1
|
Krakowczyk M, Bragoszewski P. Monitoring retro-translocation of proteins from the mitochondrial intermembrane space. Methods Enzymol 2024; 707:173-208. [PMID: 39488374 DOI: 10.1016/bs.mie.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria play multiple essential roles in eukaryotic cells. To perform their functions, mitochondria require an adequate supply of externally produced proteins and an intact two-membrane structure. The structure of mitochondrial membranes separates these organelles from their cytosolic environment, with proteins that make up the mitochondrial proteome either being embedded into or enveloped by these membranes. From the experimental point of view, the structural properties of mitochondria contribute to the relative ease of isolating these organelles from other cellular components. The ability to isolate intact mitochondria and analyze them in a well-controlled environment opens up the possibility of tracking any proteins that enter or escape the membrane-formed enclosure. This chapter discusses assays that monitor the movement of proteins out of mitochondria through intact membranes. These protocols provide insight into the mechanisms behind mitochondrial protein quality control. It was discovered that the retro-translocation of IMS proteins regulates the protein content of this specific sub-compartment of the organelle. Additionally, proteins can move out of the mitochondria to resolve failed import events. Assays based on isolated mitochondria precisely tackle such intricate 'dance' of proteins crossing mitochondrial membranes during import and export, maintaining the dynamics of the organellar proteome.
Collapse
Affiliation(s)
- Magda Krakowczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bragoszewski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Krakowczyk M, Lenkiewicz AM, Sitarz T, Malinska D, Borrero M, Mussulini BHM, Linke V, Szczepankiewicz AA, Biazik JM, Wydrych A, Nieznanska H, Serwa RA, Chacinska A, Bragoszewski P. OMA1 protease eliminates arrested protein import intermediates upon mitochondrial depolarization. J Cell Biol 2024; 223:e202306051. [PMID: 38530280 PMCID: PMC10964989 DOI: 10.1083/jcb.202306051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.
Collapse
Affiliation(s)
- Magda Krakowczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M. Lenkiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Sitarz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mayra Borrero
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Ben Hur Marins Mussulini
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Vanessa Linke
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna M. Biazik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- University of New South Wales, Sydney, Australia
| | - Agata Wydrych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Nieznanska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A. Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bragoszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Yoon Y, Lee H, Federico M, Sheu SS. Non-conventional mitochondrial permeability transition: Its regulation by mitochondrial dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148914. [PMID: 36063902 PMCID: PMC9729414 DOI: 10.1016/j.bbabio.2022.148914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This "non-conventional" MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.
Collapse
Affiliation(s)
- Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta 30912, GA, USA.
| | - Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta 30912, GA, USA
| | - Marilen Federico
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
pH Modulation in Adhesive Cells with a Protonic Biotransducer. Bioelectrochemistry 2022; 147:108202. [DOI: 10.1016/j.bioelechem.2022.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
|
5
|
Ascorbic acid in solid organ transplantation: a literature review. Clin Nutr 2022; 41:1244-1255. [DOI: 10.1016/j.clnu.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
|
6
|
Yoneda M, Aklima J, Ohsawa I, Ohta Y. Effects of proton pumping on the structural rigidity of cristae in mitochondria. Arch Biochem Biophys 2022; 720:109172. [PMID: 35276212 DOI: 10.1016/j.abb.2022.109172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria change their morphology and inner membrane structure depending on their activity. Since mitochondrial activity also depends on their structure, it is important to elucidate the interrelationship between the activity and structure of mitochondria. However, the mechanism by which mitochondrial activity affects the structure of cristae, the folded structure of the inner membrane, is not well understood. In this study, the effect of the mitochondrial activity on the cristae structure was investigated by examining the structural rigidity of cristae. Taking advantage of the fact that unfolding of cristae induces mitochondrial swelling, we investigated the relationship between mitochondrial activity and the susceptibility to swelling. The swelling of individual isolated mitochondria exposed to a hypotonic solution was observed with an optical microscope. The presence of respiratory substrates (malate and glutamate) increased the percentage of mitochondria that underwent swelling, and the further addition of rotenone or KCN (inhibitors of proton pumps) reversed the increase. In the absence of respiratory substrates, acidification of the buffer surrounding the mitochondria also increased the percentage of swollen mitochondria. These observations suggest that acidification of the outer surface of inner membranes, especially intracristal space, by proton translocation from the matrix to the intracristal space, decreases the structural rigidity of the cristae. This interpretation was verified by the observation that ADP or CCCP, which induces proton re-entry to the matrix, suppressed the mitochondrial swelling in the presence of respiratory substrates. The addition of CCCP to the cells induced a morphological change in mitochondria from an initial elongated structure to a largely curved structure at pH 7.4, but there were no morphological changes when the pH of the cytosol dropped to 6.2. These results suggest that a low pH in the intracristal space may be helpful in maintaining the elongated structure of mitochondria. The present study shows that proton pumping by the electron transfer chain is the mechanism underlying mitochondrial morphology and the flexibility of cristae structure.
Collapse
Affiliation(s)
- Mayu Yoneda
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Jannatul Aklima
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan; Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
7
|
Aklima J, Onojima T, Kimura S, Umiuchi K, Shibata T, Kuraoka Y, Oie Y, Suganuma Y, Ohta Y. Effects of Matrix pH on Spontaneous Transient Depolarization and Reactive Oxygen Species Production in Mitochondria. Front Cell Dev Biol 2021; 9:692776. [PMID: 34277637 PMCID: PMC8278022 DOI: 10.3389/fcell.2021.692776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) oxidize surrounding molecules and thus impair their functions. Since mitochondria are a major source of ROS, suppression of ROS overproduction in the mitochondria is important for cells. Spontaneous transient depolarization of individual mitochondria is a physiological phenomenon widely observed from plants to mammals. Mitochondrial uncoupling can reduce ROS production; therefore, it is conceivable that transient depolarization could reduce ROS production. However, transient depolarization has been observed with increased ROS production. Therefore, the exact contribution of transient depolarization to ROS production has not been elucidated. In this study, we examined how the spontaneous transient depolarization occurring in individual mitochondria affected ROS production. When the matrix pH increased after the addition of malate or exposure of the isolated mitochondria to a high-pH buffer, transient depolarization was stimulated. Similar stimulation by an increased matrix pH was also observed in the mitochondria in intact H9c2 cells. Modifying the mitochondrial membrane potential and matrix pH by adding K+ in the presence of valinomycin, a K+ ionophore, clarified that an increase in the matrix pH is a major cause of ROS generation. When we added ADP in the presence of oligomycin to suppress the transient depolarization without decreasing the matrix pH, we observed the suppression of mitochondrial respiration, increased matrix pH, and enhanced ROS production. Based on these results, we propose a model where spontaneous transient depolarization occurs during increased proton influx through proton channels opened by increased matrix pH, leading to the suppression of ROS production. This study improves our understanding of mitochondrial behavior.
Collapse
Affiliation(s)
- Jannatul Aklima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan.,Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Takumi Onojima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Sawako Kimura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kanji Umiuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Takahiro Shibata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yusho Kuraoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiki Oie
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiki Suganuma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshihiro Ohta
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
8
|
Shibata T, Yoneda M, Morikawa D, Ohta Y. Time-lapse imaging of Ca 2+-induced swelling and permeability transition: Single mitochondrion study. Arch Biochem Biophys 2019; 663:288-296. [PMID: 30659803 DOI: 10.1016/j.abb.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 11/26/2022]
Abstract
Mitochondrial functions are closely related to the membrane structure. Mitochondrial swelling, which is accompanied with dissipation of the crista structure and rupture of the outer membrane, have been observed as mitochondrial damage when mitochondria are under Ca2+-overload or oxidative stress. Although these phenomena have been well studied, the detailed behaviors of individual mitochondria upon swelling remain unknown. The aim of this study was to investigate the detailed behavior of mitochondrial volume upon addition of Ca2+. Here, we report for the first time, time-lapse measurements of single mitochondrion swelling and permeability transition induced by Ca2+ by optical microscopy. We added 220 μM Ca2+ to mitochondria, and found that 1) the swelling rate depended on the mitochondrion, 2) a small number of mitochondria showed step-like swelling, 3) cyclosporin A decreased the percentage of mitochondria that underwent swelling induced by Ca2+, but did not affect the amplitude of swelling, 4) permeability transition is necessary but not sufficient for Ca2+-induced swelling, 5) permeability transition is more sensitive to Ca2+ than swelling, 6) Ca2+ stimulated mitochondrial swelling after permeability transition. These results suggest that single mitochondrion measurement of swelling is a powerful tool for examining the regulation of mitochondrial structure.
Collapse
Affiliation(s)
- Takahiro Shibata
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Mayu Yoneda
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Daisuke Morikawa
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
9
|
Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Sci Rep 2018; 8:2993. [PMID: 29445117 PMCID: PMC5813116 DOI: 10.1038/s41598-018-21109-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
The importance of highly active mitochondria and their contribution to neuronal function has been of recent interest. In most cases, however, mitochondrial activity is estimated using measurements of mitochondrial inner membrane potential (IMPmito), and little is known about the dynamics of native mitochondrial ATP (ATPmito). This study conducted simultaneous imaging of IMPmito and ATPmito in neurons to explore their behaviour and their correlation during physiological mitochondrial/neuronal activity. We found that mitochondrial size, transport velocity and transport direction are not dependent on ATPmito or IMPmito. However, changes in ATPmito and IMPmito during mitochondrial fission/fusion were found; IMPmito depolarized via mitochondrial fission and hyperpolarized via fusion, and ATPmito levels increased after fusion. Because the density of mitochondria is higher in growth cones (GCs) than in axonal processes, integrated ATPmito signals (density × ATPmito) were higher in GCs. This integrated signal in GCs correlated with axonal elongation. However, while the averaged IMPmito was relatively hyperpolarized in GCs, there was no correlation between IMPmito in GCs and axonal elongation. A detailed time-course analysis performed to clarify the reason for these discrepancies showed that IMPmito and ATPmito levels did not always correlate accurately; rather, there were several correlation patterns that changed over time.
Collapse
|
10
|
Zand K, Pham TDA, Li J, Zhou W, Wallace DC, Burke PJ. Resistive flow sensing of vital mitochondria with nanoelectrodes. Mitochondrion 2017; 37:8-16. [PMID: 28655663 PMCID: PMC6377799 DOI: 10.1016/j.mito.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/23/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
We report label-free detection of single mitochondria with high sensitivity using nanoelectrodes. Measurements of the conductance of carbon nanotube transistors show discrete changes of conductance as individual mitochondria flow over the nanoelectrodes in a microfluidic channel. Altering the bioenergetic state of the mitochondria by adding metabolites to the flow buffer induces changes in the mitochondrial membrane potential detected by the nanoelectrodes. During the time when mitochondria are transiently passing over the nanoelectrodes, this (nano) technology is sensitive to fluctuations of the mitochondrial membrane potential with a resolution of 10mV with temporal resolution of order milliseconds. Fluorescence based assays (in ideal, photon shot noise limited setups) are shown to be an order of magnitude less sensitive than this nano-electronic measurement technology. This opens a new window into the dynamics of an organelle critical to cellular function and fate.
Collapse
Affiliation(s)
- Katayoun Zand
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Ted D A Pham
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, United States
| | - Jinfeng Li
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Weiwei Zhou
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Peter J Burke
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
11
|
Antibiotic Bactericidal Activity Is Countered by Maintaining pH Homeostasis in Mycobacterium smegmatis. mSphere 2016; 1:mSphere00176-16. [PMID: 27579369 PMCID: PMC4999920 DOI: 10.1128/msphere.00176-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022] Open
Abstract
Since the discovery of antibiotics, mortality due to bacterial infection has decreased dramatically. However, infections from difficult to treat bacteria such as Mycobacterium tuberculosis and multidrug-resistant pathogens have been on the rise. An understanding of the cascade of events that leads to cell death downstream of specific drug-target interactions is not well understood. We have discovered that killing by several classes of antibiotics was stopped by maintaining pH balance within the bacterial cell, consistent with a shared mechanism of antibiotic killing. Our findings suggest a mechanism of antibiotic killing that stems from the antibiotic’s ability to increase the pH within bacterial cells by disrupting proton entry without affecting proton pumping out of cells. Knowledge of the core mechanism necessary for antibiotic killing could have a significant impact on the development of new lethal antibiotics and for the treatment of recalcitrant and drug-resistant pathogens. Antibiotics target specific biosynthetic processes essential for bacterial growth. It is intriguing that several commonalities connect the bactericidal activity of seemingly disparate antibiotics, such as the numerous conditions that confer broad-spectrum antibiotic tolerance. Whether antibiotics kill in a manner unique to their specific targets or by a universal mechanism is a critical and contested subject. Herein, we demonstrate that the bactericidal activity of diverse antibiotics against Mycobacterium smegmatis and four evolutionarily divergent bacterial pathogens was blocked by conditions that worked to maintain intracellular pH homeostasis. Single-cell pH analysis demonstrated that antibiotics increased the cytosolic pH of M. smegmatis, while conditions that promoted proton entry into the cytosol prevented intracellular alkalization and antibiotic killing. These findings led to a hypothesis that posits antibiotic lethality occurs when antibiotics obstruct ATP-consuming biosynthetic processes while metabolically driven proton efflux is sustained despite the loss of proton influx via ATP synthase. Consequently, without a concomitant reduction in respiratory proton efflux, cell death occurs due to intracellular alkalization. Our findings indicate the effects of antibiotics on pH homeostasis should be considered a potential mechanism contributing to antibiotic lethality. IMPORTANCE Since the discovery of antibiotics, mortality due to bacterial infection has decreased dramatically. However, infections from difficult to treat bacteria such as Mycobacterium tuberculosis and multidrug-resistant pathogens have been on the rise. An understanding of the cascade of events that leads to cell death downstream of specific drug-target interactions is not well understood. We have discovered that killing by several classes of antibiotics was stopped by maintaining pH balance within the bacterial cell, consistent with a shared mechanism of antibiotic killing. Our findings suggest a mechanism of antibiotic killing that stems from the antibiotic’s ability to increase the pH within bacterial cells by disrupting proton entry without affecting proton pumping out of cells. Knowledge of the core mechanism necessary for antibiotic killing could have a significant impact on the development of new lethal antibiotics and for the treatment of recalcitrant and drug-resistant pathogens.
Collapse
|
12
|
Shaghaghi H, Kadlecek S, Siddiqui S, Pourfathi M, Hamedani H, Clapp J, Profka H, Rizi R. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance. Free Radic Biol Med 2015; 89:62-71. [PMID: 26165188 DOI: 10.1016/j.freeradbiomed.2015.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/19/2015] [Accepted: 06/28/2015] [Indexed: 01/10/2023]
Abstract
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes.
Collapse
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Li Y, Honda S, Iwami K, Ohta Y, Umeda N. Analysis of mitochondrial mechanical dynamics using a confocal fluorescence microscope with a bent optical fibre. J Microsc 2015; 260:140-51. [PMID: 26249642 DOI: 10.1111/jmi.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
The cells in the cardiovascular system are constantly subjected to mechanical forces created by blood flow and the beating heart. The effect of forces on cells has been extensively investigated, but their effect on cellular organelles such as mitochondria remains unclear. We examined the impact of nano-Newton forces on mitochondria using a bent optical fibre (BOF) with a flat-ended tip (diameter exceeding 2 μm) and a confocal fluorescence microscope. By indenting a single mitochondrion with the BOF tip, we found that the mitochondrial elastic modulus was proportional to the (-1/2) power of the mitochondrial radius in the 9.6-115 kPa range. We stained the mitochondria with a potential-metric dye (TMRE) and measured the changes in TMRE fluorescence intensity. We confirmed that more active mitochondria exhibit a higher frequency of repetitive transient depolarization. The same trend was observed at forces lower than 50 nN. We further showed that the depolarization frequency of mitochondria decreases under an extremely large force (nearly 100 nN). We conclude that mitochondrial function is affected by physical environmental factors, such as external forces at the nano-Newton level.
Collapse
Affiliation(s)
- Yongbo Li
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Satoshi Honda
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Iwami
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshihiro Ohta
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Norihiro Umeda
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
14
|
Haseda K, Kanematsu K, Noguchi K, Saito H, Umeda N, Ohta Y. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study. BIOMEDICAL OPTICS EXPRESS 2015; 6:859-69. [PMID: 25798310 PMCID: PMC4361440 DOI: 10.1364/boe.6.000859] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 05/20/2023]
Abstract
Measurements of refractive indices (RIs) of intracellular components can provide useful information on the structure and function of cells. The present study reports, for the first time, determination of the RI of an isolated mitochondrion in isotonic solution using retardation-modulated differential interference contrast microscopy. The value was 1.41 ± 0.01, indicating that mitochondria are densely packed with molecules having high RIs. Further, the RIs of each mitochondrion were significantly correlated with the mitochondrial membrane potential, an index of mitochondrial activity. These results will provide useful information on the structures and functions of cells based on the intracellular distribution of RIs.
Collapse
Affiliation(s)
- Keisuke Haseda
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Keita Kanematsu
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Hiromu Saito
- Division of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588,
Japan
| | - Norihiro Umeda
- Division of Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| |
Collapse
|
15
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|
16
|
Lee H, Yoon Y. Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein. J Biol Chem 2014; 289:11862-11872. [PMID: 24627489 DOI: 10.1074/jbc.m113.533299] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dynamin-related membrane remodeling proteins regulate mitochondrial morphology by mediating fission and fusion. Although mitochondrial morphology is considered an important factor in maintaining mitochondrial function, a direct mechanistic link between mitochondrial morphology and function has not been defined. We report here a previously unrecognized cellular process of transient contraction of the mitochondrial matrix. Importantly, we found that this transient morphological contraction of mitochondria is accompanied by a reversible loss or decrease of inner membrane potential. Fission deficiency greatly amplified this phenomenon, which functionally exhibited an increase of inner membrane proton leak. We found that electron transport activity is necessary for the morphological contraction of mitochondria. Furthermore, we discovered that silencing the inner membrane-associated dynamin optic atrophy 1 (OPA1) in fission deficiency prevented mitochondrial depolarization and decreased proton leak without blocking mitochondrial contraction, indicating that OPA1 is a factor in coupling matrix contraction to mitochondrial depolarization. Our findings show that transient matrix contraction is a novel cellular mechanism regulating mitochondrial activity through the function of the inner membrane dynamin OPA1.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912.
| |
Collapse
|
17
|
Morikawa D, Kanematsu K, Shibata T, Haseda K, Umeda N, Ohta Y. Detection of swelling of single isolated mitochondrion with optical microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:848-57. [PMID: 24688818 PMCID: PMC3959835 DOI: 10.1364/boe.5.000848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/13/2014] [Accepted: 02/14/2014] [Indexed: 05/29/2023]
Abstract
Volume regulation under osmotic loading is one of the most fundamental functions in cells and organelles. However, the effective method to detect volume changes of a single organelle has not been developed. Here, we present a novel technique for detecting volume changes of a single isolated mitochondrion in aqueous solution based on the transmittance of the light through the mitochondrion. We found that 70% and 21% of mitochondria swelled upon addition of a hypotonic solution and Ca(2+), respectively. These results show the potential of the present technique to detect the physiological volume changes of individual small organelles such as mitochondria.
Collapse
Affiliation(s)
- Daisuke Morikawa
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Keita Kanematsu
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Takahiro Shibata
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Keisuke Haseda
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Norihiro Umeda
- Division of Mechanical System Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Zand K, Pham T, Davila A, Wallace DC, Burke PJ. Nanofluidic platform for single mitochondria analysis using fluorescence microscopy. Anal Chem 2013; 85:6018-25. [PMID: 23678849 DOI: 10.1021/ac4010088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using nanofluidic channels in PDMS of cross section 500 nm × 2 μm, we demonstrate the trapping and interrogation of individual, isolated mitochondria. Fluorescence labeling demonstrates the immobilization of mitochondria at discrete locations along the channel. Interrogation of mitochondrial membrane potential with different potential sensitive dyes (JC-1 and TMRM) indicates the trapped mitochondria are vital in the respiration buffer. Fluctuations of the membrane potential can be observed at the single mitochondrial level. A variety of chemical challenges can be delivered to each individual mitochondrion in the nanofluidic system. As sample demonstrations, increases in the membrane potential are seen upon introduction of OXPHOS substrates into the nanofluidic channel. Introduction of Ca(2+) into the nanochannels induces mitochondrial membrane permeabilization (MMP), leading to depolarization, observed at the single mitochondrial level. A variety of applications in cancer biology, stem cell biology, apoptosis studies, and high throughput functional metabolomics studies can be envisioned using this technology.
Collapse
Affiliation(s)
- Katayoun Zand
- Integrated Nanosystem Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, California, USA
| | | | | | | | | |
Collapse
|
19
|
OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J 2013; 32:1927-40. [PMID: 23714779 PMCID: PMC3981180 DOI: 10.1038/emboj.2013.124] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
The chemical nature and functional significance of mitochondrial flashes associated with fluctuations in mitochondrial membrane potential is unclear. Using a ratiometric pH probe insensitive to superoxide, we show that flashes reflect matrix alkalinization transients of ∼0.4 pH units that persist in cells permeabilized in ion-free solutions and can be evoked by imposed mitochondrial depolarization. Ablation of the pro-fusion protein Optic atrophy 1 specifically abrogated pH flashes and reduced the propagation of matrix photoactivated GFP (paGFP). Ablation or invalidation of the pro-fission Dynamin-related protein 1 greatly enhanced flash propagation between contiguous mitochondria but marginally increased paGFP matrix diffusion, indicating that flashes propagate without matrix content exchange. The pH flashes were associated with synchronous depolarization and hyperpolarization events that promoted the membrane potential equilibration of juxtaposed mitochondria. We propose that flashes are energy conservation events triggered by the opening of a fusion pore between two contiguous mitochondria of different membrane potentials, propagating without matrix fusion to equilibrate the energetic state of connected mitochondria. Mitochondrial fusion events and transient changes in matrix pH linked to membrane depolarization are found to underlie mitochondrial flashes, whose propagation may help equilibrate energy states between connected mitochondria.
Collapse
|
20
|
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. ACTA ACUST UNITED AC 2013; 139:415-23. [PMID: 22641636 PMCID: PMC3362525 DOI: 10.1085/jgp.201110767] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
21
|
Kakita M, Kaliaperumal V, Hamaguchi HO. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro. JOURNAL OF BIOPHOTONICS 2012; 5:20-24. [PMID: 22076935 DOI: 10.1002/jbio.201100087] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 05/31/2023]
Abstract
We observe the redox state changes with respiration of cytochromes b and c in mitochondria in a living Saccharomyces cerevisiae cell as well as in isolated mitochondria with the very use of Raman microspectroscopy. The possibility of monitoring the respiration activity of mitochondria in vivo and in vitro by Raman microspectroscopic quantification of the cytochrome redox states is suggested. It will lead to a new means to assess mitochondrial respiration activity in vivo and in vitro without using any labelling or genetic manipulation.
Collapse
Affiliation(s)
- Minoru Kakita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Toyo 113-0033, Japan
| | | | | |
Collapse
|
22
|
Azarias G, Chatton JY. Selective ion changes during spontaneous mitochondrial transients in intact astrocytes. PLoS One 2011; 6:e28505. [PMID: 22145050 PMCID: PMC3228761 DOI: 10.1371/journal.pone.0028505] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 01/11/2023] Open
Abstract
The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na+ concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na+ concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca2+ concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg2+ concentration accompanying mitochondrial Na+ spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na+-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.
Collapse
Affiliation(s)
- Guillaume Azarias
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
- Cellular Imaging Facility, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Interference Microscopy in Cell Biophysics. 2. Visualization of Individual Cells and Energy-Transducing Organelles. Cell Biochem Biophys 2010; 58:117-28. [DOI: 10.1007/s12013-010-9115-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Mitochondrial chloride channels - What are they for? FEBS Lett 2010; 584:2085-92. [DOI: 10.1016/j.febslet.2010.01.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 11/21/2022]
|
25
|
Perdomo G, Hernández JA. Minimal models of electric potential oscillations in non-excitable membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:277-87. [PMID: 19763561 DOI: 10.1007/s00249-009-0537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/21/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
Sustained oscillations in the membrane potential have been observed in a variety of cellular and subcellular systems, including several types of non-excitable cells and mitochondria. For the plasma membrane, these electrical oscillations have frequently been related to oscillations in intracellular calcium. For the inner mitochondrial membrane, in several cases the electrical oscillations have been attributed to modifications in calcium dynamics. As an alternative, some authors have suggested that the sustained oscillations in the mitochondrial membrane potential induced by some metabolic intermediates depends on the direct effect of internal protons on proton conductance. Most theoretical models developed to interpret oscillations in the membrane potential integrate several transport and biochemical processes. Here we evaluate whether three simple dynamic models may constitute plausible representations of electric oscillations in non-excitable membranes. The basic mechanism considered in the derivation of the models is based upon evidence obtained by Hattori et al. for mitochondria and assumes that an ionic species (i.e., the proton) is transported via passive and active transport systems between an external and an internal compartment and that the ion affects the kinetic properties of transport by feedback regulation. The membrane potential is incorporated via its effects on kinetic properties. The dynamic properties of two of the models enable us to conclude that they may represent alternatives enabling description of the generation of electrical oscillations in membranes that depend on the transport of a single ionic species.
Collapse
Affiliation(s)
- Guillermo Perdomo
- Sección Biofísica, Facultad de Ciencias, Universidad de la República, Iguá esq. Mataojo, 11400, Montevideo, Uruguay
| | | |
Collapse
|
26
|
Tychinsky V. The metabolic component of cellular refractivity and its importance for optical cytometry. JOURNAL OF BIOPHOTONICS 2009; 2:494-504. [PMID: 19644930 DOI: 10.1002/jbio.200910042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Initially, it has been shown that the phase thickness and refractivity (the latter interpreted as the difference of the refractivity indices of an object and surrounding medium) depend on the functional state of mitochondria. The refractivity of various objects decreased in response to energy depletion. This dependence was then demonstrated for other biological objects such as cyanobacteria, chloroplasts and human cells. This general response brought about the hypothesis of a certain "universal" factor that links the variable (or metabolic) component of refractivity with the object's functional state. However, the origin of this phenomenon remains unknown. Our hypothesis is founded on the dependence of polarization of bound water molecules and the activity of metabolic processes. Here, we show the results of measurements of metabolic component of refractivity different bio-objects (mitochondria, chloroplasts, spores, cancer cells) obtained using the Coherent Phase Microscope "Airyscan". Estimations indicated high (up to n approximately = 1.41-1.45) values for the equivalent refractive index of structured water in cells.
Collapse
Affiliation(s)
- V Tychinsky
- Moscow State Institute for Radioengineering, Electronics and Automation, prosp. Vernadskogo 78, 119454 Moscow, Russia.
| |
Collapse
|
27
|
Mitochondrial dynamics in heart cells: Very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr 2009; 41:195-214. [DOI: 10.1007/s10863-009-9214-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/18/2009] [Indexed: 01/21/2023]
|
28
|
Tazawa H, Fujita C, Machida K, Osada H, Ohta Y. Involvement of cyclophilin D in mitochondrial permeability transition induction in intact cells. Arch Biochem Biophys 2009; 481:59-64. [PMID: 18996353 DOI: 10.1016/j.abb.2008.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 11/28/2022]
Abstract
The mitochondrial permeability transition (MPT) is involved in both Ca(2+) signaling and cell death. The present study aimed to clarify the involvement of cyclophilin D, a peptidyl prolyl cis-trans isomerase (PPIase), in MPT induction in intact cells. To achieve this, we used C6 cells overexpressing wild-type or PPIase-deficient cyclophilin D, and measured the inner mitochondrial membrane permeability to calcein, a 623-Da hydrophilic fluorescent molecule, to evaluate MPT induction. In vector control cells, the percentage of MPT induction by ionomycin increased as the Ca(2+) concentration in the extracellular medium increased. This result indicates that the present method is valid for numerical evaluation of MPT induction. In C6 cells expressing the PPIase-deficient mutant, the percentage of MPT induction was significantly decreased compared with wild-type CypD-overexpressing cells or vector control cells. These results suggest that cyclophilin D is involved in MPT induction by Ca(2+) in intact cells.
Collapse
Affiliation(s)
- Hidejiro Tazawa
- Division of Biotechnology and Life Science, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, Japan
| | | | | | | | | |
Collapse
|
29
|
Yaguzhinsky LS, Vyshenskaya TV, Kretushev AV, Tychinsky VP. Identification of two discrete states of energized mitochondria: Experiments on single mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2008. [DOI: 10.1134/s1990747808020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
|
31
|
Abstract
Mitochondria are central for various cellular processes that include ATP production, intracellular Ca(2+) signaling, and generation of reactive oxygen species. Neurons critically depend on mitochondrial function to establish membrane excitability and to execute the complex processes of neurotransmission and plasticity. While much information about mitochondrial properties is available from studies on isolated mitochondria and dissociated cell cultures, less is known about mitochondrial function in intact neurons in brain tissue. However, a detailed description of the interactions between mitochondrial function, energy metabolism, and neuronal activity is crucial for the understanding of the complex physiological behavior of neurons, as well as the pathophysiology of various neurological diseases. The combination of new fluorescence imaging techniques, electrophysiology, and brain slice preparations provides a powerful tool to study mitochondrial function during neuronal activity, with high spatiotemporal resolution. This review summarizes recent findings on mitochondrial Ca(2+) transport, mitochondrial membrane potential (DeltaPsi(m)), and energy metabolism during neuronal activity. We will first discuss interactions of these parameters for experimental stimulation conditions that can be related to the physiological range. We will then describe how mitochondrial and metabolic dysfunction develops during pathological neuronal activity, focusing on temporal lobe epilepsy and its experimental models. The aim is to illustrate that 1) the structure of the mitochondrial compartment is highly dynamic in neurons, 2) there is a fine-tuned coupling between neuronal activity and mitochondrial function, and 3) mitochondria are of central importance for the complex behavior of neurons.
Collapse
Affiliation(s)
- Oliver Kann
- Institut für Neurophysiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | |
Collapse
|
32
|
Weiss JN, Yang L, Qu Z. Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Network perspectives of cardiovascular metabolism. J Lipid Res 2006; 47:2355-66. [PMID: 16946414 DOI: 10.1194/jlr.r600023-jlr200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this review, we examine cardiovascular metabolism from three different, but highly complementary, perspectives. First, from the abstract perspective of a metabolite network, composed of nodes and links. We present fundamental concepts in network theory, including emergence, to illustrate how nature has designed metabolism with a hierarchal modular scale-free topology to provide a robust system of energy delivery. Second, from the physical perspective of a modular spatially compartmentalized network. We review evidence that cardiovascular metabolism is functionally compartmentalized, such that oxidative phosphorylation, glycolysis, and glycogenolysis preferentially channel ATP to ATPases in different cellular compartments, using creatine kinase and adenylate kinase to maximize efficient energy delivery. Third, from the dynamics perspective, as a network of dynamically interactive metabolic modules capable of self-oscillation. Whereas normally, cardiac metabolism exists in a regime in which excitation-metabolism coupling closely matches energy supply and demand, we describe how under stressful conditions, the network can be pushed into a qualitatively new dynamic regime, manifested as cell-wide oscillations in ATP levels, in which the coordination between energy supply and demand is lost. We speculate how this state of "metabolic fibrillation" leads to cell death if not corrected and discuss the implications for cardioprotection.
Collapse
Affiliation(s)
- James N Weiss
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
33
|
Uechi Y, Yoshioka H, Morikawa D, Ohta Y. Stability of membrane potential in heart mitochondria: single mitochondrion imaging. Biochem Biophys Res Commun 2006; 344:1094-101. [PMID: 16647039 DOI: 10.1016/j.bbrc.2006.03.233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
Mitochondrial membrane potential (delta psi(m)) plays an important role in cellular activity. Although delta psi(m) of intracellular mitochondria are relatively stable, the recent experiments with isolated mitochondria demonstrate that individual mitochondria show frequent fluctuations of delta psi(m). The current study is performed to investigate the factors that stabilize delta psi(m) in cells by observing delta psi(m) of individual isolated mitochondria with fluorescence microscopy. Here, we report that (1) the transient depolarizations are also induced for mitochondria in plasma membrane permeabilized cells, (2) almost all mitochondria isolated from porcine hearts show the transient depolarizations that is enhanced with the net efflux of protons from the matrix to the intermembrane space, and (3) ATP and ADP significantly inhibit the transient depolarizations by plural mechanisms. These results suggest that the suppression of acute alkalinization of the matrix together with the presence of ATP and ADP contributes to the stabilization of delta psi(m) in cells.
Collapse
Affiliation(s)
- Yukiko Uechi
- Division of Biotechnology and Life Science, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan
| | | | | | | |
Collapse
|
34
|
Vergun O, Reynolds IJ. Distinct characteristics of Ca(2+)-induced depolarization of isolated brain and liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:127-37. [PMID: 16112074 DOI: 10.1016/j.bbabio.2005.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 07/15/2005] [Accepted: 07/25/2005] [Indexed: 11/24/2022]
Abstract
Ca(2+)-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca(2+) concentrations (about 30--100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca(2+); 20 microm Ca(2+) was required to depolarize liver mitochondria. Ca(2+) did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca(2+)-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.
Collapse
Affiliation(s)
- Olga Vergun
- Department of Pharmacology, University of Pittsburgh, W1351 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
35
|
Higuchi Y, Miura T, Kajimoto T, Ohta Y. Effects of disialoganglioside GD3 on the mitochondrial membrane potential. FEBS Lett 2005; 579:3009-13. [PMID: 15896784 DOI: 10.1016/j.febslet.2005.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Revised: 04/18/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
GD3 is an intracellular mediator of apoptotic signaling. Although GD3 is known to directly act on mitochondria, the dynamic responses of individual mitochondria to GD3 remain to be elucidated. In the current study, the membrane potential of single mitochondria is observed in the presence of GD3 or its analogues. Here, we report that (1) GD3 specifically induces gradual depolarizations of the inner membrane by a mechanism that differs from the permeability transition, and (2) the GD3-induced depolarizations are suppressed by cyclosporin A. These results suggest that GD3 depolarizes mitochondria by a mechanism distinct from but relevant to the permeability transition.
Collapse
Affiliation(s)
- Yu Higuchi
- Division of Biotechnology and Life Science, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan
| | | | | | | |
Collapse
|