based on membrane curvature (MC) sensing of amphipathic helical (AH) peptides for exosome analysis without the need to use protein markers on the exosomal membranes. The C-terminal region of apolipoprotein A-I labeled with Nile red (ApoC-NR) exhibited a significant fluorescence enhancement upon selective binding to the highly curved membranes of synthetic vesicles. Circular dichroism (CD) measurements involving 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-2-dioleoyl-sn-glycerol (DOG) vesicles suggested that ApoC-NR recognizes the lipid packing defects in the surface of highly curved membranes via the hydrophobic insertion of the α-helix structure of the ApoC unit. ApoC-NR exhibited a stronger binding affinity for exosome-sized vesicles and a higher MC selectivity compared to all other previously reported peptide probes. ApoC-NR can be used in a simple and rapid “mix and read” analysis of various kinds of exosomes derived from different cell types (limit of detection: –105 particles/μL) without being influenced by the variation in the expression of the surface proteins of the exosomes, which stands in sharp contrast to immunoassays. Fluorogenic probes based on membrane curvature sensing-amphipathic helical peptides have been developed for a marker-free exosome analysis.![]()
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kazuki Kuwahara
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kenta Mogami
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kenta Takahashi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Seiichi Nishizawa
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
13
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
14
|
Probing Membrane Association of α-Synuclein Domains with VDAC Nanopore Reveals Unexpected Binding Pattern. Sci Rep 2019; 9:4580. [PMID: 30872688 PMCID: PMC6418135 DOI: 10.1038/s41598-019-40979-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/25/2019] [Indexed: 11/09/2022] Open
Abstract
It is well established that α-synuclein (α-syn) binding from solution to the surface of membranes composed of negatively charged and/or non-lamellar lipids can be characterized by equilibrium dissociation constants of tens of micromolar. Previously, we have found that a naturally occurring nanopore of the mitochondrial voltage-dependent anion channel (VDAC), reconstituted into planar bilayers of a plant-derived lipid, responds to α-syn at nanomolar solution concentrations. Here, using lipid mixtures that mimic the composition of mitochondrial outer membranes, we show that functionally important binding does indeed take place in the nanomolar range. We demonstrate that the voltage-dependent rate at which a membrane-embedded VDAC nanopore captures α-syn is a strong function of membrane composition. Comparison of the nanopore results with those obtained by the bilayer overtone analysis of membrane binding demonstrates a pronounced correlation between the two datasets. The stronger the binding, the larger the on-rate, but with some notable exceptions. This leads to a tentative model of α-syn-membrane interactions, which assigns different lipid-dependent roles to the N- and C-terminal domains of α-syn accounting for both electrostatic and hydrophobic effects. As a result, the rate of α-syn capture by the nanopore is not simply proportional to the α-syn concentration on the membrane surface but found to be sensitive to the specific interactions of each domain with the membrane and nanopore.
Collapse
|
15
|
Li X, Shi X, Kaliszewski MJ, Smith AW. Fluorescence cross-correlation spectroscopy of lipid-peptide interactions on supported lipid bilayers. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Gallea JI, Ambroggio EE, Vilcaes AA, James NG, Jameson DM, Celej MS. Amyloid oligomerization of the Parkinson's disease related protein α-synuclein impacts on its curvature-membrane sensitivity. J Neurochem 2018; 147:541-556. [PMID: 30142705 DOI: 10.1111/jnc.14573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/28/2018] [Accepted: 08/17/2018] [Indexed: 11/28/2022]
Abstract
The amyloid aggregation of the presynaptic protein α-synuclein (AS) is pathognomonic of Parkinson's disease and other neurodegenerative disorders. Physiologically, AS contributes to synaptic homeostasis by participating in vesicle maintenance, trafficking, and release. Its avidity for highly curved acidic membranes has been related to the distinct chemistry of the N-terminal amphipathic helix adopted upon binding to appropriated lipid interfaces. Pathologically, AS populate a myriad of toxic aggregates ranging from soluble oligomers to insoluble amyloid fibrils. Different gain-of-toxic function mechanisms are linked to prefibrillar oligomers which are considered as the most neurotoxic species. Here, we investigated if amyloid oligomerization could hamper AS function as a membrane curvature sensor. We used fluorescence correlation spectroscopy to quantitatively evaluate the interaction of oligomeric species, produced using a popular method based on lyophilization and rehydration, to lipid vesicles of different curvatures and compositions. We found that AS oligomerization has a profound impact on protein-lipid interaction, altering binding affinity and/or curvature sensitivity depending on membrane composition. Our work provides novel insights into how the formation of prefibrillar intermediate species could contribute to neurodegeneration due to a loss-of-function mechanism. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- José Ignacio Gallea
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ernesto E Ambroggio
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Aldo Alejandro Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Nicholas G James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - María Soledad Celej
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
17
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
18
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Peptide Self-Assembly Measured Using Fluorescence Correlation Spectroscopy. Methods Mol Biol 2018. [PMID: 29744833 DOI: 10.1007/978-1-4939-7811-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescence correlation spectroscopy (FCS) is a flexible and powerful technique to measure the diffusion of fluorescently labeled particles. It has been important in examining a range of biological processes, from intracellular transport, to DNA hybridization. It is particularly suited to measuring the assembly of peptides, since peptides are often too small to be detected by standard light scattering methods, or may not contain aromatic amino acid residues, which limits the use of other spectroscopic techniques. In this protocol, we describe state-of-the-art sample preparation for Aβ1-42 peptide solutions and the measurement and analysis of the self-assembly of the peptide to form fibrils via a number of intermediate states using FCS.
Collapse
|
20
|
Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:491-504. [DOI: 10.1016/j.bbamem.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
|
21
|
Mittag JJ, Kneidl B, Preiβ T, Hossann M, Winter G, Wuttke S, Engelke H, Rädler JO. Impact of plasma protein binding on cargo release by thermosensitive liposomes probed by fluorescence correlation spectroscopy. Eur J Pharm Biopharm 2017. [DOI: 10.1016/j.ejpb.2017.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Krüger D, Ebenhan J, Werner S, Bacia K. Measuring Protein Binding to Lipid Vesicles by Fluorescence Cross-Correlation Spectroscopy. Biophys J 2017; 113:1311-1320. [PMID: 28697897 DOI: 10.1016/j.bpj.2017.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 11/26/2022] Open
Abstract
Fluorescence correlation spectroscopy has been previously used to investigate peptide and protein binding to lipid membranes, as it allows for very low amounts of sample, short measurement times and equilibrium binding conditions. Labeling only one of the binding partners, however, comes with certain drawbacks, as it relies on identifying binding events by a change in diffusion coefficient. Since peptide and protein aggregation can obscure specific binding, and since non-stoichiometric binding necessitates the explicit choice of a statistical distribution for the number of bound ligands, we additionally label the liposomes and perform dual-color fluorescence cross-correlation spectroscopy (dcFCCS). We develop a theoretical framework showing that dcFCCS amplitudes allow calculation of the degree of ligand binding and the concentration of unbound ligand, leading to a model-independent binding curve. As the degree of labeling of the ligands does not factor into the measured quantities, it is permissible to mix labeled and unlabeled ligand, thereby extending the range of usable protein concentrations and accessible dissociation constants, KD. The total protein concentration, but not the fraction of labeled protein, needs to be known. In this work, we apply our dcFCCS analysis scheme to Sar1p, a protein of the COPII complex, which binds "major-minor-mix" liposomes. A Langmuir isotherm model yields KD=(2.1±1.1)μM as the single-site dissociation constant. The dcFCCS framework presented here is highly versatile for biophysical analysis of binding interactions. It may be applied to many types of fluorescently labeled ligands and small diffusing particles, including nanodiscs and liposomes containing membrane protein receptors.
Collapse
Affiliation(s)
- Daniela Krüger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Ebenhan
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan Werner
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
23
|
Walta S, Pergushov DV, Oppermann A, Steinschulte AA, Geisel K, Sigolaeva LV, Plamper FA, Wöll D, Richtering W. Microgels enable capacious uptake and controlled release of architecturally complex macromolecular species. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Roy A, Kundu S, Dutta R, Sarkar N. Influence of bile salt on vitamin E derived vesicles involving a surface active ionic liquid and conventional cationic micelle. J Colloid Interface Sci 2017; 501:202-214. [PMID: 28456104 DOI: 10.1016/j.jcis.2017.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
This study has been actually performed with the aim to develop vitamin E derived vesicles individually from a surface active ionic liquid (1-Hexadecyl-3-Methylimidazolium chloride ([C16mim]Cl)) and a common cationic amphiphile (benzyldimethylhexadecylammonium chloride (BHDC)) and also to investigate their consequent breakdown in presence of bile salt molecule. From this study, it is revealed that the rotational motion of coumarin 153 (C153) molecule is hindered as the vitamin E content is increased in the individual micellar solution of [C16mim]Cl and BHDC. The extent of enhancement in rotational relaxation time is more pronounced in case of [C16mim]Cl-vitamin E solutions than in the BHDC-vitamin E vesicular aggregates which confirms the greater rigidity of the former vesicular system than the later one. Moreover, the effect of bile salt in the vitamin E forming vesicular assemblies have also been unravelled. It is found that the large area occupancy by the steroidal backbone of the bile salt plays a crucial role towards the enlargement of the average surfactant head group area. This results in disintegration of the vesicles composed of vitamin E and consequently, vesicles are transformed into mixed micellar aggregates. From the anisotropy measurement it is found that the rotational motion of C153 is more hindered in the [C16mim]Cl/BHDC-NaCh mixed micelles compared to that inside the individual vesicles. The fluorescence correlation spectroscopic (FCS) study also confirms that the mixed micelles have a more compact structure than that of the [C16mim]Cl-vitamin E and BHDC-vitamin E vesicles. Altogether, the micelle to vesicle transition involving any vitamin and their disruption by bile salt would be an interesting investigation both from the view point of basic colloidal chemistry and towards the generation of new drug delivery vehicle due to their unique microenvironment. Therefore, in future, these systems can be utilised as vehicle for the transport and as well as delivery of drugs and as probable reactor in nanomaterial synthesis.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India.
| |
Collapse
|
25
|
Zhang Z, Yomo D, Gradinaru C. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1242-1253. [PMID: 28392350 DOI: 10.1016/j.bbamem.2017.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Nonspecific interactions between lipids and fluorophores can alter the outcomes of single-molecule spectroscopy of membrane proteins in live cells, liposomes or lipid nanodiscs and of cytosolic proteins encapsulated in liposomes or tethered to supported lipid bilayers. To gain insight into these effects, we examined interactions between 9 dyes that are commonly used as labels for single-molecule fluorescence (SMF) and 6 standard lipids including cationic, zwitterionic and anionic types. The diffusion coefficients of dyes in the absence and presence of set amounts of lipid vesicles were measured by fluorescence correlation spectroscopy (FCS). The partition coefficients and the free energies of partitioning for different fluorophore-lipid pairs were obtained by global fitting of the titration FCS curves. Lipids with different charges, head groups and degrees of chain saturation were investigated, and interactions with dyes are discussed in terms of hydrophobic, electrostatic and steric contributions. Fluorescence imaging of individual fluorophores adsorbed on supported lipid bilayers provides visualization and additional quantification of the strength of dye-lipid interaction in the context of single-molecule measurements. By dissecting fluorophore-lipid interactions, our study provides new insights into setting up single-molecule fluorescence spectroscopy experiments with minimal interference from interactions between fluorescent labels and lipids in the environment.
Collapse
Affiliation(s)
- Zhenfu Zhang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Dan Yomo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Claudiu Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
| |
Collapse
|
26
|
A High-Throughput Fluorometric Assay for Lipid-Protein Binding. Methods Enzymol 2017. [PMID: 28063486 DOI: 10.1016/bs.mie.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An increasing number of intracellular and extracellular proteins are shown to interact with membrane lipids under physiological conditions. For rapid and robust quantitative measurement of lipid-protein interaction, we developed a sensitive fluorescence quenching-based assay that is universally applicable to all proteins and lipids. The assay employs fluorescence protein (FP)-tagged proteins whose fluorescence emission intensity is decreased when they bind vesicles containing quenching lipids. This simple assay can be performed with a fluorescence plate reader or a spectrofluorometer and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows a rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid-binding proteins, and high-throughput screening of molecules that modulate their membrane binding.
Collapse
|
27
|
Vilanova O, Mittag JJ, Kelly PM, Milani S, Dawson KA, Rädler JO, Franzese G. Understanding the Kinetics of Protein-Nanoparticle Corona Formation. ACS NANO 2016; 10:10842-10850. [PMID: 28024351 PMCID: PMC5391497 DOI: 10.1021/acsnano.6b04858] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/09/2016] [Indexed: 05/18/2023]
Abstract
When a pristine nanoparticle (NP) encounters a biological fluid, biomolecules spontaneously form adsorption layers around the NP, called "protein corona". The corona composition depends on the time-dependent environmental conditions and determines the NP's fate within living organisms. Understanding how the corona evolves is fundamental in nanotoxicology as well as medical applications. However, the process of corona formation is challenging due to the large number of molecules involved and to the large span of relevant time scales ranging from 100 μs, hard to probe in experiments, to hours, out of reach of all-atoms simulations. Here we combine experiments, simulations, and theory to study (i) the corona kinetics (over 10-3-103 s) and (ii) its final composition for silica NPs in a model plasma made of three blood proteins (human serum albumin, transferrin, and fibrinogen). When computer simulations are calibrated by experimental protein-NP binding affinities measured in single-protein solutions, the theoretical model correctly reproduces competitive protein replacement as proven by independent experiments. When we change the order of administration of the three proteins, we observe a memory effect in the final corona composition that we can explain within our model. Our combined experimental and computational approach is a step toward the development of systematic prediction and control of protein-NP corona composition based on a hierarchy of equilibrium protein binding constants.
Collapse
Affiliation(s)
- Oriol Vilanova
- Secció
de Física Estadística i Interdisciplinària−Departament
de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institut
de Nanociència i Nanotecnologia, Universitat de Barcelona, Av. Joan XXIII S/N, Barcelona 08028, Spain
- E-mail:
| | - Judith J. Mittag
- Faculty
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich 80539, Germany
| | - Philip M. Kelly
- Center for BioNano Interactions, School
of Chemistry and Chemical
Biology and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Silvia Milani
- Faculty
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich 80539, Germany
| | - Kenneth A. Dawson
- Center for BioNano Interactions, School
of Chemistry and Chemical
Biology and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joachim O. Rädler
- Faculty
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich 80539, Germany
| | - Giancarlo Franzese
- Secció
de Física Estadística i Interdisciplinària−Departament
de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institut
de Nanociència i Nanotecnologia, Universitat de Barcelona, Av. Joan XXIII S/N, Barcelona 08028, Spain
| |
Collapse
|
28
|
Khan HM, He T, Fuglebakk E, Grauffel C, Yang B, Roberts MF, Gershenson A, Reuter N. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophys J 2016; 110:1367-78. [PMID: 27028646 PMCID: PMC4816757 DOI: 10.1016/j.bpj.2016.02.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/01/2022] Open
Abstract
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Boqian Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
29
|
Kristensen K, Urquhart AJ, Thormann E, Andresen TL. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy. NANOSCALE 2016; 8:19726-19736. [PMID: 27874129 DOI: 10.1039/c6nr05455b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liposomes for medical applications are often administered by intravenous injection. Once in the bloodstream, the liposomes are covered with a "protein corona", which impacts the behavior and eventual fate of the liposomes. Currently, many aspects of the liposomal protein corona are not well understood. For example, there is generally a lack of knowledge about the liposome binding affinities and dynamics of common types of blood plasma proteins. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that potentially can provide such knowledge. In this study, we have used FCS to investigate the binding of human serum albumin (HSA) to standard types of PEGylated fluid-phase liposomes (consisting of DOPC and DOPE-PEG2k) and PEGylated gel-phase liposomes (consisting of DSPC and DSPE-PEG2k) with various PEG chain surface densities. We detected no significant binding of HSA to the PEGylated fluid-phase liposomes. In contrast, we found that HSA bound tightly to the PEGylated gel-phase liposomes, although only a low number of HSA molecules could be accommodated per liposome. Overall, we believe that our data provides a useful benchmark for other researchers interested in studying the liposomal protein corona.
Collapse
Affiliation(s)
- Kasper Kristensen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andrew J Urquhart
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Application of Peak Intensity Analysis to Measurements of Protein Binding to Lipid Vesicles and Erythrocytes Using Fluorescence Correlation Spectroscopy: Dependence on Particle Size. J Membr Biol 2016; 250:77-87. [PMID: 27837242 DOI: 10.1007/s00232-016-9938-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool for investigation of processes accompanied by changes in the mobility of molecules and complexes. In the present work, peak intensity analysis (PIA) in combination with the solution stirring using FCS setup was applied to explore the interaction between fluorescently labeled protein ligands and corresponding receptors located on membranes. In the system composed of biotinylated liposomes and fluorescently labeled streptavidin as a ligand, PIA allowed us to determine the optimum receptor concentration and demonstrate the essential dependence of the binding efficacy on the length of the linker between the biotin group and the polar head group of the lipid. The binding was dependent on the size of liposomes which was varied by lipid extrusion through filters of different pore diameters. The sensitivity of the method was higher with the liposomes of larger sizes. The PIA approach can be applied not only to liposomes but also to relatively large objects, e.g., erythrocytes or Sepharose beads derivatized with lactose as a receptor for the binding of viscumin and ricin.
Collapse
|
31
|
Roy A, Dutta R, Banerjee P, Kundu S, Sarkar N. 5-Methyl Salicylic Acid-Induced Thermo Responsive Reversible Transition in Surface Active Ionic Liquid Assemblies: A Spectroscopic Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7127-37. [PMID: 27345738 DOI: 10.1021/acs.langmuir.6b01287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article describes the formation of stable unilamellar vesicles involving surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride (C16mimCl), and 5-methyl salicylic acid (5mS). Turbidity, dynamic light scattering (DLS), transmission electron microscopy (TEM), and viscosity measurements suggest that C16mimCl containing micellar aggregates are transformed to elongated micelle and finally into vesicular aggregates with the addition of 5mS. Besides, we have also investigated the photophysical aspects of a hydrophobic (coumarin 153, C153) and a hydrophilic molecule (rhodamine 6G (R6G) perchlorate) during 5mS-induced micelle to vesicle transition. The rotational motion of C153 becomes slower, whereas faster motion is observed for R6G during micelle to vesicle transition. Moreover, the fluorescence correlation spectroscopy (FCS) measurements suggest that the translational diffusion of hydrophobic probe becomes slower in C16mimCl-5mS aggregates in comparison to C16mimCl micelle. However, a reverse trend in translational diffusion motion of hydrophilic molecule has been observed in C16mimCl-5mS aggregates. Moreover, we have also found that the C16mimCl-5mS containing vesicles are transformed into micelles upon enhanced temperature, and it is further confirmed by turbidity, DLS measurements that this transition is a reversible one. Finally, temperature-induced rotational motion of C153 and R6G has been monitored in C16mimCl-5mS aggregates to get a complete scenario regarding the temperature-induced vesicle to micelle transition.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB, India
| |
Collapse
|
32
|
Abstract
Membrane-protein interaction plays key roles in a wide variety of biological processes. To facilitate rapid and sensitive measurement of membrane binding of soluble proteins, we developed a fluorescence-based quantitative assay that is universally applicable to all proteins. This fluorescence-quenching assay employs fluorescence protein (FP)-tagged proteins whose fluorescence intensity is greatly decreased when they bind vesicles containing synthetic lipid dark quenchers, such as N-dimethylaminoazobenzenesulfonylphosphatidylethanolamine (dabsyl-PE). This simple assay can be performed with either a spectrofluorometer or a plate reader and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains and proteins, and also high-throughput screening of small molecules that modulate membrane binding of proteins.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hyunjin Kim
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yusi Hu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
33
|
Zhang L, Yethiraj A, Cui Q. Free Energy Calculations for the Peripheral Binding of Proteins/Peptides to an Anionic Membrane. 1. Implicit Membrane Models. J Chem Theory Comput 2015; 10:2845-59. [PMID: 26586509 DOI: 10.1021/ct500218p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The binding of peptides and proteins to the surface of complex lipid membranes is important in many biological processes such as cell signaling and membrane remodeling. Computational studies can aid experiments by identifying physical interactions and structural motifs that determine the binding affinity and specificity. However, previous studies focused on either qualitative behaviors of protein/membrane interactions or the binding affinity of small peptides. Motivated by this observation, we set out to develop computational protocols for bimolecular binding to charged membranes that are applicable to both peptides and large proteins. In this work, we explore a method based on an implicit membrane/solvent model (generalized Born with a simple switching in combination with the Gouy-Chapman-Stern model for a charged interface), which we expect to lead to useful results when the binding does not implicate significant membrane deformation and local demixing of lipids. We show that the binding free energy can be efficiently computed following a thermodynamic cycle similar to protein-ligand binding calculations, especially when a Bennett acceptance ratio based protocol is used to consider both the membrane bound and solution conformational ensembles. Test calculations on a series of peptides show that our computational approach leads to binding affinities in encouraging agreement with experimental data, including for the challenging example of the bringing of flexible MARCKS-ED peptides to membranes. The calculations highlight that for a membrane with a significant fraction of anionic lipids, it is essential to include the effect of ion adsorption using the Stern model, which significantly modifies the effective surface charge. This implicit membrane model based computational protocol helps lay the groundwork for more systematic analysis of protein/peptide binding to membranes of complex shape and composition.
Collapse
Affiliation(s)
- Leili Zhang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Affiliation(s)
- Ian L. Gunsolus
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Thomas FA, Visco I, Petrášek Z, Heinemann F, Schwille P. Introducing a fluorescence-based standard to quantify protein partitioning into membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2932-41. [PMID: 26342678 DOI: 10.1016/j.bbamem.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
The affinity of peripheral membrane proteins for a lipid bilayer can be described using the partition coefficient (KP). Although several methods to determine KP are known, all possess limitations. To address some of these issues, we developed both: a versatile method based on single molecule detection and fluorescence imaging for determining KP, and a simple measurement standard employing hexahistidine-tagged enhanced green fluorescent protein (eGFP-His6) and free standing membranes of giant unilamellar vesicles (GUVs) functionalized with NTA(Ni) lipids as binding sites. To ensure intrinsic control, our method features two measurement modes. In the single molecule mode, fluorescence correlation spectroscopy (FCS) is applied to quantify free and membrane associated protein concentrations at equilibrium and calculate KP. In the imaging mode, confocal fluorescence images of GUVs are recorded and analyzed with semi-automated software to extract protein mean concentrations used to derive KP. Both modes were compared by determining the affinity of our standard, resulting in equivalent KP values. As observed in other systems, eGFP-His6 affinity for membranes containing increasing amounts of NTA(Ni) lipids rises in a stronger-than-linear fashion. We compared our dual approach with a FCS-based assay that uses large unilamellar vesicles (LUVs), which however fails to capture the stronger-than-linear trend for our NTA(Ni)-His6 standard. Hence, we determined the KP of the MARCKS effector domain with our FCS approach on GUVs, whose results are consistent with previously published data using LUVs. We finally provide a practical manual on how to measure KP and understand it in terms of molecules per lipid surface.
Collapse
Affiliation(s)
- Franziska A Thomas
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Ilaria Visco
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Zdeněk Petrášek
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Fabian Heinemann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
36
|
Vicente EF, Sahu ID, Costa-Filho AJ, Cilli EM, Lorigan GA. Conformational changes of the HsDHODH N-terminal Microdomain via DEER Spectroscopy. J Phys Chem B 2015; 119:8693-7. [PMID: 26086954 DOI: 10.1021/acs.jpcb.5b01706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human enzyme dihydroorotate dehydrogenase (HsDHODH) has been studied for being a target for development of new antineoplasic and antiproliferative drugs. The synthetic peptide N-t(DH) represents the N-terminal microdomain of this enzyme, responsible for anchoring it to the inner mitochondrial membrane. Also, it is known to harbor quinones that are essential for enzyme catalysis. Here we report structural features of the peptide/membrane interactions obtained by using CD and DEER spectroscopic techniques, both in micelles and in lipid vesicles. The data revealed different peptide conformational states in micelles and liposomes, which could suggest that this microdomain acts in specific regions or areas of the mitochondria, which can be related with the control of the quinone access to the HsDHODH active site. This is the first study to report on conformational changes of the HsDHODH N-terminal microdomain through a combination of CD and DEER spectroscopic techniques.
Collapse
Affiliation(s)
- Eduardo F Vicente
- †UNESP - Univ Estadual Paulista, Campus de Tupã, 17602-496, Tupã, SP Brazil
| | - Indra D Sahu
- ‡Department of Chemistry and Biochemistry, Miami University, 45056, Oxford, Ohio United States
| | - Antonio J Costa-Filho
- §Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - USP,14040-901, Ribeirão Preto, SP Brazil
| | - Eduardo M Cilli
- ∥Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista, 14800-900, Araraquara, SP Brazil
| | - Gary A Lorigan
- ‡Department of Chemistry and Biochemistry, Miami University, 45056, Oxford, Ohio United States
| |
Collapse
|
37
|
He T, Gershenson A, Eyles SJ, Lee YJ, Liu WR, Wang J, Gao J, Roberts MF. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion. J Biol Chem 2015; 290:19334-42. [PMID: 26092728 DOI: 10.1074/jbc.m115.668343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins.
Collapse
Affiliation(s)
- Tao He
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Yan-Jiun Lee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jianmin Gao
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Mary F Roberts
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467,
| |
Collapse
|
38
|
Duan X, Ding M, Zhang R, Li L, Shi T, An L, Huang Q, Xu WS. Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. J Phys Chem B 2015; 119:6041-9. [DOI: 10.1021/acs.jpcb.5b00515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaozheng Duan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Mingming Ding
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ran Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Liangyi Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Tongfei Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lijia An
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qingrong Huang
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Wen-Sheng Xu
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
39
|
Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles. Colloids Surf B Biointerfaces 2015; 131:54-8. [PMID: 25950496 DOI: 10.1016/j.colsurfb.2015.03.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 11/24/2022]
Abstract
The purpose of the work is to compare the influence of the multilamellarity, phase state, lipid head groups and ionic media on the origin of the surface potential of lipid membranes. With this aim, we present a new analysis of the zeta potential of multilamellar and unilamellar vesicles composed by phosphatidylcholines (PC) and phosphatidylethanolamines (PE) dispersed in water and ionic solutions of polarizable anions, at temperatures below and above the phase transition. In general, the adsorption of anions seems to explain the origin of the zeta potential in vesicles only above the transition temperature (Tc). In this case, the sign of the surface potential is ascribed to a partial orientation of head group moiety toward the aqueous phase. This is noticeable in PC head groups but not in PEs, due to the strong lateral interaction between PO and NH group in PE.
Collapse
|
40
|
Shi X, Li X, Kaliszewski MJ, Zhuang X, Smith AW. Tuning the mobility coupling of quaternized polyvinylpyridine and anionic phospholipids in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1784-1791. [PMID: 25599116 DOI: 10.1021/la504241w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Binding of biomacromolecules to anionic lipids in the plasma membrane is a common motif in many cell signaling pathways. Previous work has shown that macromolecules with cationic sequences can form nanodomains with sequestered anionic lipids, which alters the lateral distribution and mobility of the membrane lipids. Such sequestration is believed to result from the formation of a lipid-macromolecule complex. To date, however, the molecular structure and dynamics of the lipid-polymer interface are poorly understood. We have investigated the behavior of polycationic quaternized polyvinylpyridine (QPVP) on supported lipid bilayers doped with phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP) lipids using time-resolved fluorescence microscopy, including pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a dual-color fluorescence spectroscopy that translates fluctuations in fluorescence signal into a measurement of diffusion and colocalization. By labeling the polymer and lipids, we investigated the adsorption-induced translational mobility of lipids and systematically studied the influence of lipid charge density and solution ionic strength. Our results show that alteration of anionic lipid lateral mobility is dependent on the net charge of the lipid headgroup and is modulated by the ionic strength of the solution, indicating that electrostatic interactions drive the decrease in lateral mobility of anionic lipids by adsorbed QPVP. At physiological salt concentration we observe that the lipid lateral mobility is weakly influenced by QPVP and that there is no evidence of stable lipid-polymer complexes.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Chemistry, The University of Akron , 190 Buchtel Common, Akron, Ohio 44325-3601, United States
| | | | | | | | | |
Collapse
|
41
|
Alliband A, Wang Z, Thacker C, English DS, Burns DH. Developing a targeting system for bacterial membranes: measuring receptor-phosphatidylglycerol interactions with1H NMR, ITC and fluorescence correlation spectroscopy. Org Biomol Chem 2015; 13:502-12. [DOI: 10.1039/c4ob01895h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the development of a potential targeting system for bacterial membranes containing phosphatidylglycerol.
Collapse
Affiliation(s)
| | - Zifan Wang
- Department of Chemistry
- Wichita State University
- Wichita
- USA
| | | | | | | |
Collapse
|
42
|
Kristensen K, Henriksen JR, Andresen TL. Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2994-3002. [DOI: 10.1016/j.bbamem.2014.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/02/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
|
43
|
Godin R, Liu HW, Smith L, Cosa G. Dye lipophilicity and retention in lipid membranes: implications for single-molecule spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11138-11146. [PMID: 25158129 DOI: 10.1021/la5021669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescence studies of individual lipid vesicles rely on the proper positioning of probes in the lipid milieu. This is true for both positional tags and chemoselective fluorogenic probes that undergo chemical modification following reaction with an analyte of interest within the lipid environment. The present report describes lipophilicity and localization estimations for a series of BODIPY dyes bearing substituents of varying hydrophobicity. We also studied fluorogenic trap-reporter probes that undergo fluorescence emission enhancement upon trapping of reactive oxygen species (ROS), including lipid peroxyl radicals. We show that caution has to be taken to extrapolate ensemble partition measurements of dyes to the single-molecule regime as a result of the dramatically different lipid concentration prevailing in ensemble versus single-molecule experiments. We show that the mole fraction of dyes that remains embedded in liposomes during a typical single-molecule experiment may be accurately determined from a ratiometric single-particle imaging analysis. We further demonstrate that fluorescence correlation spectroscopy (FCS) provides a very rapid and reliable estimate of the lipophilic nature of a given dye under highly dilute single-molecule-like conditions. Our combined single-particle spectroscopy and FCS experiments suggest that the minimal mole fraction of membrane-associated dyes (x(m)) as determined from FCS experiments is about 0.5 for adequate dye retention during single-molecule imaging in lipid membranes. Our work further highlights the dramatic effect that chemical modifications can have on chemoselective fluorogenic probe localization.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | | | | | | |
Collapse
|
44
|
Duan X, Li Y, Zhang R, Shi T, An L, Huang Q. Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: effects of chain rigidity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:27. [PMID: 25143187 DOI: 10.1140/epje/i2014-14071-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/21/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Monte Carlo simulation is employed to investigate the interaction between a polyelectrolyte and a fluid mixed membrane containing neutral (phosphatidyl-choline, PC), monovalent anionic (phosphatidylserine, PS), and multivalent anionic (phosphatidylinositol, PIP2) lipids. The effects of the intrinsic polyelectrolyte rigidity and solution ionic strength on the lateral rearrangement and dynamics of different anionic lipid species are systematically studied. Our results show that, the increase of polyelectrolyte chain rigidity reduces the loss of polyelectrolyte conformational entropy and the energy gains in electrostatic interaction, but raises the demixing entropy loss of the segregated anionic lipids. Therefore, the polyelectrolyte/membrane adsorption strength exhibits a non-monotonic dependence on the polyelectrolyte rigid parameter k ang, and there exists a certain optimal k ang for which the adsorption strength is maximal. Because the less loss of chain conformational entropy dominates the increase of the demixing entropy loss of the segregated anionic lipids and the decreases of the electrostatic energy gains, the semiflexible polyelectrolyte adsorbs onto the membrane more firmly than the flexible one. Whereas, for the adsorption of rigid polyelectrolyte, larger anionic lipid demixing entropy loss and less energy gain in the electrostatic interaction dominate over the decrease of the polyelectrolyte conformation entropy loss, leading to the desorption of the chain from the membrane. By decreasing the ionic concentration of the salt solution, the certain optimal k ang shifts to larger values. The cooperative effects of the adsorbing polyelectrolyte beads determine the concentration gradients and hierarchical mobility of the bound anionic lipids, as well as the polyelectrolyte dynamics.
Collapse
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | | | |
Collapse
|
45
|
Wyss R, Grasso L, Wolf C, Grosse W, Demurtas D, Vogel H. Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy. Anal Chem 2014; 86:7229-33. [PMID: 25001505 DOI: 10.1021/ac501801m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cells secrete extracellular vesicles (EVs) into their microenvironment that act as mediators of intercellular communication under physiological conditions and in this context also actively participate in spreading various diseases. Large efforts are currently made to produce reliable EV samples and to develop, improve, and standardize techniques allowing their biophysical characterization. Here, we used ultrafiltration and size-exclusion chromatography for the isolation and a model-free fluorescence fluctuation analysis for the investigation of the physical and biological properties of EVs secreted by mammalian cells. Our purification strategy produced enriched samples of morphologically intact EVs free of extravesicular proteins and allowed labeling of marker molecules on the vesicle surface for single-vesicle analysis with single-molecule sensitivity. This novel approach provides information on the distribution profile of both EV size and relative expression level of a specific exosomal marker, deciphering the overall heterogeneity of EV preparations.
Collapse
Affiliation(s)
- Romain Wyss
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne , Station 6, 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32:711-26. [PMID: 24252561 PMCID: PMC4024087 DOI: 10.1016/j.biotechadv.2013.11.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics.
Collapse
MESH Headings
- Chemistry, Physical/methods
- Circular Dichroism
- Contrast Media/chemistry
- Humans
- Light
- Magnetic Resonance Spectroscopy
- Mass Spectrometry
- Microscopy, Atomic Force
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Scanning Tunneling
- Molecular Imaging/methods
- Nanomedicine/methods
- Nanoparticles/chemistry
- Nanostructures/chemistry
- Nanotechnology/methods
- Nanotechnology/trends
- Scattering, Radiation
- Spectrometry, Fluorescence
- Spectrophotometry, Infrared
- Spectrum Analysis, Raman
- Surface Properties
- Technology, Pharmaceutical/methods
Collapse
Affiliation(s)
- Ping-Chang Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Stephen Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Paul C Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Rajagopalan Sridhar
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
47
|
Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:377-91. [DOI: 10.1007/s00249-014-0969-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
|
48
|
Melo AM, Prieto M, Coutinho A. Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS). Methods Mol Biol 2014; 1076:575-95. [PMID: 24108645 DOI: 10.1007/978-1-62703-649-8_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful method to investigate molecular interactions based on the variation of diffusion properties at the single-molecule level. This technique allows studying quantitatively the interaction of fluorescently labeled proteins/peptides with lipid vesicles. Here, we describe how to acquire and analyze FCS partition data in order to accurately determine the protein/peptide partition coefficients between the aqueous and lipid phases. It is shown that the recovery of unbiased partition coefficients from FCS partition curves (fractional amplitude of the bound species versus lipid concentration) requires considering explicitly the Poissonian loading of the lipid vesicles with the fluorescently labeled protein in order to account for the variable liposome brightness in each sample. Additionally, the impact of a trace amount of a fluorescent non-binding component on the partition curves determined by FCS is also discussed.
Collapse
Affiliation(s)
- Ana M Melo
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
49
|
Alonso S, Bär M. Modeling domain formation of MARCKS and protein kinase C at cellular membranes. ACTA ACUST UNITED AC 2014. [DOI: 10.1140/epjnbp14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
|