1
|
Catapano C, Dietz MS, Kompa J, Jang S, Freund P, Johnsson K, Heilemann M. Long-Term Single-Molecule Tracking in Living Cells using Weak-Affinity Protein Labeling. Angew Chem Int Ed Engl 2025; 64:e202413117. [PMID: 39545345 DOI: 10.1002/anie.202413117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Single-particle tracking (SPT) has become a powerful tool to monitor the dynamics of membrane proteins in living cells. However, permanent labeling strategies for SPT suffer from photobleaching as a major limitation, restricting observation times, and obstructing the study of long-term cellular processes within single living cells. Here, we use exchangeable HaloTag Ligands (xHTLs) as an easy-to-apply labeling approach for live-cell SPT and demonstrate extended observation times of individual living cells of up to 30 minutes. Using the xHTL/HaloTag7 labeling system, we measure the ligand-induced activation kinetics of the epidermal growth factor receptor (EGFR) in single living cells. We generate spatial maps of receptor diffusion in cells, report non-uniform distributions of receptor mobility, and the formation of spatially confined 'hot spots' of EGFR activation. Furthermore, we measured the mobility of an ER-luminal protein in living cells and found diffusion coefficients that correlated with the ER nano-structure. This approach represents a general strategy to monitor protein mobility in a functional context and for extended observation times in single living cells.
Collapse
Affiliation(s)
- Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Julian Kompa
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Soohyen Jang
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Petra Freund
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
2
|
Ruzzi F, Cappello C, Semprini MS, Scalambra L, Angelicola S, Pittino OM, Landuzzi L, Palladini A, Nanni P, Lollini PL. Lipid rafts, caveolae, and epidermal growth factor receptor family: friends or foes? Cell Commun Signal 2024; 22:489. [PMID: 39394159 PMCID: PMC11468060 DOI: 10.1186/s12964-024-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
Lipid rafts are dynamic microdomains enriched with cholesterol and sphingolipids that play critical roles in cellular processes by organizing and concentrating specific proteins involved in signal transduction. The interplay between lipid rafts, raft-associated caveolae and the human epidermal growth factor receptors has significant implications in cancer biology, particularly in breast and gastric cancer therapy resistance. This review examines the structural and functional characteristics of lipid rafts, their involvement in EGFR and HER2 signaling, and the impact of lipid rafts/CXCL12/CXCR4/HER2 axis on bone metastasis. We also discuss the potential of targeting lipid rafts and caveolin-1 to enhance therapeutic strategies against HER2-positive cancers and the impact of co-localization of trastuzumab or antibody drug conjugates with caveolin-1 on therapy response. Emerging evidence suggests that disrupting lipid raft integrity or silencing caveolin-1, through several strategies including cholesterol-lowering molecules, can influence HER2 availability and internalization, enhancing anti-HER2 targeted therapy and offering a novel approach to counteract drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Chiara Cappello
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, 40138, Italy
| | - Olga Maria Pittino
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, 27100, Italy
- Unità Operativa di Oncologia, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy.
- IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, 40138, Italy.
| |
Collapse
|
3
|
Schultz DF, Davies BA, Payne JA, Martin CP, Minard AY, Childs BG, Zhang C, Jeganathan KB, Sturmlechner I, White TA, de Bruin A, Harkema L, Chen H, Davies MA, Jachim S, LeBrasseur NK, Piper RC, Li H, Baker DJ, van Deursen J, Billadeau DD, Katzmann DJ. Loss of HD-PTP function results in lipodystrophy, defective cellular signaling and altered lipid homeostasis. J Cell Sci 2024; 137:jcs262032. [PMID: 39155850 PMCID: PMC11449442 DOI: 10.1242/jcs.262032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.
Collapse
Affiliation(s)
- Destiny F Schultz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Immunology Graduate Program, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cole P Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Bennett G Childs
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Huiqin Chen
- Department of Biostatistics, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sarah Jachim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
4
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Rivera Ortiz H, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. Cell Rep 2024; 43:113603. [PMID: 38117650 PMCID: PMC10835193 DOI: 10.1016/j.celrep.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| | - Eric A Burns
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - David J Schodt
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Lucy W Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Emma M Mangiacapre
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Irais Ortiz-Caraveo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hector Rivera Ortiz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Chun Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
5
|
Weisgerber AW, Otruba Z, Knowles MK. Syntaxin clusters and cholesterol affect the mobility of Syntaxin1a. Biophys J 2024:S0006-3495(24)00028-6. [PMID: 38221759 DOI: 10.1016/j.bpj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
Syntaxin1a (Syx1a) is essential for stimulated exocytosis in neuroendocrine cells. The vesicle docking process involves the formation of nanoscale Syx1a domains on the plasma membrane and the Syx1a clusters disintegrate during the fusion process. Syx1a nanodomains are static yet Syx1a molecules dynamically enter and leave the domains; the process by which these clusters maintain this balance is unclear. In this work, the dynamics of the Syx1a molecules is elucidated relative to the cluster position through a labeling strategy that allows both the bulk position of the Syx clusters to be visualized concurrent with the trajectories of single Syx1a molecules on the surface of PC12 cells. Single Syx1a molecules were tracked in time relative to cluster positions to decipher how Syx1a moves within a cluster and when clusters are not present. Syx1a is mobile on the plasma membrane, more mobile at the center of clusters, and less mobile near the edges of clusters; this depends on the presence of the N-terminal Habc domain and cholesterol, which are essential for proper exocytosis. Simulations of the dynamics observed at clusters support a model where clusters are maintained by a large cage (r = 100 nm) within which Syx1a remains highly mobile within the cluster (r = 50 nm). The depletion of cholesterol dramatically reduces the mobility of Syx1a within clusters and less so over the rest of the plasma membrane. This suggests that fluidity of Syx1a supramolecular clusters is needed for function.
Collapse
Affiliation(s)
- Alan W Weisgerber
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Zdeněk Otruba
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
6
|
Brown EL, Shmuel S, Mandleywala K, Panikar SS, Berry NK, Rao Y, Zidel A, Lewis JS, Pereira PMR. Immuno-PET Detects Antibody-Drug Potency on Coadministration with Statins. J Nucl Med 2023; 64:1638-1646. [PMID: 37385676 PMCID: PMC10586480 DOI: 10.2967/jnumed.122.265172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
The human epidermal growth factor receptor 2 (HER2)-targeting trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) are antibody-drug conjugates (ADC) clinically used to treat HER2-positive breast cancer, with the latter receiving clinical approval in 2021 for HER2-positive gastric cancer. Lovastatin, a cholesterol-lowering drug, temporally elevates cell-surface HER2 in ways that enhance HER2-ADC binding and internalization. Methods: In an NCIN87 gastric xenograft model and a gastric patient-derived xenograft model, we used the 89Zr-labeled or 64Cu-labeled anti-HER2 antibody trastuzumab to investigate the dosing regimen of ADC therapy with and without coadministration of lovastatin. We compared the ADC efficacy of a multiple-dose ADC regime, which replicates the clinical dose regimen standard, with a single-dose regime. Results: T-DM1/lovastatin treatment inhibited tumor growth, regardless of multiple- or single-dose T-DM1 administration. Coadministration of lovastatin with T-DM1 or T-DXd as a single dose enhanced tumor growth inhibition, which was accompanied by a decrease in signal on HER2-targeted immuno-PET and a decrease in HER2-mediated signaling at the cellular level. DNA damage signaling was increased on ADC treatment in vitro. Conclusion: Our data from a gastric cancer xenograft show the utility of HER2-targeted immuno-PET to inform the tumor response to ADC therapies in combination with modulators of cell-surface target availability. Our studies also demonstrate that statins enhance ADC efficacy in both a cell-line and a patient-derived xenograft model in ways that enable a single-dose administration of the ADC.
Collapse
Affiliation(s)
- Emma L Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Na-Keysha Berry
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Yi Rao
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abbey Zidel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York; and
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrícia M R Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
7
|
Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol 2023; 13:1258371. [PMID: 37752992 PMCID: PMC10518470 DOI: 10.3389/fonc.2023.1258371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Spontaneous dimerization of EGF receptors (EGFR) and dysregulation of EGFR signaling has been associated with the development of different cancers. Under normal physiological conditions and to maintain homeostatic cell growth, once EGFR signaling occurs, it needs to be attenuated. Activated EGFRs are rapidly internalized, sorted through early endosomes, and ultimately degraded in lysosomes by a process generally known as receptor down-regulation. Through alterations to EGFR trafficking, tumors develop resistance to current treatment strategies, thus highlighting the necessity for combination treatment strategies that target EGFR trafficking. This review covers EGFR structure, trafficking, and altered surface expression of EGFR receptors in cancer, with a focus on how therapy targeting EGFR trafficking may aid tyrosine kinase inhibitor treatment of cancer.
Collapse
Affiliation(s)
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Sugiyama MG, Brown AI, Vega-Lugo J, Borges JP, Scott AM, Jaqaman K, Fairn GD, Antonescu CN. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling. Nat Commun 2023; 14:2681. [PMID: 37160944 PMCID: PMC10170156 DOI: 10.1038/s41467-023-38390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jazlyn P Borges
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, VIC, Australia
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
9
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Ortiz HR, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536273. [PMID: 37090557 PMCID: PMC10120646 DOI: 10.1101/2023.04.10.536273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) with important roles in many cellular processes as well as cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. However, it is not clear how these dimers relate to higher-order EGFR oligomers detected at the cell surface. We used single-particle tracking (SPT) and Förster resonance energy transfer (FRET) imaging to examine how each domain within EGFR contributes to receptor dimerization and the rate of its diffusion in the cell membrane. We show that the EGFR extracellular region is sufficient to drive receptor dimerization, but that the EGF-induced EGFR slow-down seen by SPT requires formation of higher order oligomers, mediated in part by the intracellular tyrosine kinase domain - but only when in its active conformation. Our data thus provide important insight into higher-order EGFR interactions required for EGF signaling.
Collapse
|
10
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
A Novel Mechanism Underlying the Inhibitory Effects of Trastuzumab on the Growth of HER2-Positive Breast Cancer Cells. Cells 2022; 11:cells11244093. [PMID: 36552857 PMCID: PMC9777316 DOI: 10.3390/cells11244093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
To improve the efficacy of trastuzumab, it is essential to understand its mechanism of action. One of the significant issues that makes it difficult to determine the precise mechanism of trastuzumab action is the formation of various HER receptor dimers in HER2-positive breast cancer cells. So far, studies have focused on the role of HER2-HER3 heterodimers, and little is known regarding EGFR-HER2 heterodimers. Here, we study the role of trastuzumab on the cell signaling and cell proliferation mediated by EGFR-HER2 heterodimers in BT474 and SRBR3 cells. EGF stimulates the formation of both EGFR homodimer and EGFR-HER2 heterodimer. Trastuzumab only binds to HER2, not EGFR. Therefore, any effects of trastuzumab on EGF-induced activation of EGFR, HER2, and downstream signaling proteins, as well as cell proliferation, are through its effects on EGFR-HER2 heterodimers. We show that trastuzumab inhibits EGF-induced cell proliferation and cell cycle progression in BT474 and SKBR3 cells. Interestingly trastuzumab strongly inhibits EGF-induced Akt phosphorylation and slightly inhibits EGF-induced Erk activation, in both BT474 and SKBR3 cells. These data suggest the presence of a novel mechanism that allows trastuzumab to inhibit EGR-induced Akt activation and cell proliferation, without blocking EGF-induced EGFR-HER2 heterodimerization and activation. We show that trastuzumab inhibits EGF-induced lipid raft localization of the EGFR-HER2 heterodimer. Disruption of the lipid raft with MβCD blocks HER2-mediated AKT activation in a similar way to trastuzumab. MβCD and trastuzumab synergically inhibit AKT activation. We conclude that trastuzumab inhibits EGF-induced lipid raft localization of EGFR-HER2 heterodimer, which leads to the inhibition of Akt phosphorylation and cell proliferation, without blocking the formation and phosphorylation of the EGFR-HER2 heterodimer.
Collapse
|
12
|
Westra M, MacGillavry HD. Precise Detection and Visualization of Nanoscale Temporal Confinement in Single-Molecule Tracking Analysis. MEMBRANES 2022; 12:membranes12070650. [PMID: 35877853 PMCID: PMC9320997 DOI: 10.3390/membranes12070650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
The plasma membrane consists of a diverse mixture of molecules that dynamically assemble into a highly non-random organization. The formation of nanoscale domains in the membrane is of particular interest as these domains underlie critical cellular functions. Single-molecule tracking is a powerful method to detect and quantify molecular motion at high temporal and spatial resolution and has therefore been instrumental in understanding mechanisms that underlie membrane organization. In single-molecule trajectories, regions of temporal confinement can be determined that might reveal interesting biophysical interactions important for domain formation. However, analytical methods for the detection of temporal confinement in single-molecule trajectories depend on a variety of parameters that heavily depend on experimental factors and the influence of these factors on the performance of confinement detection are not well understood. Here, we present elaborate confinement analyses on simulated random walks and trajectories that display transient confined behavior to optimize the parameters for different experimental conditions. Furthermore, we demonstrate a heatmap visualization tool that allows spatial mapping of confinement hotspots relative to subcellular markers. Using these optimized tools, we reliably detected subdiffusive behavior of different membrane components and observed differences in the confinement behavior of two types of glutamate receptors in neurons. This study will help in further understanding the dynamic behavior of the complex membrane and its role in cellular functioning.
Collapse
|
13
|
Nandan A, Das A, Lott R, Koseska A. Cells use molecular working memory to navigate inchanging chemoattractant fields. eLife 2022; 11:76825. [PMID: 35666122 PMCID: PMC9282860 DOI: 10.7554/elife.76825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
In order to migrate over large distances, cells within tissues and organisms rely on sensing local gradient cues which are irregular, conflicting, and changing over time and space. The mechanism how they generate persistent directional migration when signals are disrupted, while still remaining adaptive to signal's localization changes remain unknown. Here we find that single cells utilize a molecular mechanism akin to a working memory to satisfy these two opposing demands. We derive theoretically that this is characteristic for receptor networks maintained away from steady states. Time-resolved live-cell imaging of Epidermal growth factor receptor (EGFR) phosphorylation dynamics shows that cells transiently memorize position of encountered signals via slow-escaping remnant of the polarized signaling state, a dynamical 'ghost', driving memory-guided persistent directional migration. The metastability of this state further enables migrational adaptation when encountering new signals. We thus identify basic mechanism of real-time computations underlying cellular navigation in changing chemoattractant fields.
Collapse
Affiliation(s)
- Akhilesh Nandan
- Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Abhishek Das
- Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Robert Lott
- Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
14
|
Caveolin-1 temporal modulation enhances antibody drug efficacy in heterogeneous gastric cancer. Nat Commun 2022; 13:2526. [PMID: 35534471 PMCID: PMC9085816 DOI: 10.1038/s41467-022-30142-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022] Open
Abstract
Resistance mechanisms and heterogeneity in HER2-positive gastric cancers (GC) limit Trastuzumab benefit in 32% of patients, and other targeted therapies have failed in clinical trials. Using patient samples, patient-derived xenografts (PDXs), partially humanized biological models, and HER2-targeted imaging technologies we demonstrate the role of caveolin-1 (CAV1) as a complementary biomarker in GC selection for Trastuzumab therapy. In retrospective analyses of samples from patients enrolled on Trastuzumab trials, the CAV1-high profile associates with low membrane HER2 density and low patient survival. We show a negative correlation between CAV1 tumoral protein levels – a major protein of cholesterol-rich membrane domains – and Trastuzumab-drug conjugate TDM1 tumor uptake. Finally, CAV1 depletion using knockdown or pharmacologic approaches (statins) increases antibody drug efficacy in tumors with incomplete HER2 membranous reactivity. In support of these findings, background statin use in patients associates with enhanced antibody efficacy. Together, this work provides preclinical justification and clinical evidence that require prospective investigation of antibody drugs combined with statins to delay drug resistance in tumors. Clinical evidences have demonstrated limited efficacy of HER2-targeted therapies in patients with gastric cancer (GC). Here the authors show that survival benefit to anti-HER2 antibody Trastuzumab is reduced in GC patients with high levels of the caveolin-1 and that, in preclinical cancer models, antibody drug efficacy can be improved by modulating caveolin-1 levels with cholesterol-depleting drugs, statins.
Collapse
|
15
|
Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem Soc Trans 2021; 49:1685-1694. [PMID: 34346484 DOI: 10.1042/bst20201074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.
Collapse
|
16
|
Kim DH, Triet HM, Ryu SH. Regulation of EGFR activation and signaling by lipids on the plasma membrane. Prog Lipid Res 2021; 83:101115. [PMID: 34242725 DOI: 10.1016/j.plipres.2021.101115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
17
|
Stüber JC, Richter CP, Bellón JS, Schwill M, König I, Schuler B, Piehler J, Plückthun A. Apoptosis-inducing anti-HER2 agents operate through oligomerization-induced receptor immobilization. Commun Biol 2021; 4:762. [PMID: 34155320 PMCID: PMC8217238 DOI: 10.1038/s42003-021-02253-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overexpression of the receptor tyrosine kinase HER2 plays a critical role in the development of various tumors. Biparatopic designed ankyrin repeat proteins (bipDARPins) potently induce apoptosis in HER2-addicted breast cancer cell lines. Here, we have investigated how the spatiotemporal receptor organization at the cell surface is modulated by these agents and is distinguished from other molecules, which do not elicit apoptosis. Binding of conventional antibodies is accompanied by moderate reduction of receptor mobility, in agreement with HER2 being dimerized by the bivalent IgG. In contrast, the most potent apoptosis-inducing bipDARPins lead to a dramatic arrest of HER2. Dual-color single-molecule tracking revealed that the HER2 "lockdown" by these bipDARPins is caused by the formation of HER2-DARPin oligomer chains, which are trapped in nanoscopic membrane domains. Our findings establish that efficient neutralization of receptor tyrosine kinase signaling can be achieved through intermolecular bipDARPin crosslinking alone, resulting in inactivated, locked-down bipDARPin-HER2 complexes.
Collapse
Affiliation(s)
- Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Iwo König
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Diagnostics Int. AG, Rotkreuz, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Pereira PMR, Mandleywala K, Ragupathi A, Lewis JS. Acute Statin Treatment Improves Antibody Accumulation in EGFR- and PSMA-Expressing Tumors. Clin Cancer Res 2020; 26:6215-6229. [PMID: 32998959 DOI: 10.1158/1078-0432.ccr-20-1960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Statins are cholesterol-depleting drugs used to treat patients with hypercholesterolemia. Preclinically, statins disrupt trafficking of receptors present at the cell membrane. Membrane receptors, defined as tumor biomarkers and therapeutic targets, are often internalized by an endocytic pathway. Indeed, receptor endocytosis and recycling are dynamic mechanisms that often affect receptor density at the cell surface. In therapies using monoclonal antibodies (mAb), a downregulation in receptor density at the cell surface decreases antibody binding to the extracellular domain of the membrane receptor. Here, we determined the potential of lovastatin, simvastatin, and rosuvastatin in preclinically modulating epidermal growth factor receptor (EGFR) and prostate-specific membrane antigen (PSMA) receptor density at the tumor cell surface. EXPERIMENTAL DESIGN Small-animal PET was used to study the binding of 89Zr-labeled antibodies in ectopic xenografts. Ex vivo analyses were performed to determine changes in endocytic proteins, EGFR, and PSMA surface levels. RESULTS Acute statin treatment using lovastatin, simvastatin, or rosuvastatin enhanced tumors' avidity for the mAbs panitumumab, cetuximab, and huJ591. Statins temporarily modulated caveolin-1, cavin-1, endophilin, clathrin, and dynamin proteins in EGFR- and PSMA-overexpressing xenografts. CONCLUSIONS These data show the potential of statins as pharmacologic modulators of endocytic proteins for improved tumors' accumulation of mAbs. The translational significance of these findings lies in the potential of statins to temporarily modulate the heterogeneous presence of receptors at the cell membrane, a characteristic often associated with poor response in tumors to therapeutic antibodies.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
19
|
Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res 2020; 22:75. [PMID: 32660617 PMCID: PMC7359014 DOI: 10.1186/s13058-020-01312-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Background PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. Methods The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. Results Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. Conclusion PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.
Collapse
|
20
|
Dahmke IN, Trampert P, Weinberg F, Mostajeran Z, Lautenschläger F, de Jonge N. Correlative Fluorescence- and Electron Microscopy of Whole Breast Cancer Cells Reveals Different Distribution of ErbB2 Dependent on Underlying Actin. Front Cell Dev Biol 2020; 8:521. [PMID: 32714928 PMCID: PMC7344305 DOI: 10.3389/fcell.2020.00521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor 2 (ErbB2) is found overexpressed in several cancers, such as gastric, and breast cancer, and is, therefore, an important therapeutic target. ErbB2 plays a central role in cancer cell invasiveness, and is associated with cytoskeletal reorganization. In order to study the spatial correlation of single ErbB2 proteins and actin filaments, we applied correlative fluorescence microscopy (FM), and scanning transmission electron microscopy (STEM) to image specifically labeled SKBR3 breast cancer cells. The breast cancer cells were grown on microchips, transformed to express an actin-green fluorescent protein (GFP) fusion protein, and labeled with quantum dot (QD) nanoparticles attached to specific anti-ErbB2 Affibodies. FM was performed to identify cellular regions with spatially correlated actin and ErbB2 expression. For STEM of the intact plasma membrane of whole cells, the cells were fixed and covered with graphene. Spatial distribution patterns of ErbB2 in the actin rich ruffled membrane regions were examined, and compared to adjacent actin-low regions of the same cell, revealing an association of putative signaling active ErbB2 homodimers with actin-rich regions. ErbB2 homodimers were found absent from actin-low membrane regions, as well as after treatment of cells with Cytochalasin D, which breaks up larger actin filaments. In both latter data sets, a significant inter-label distance of 36 nm was identified, possibly indicating an indirect attachment to helical actin filaments via the formation of heterodimers of ErbB2 with epidermal growth factor receptor (EGFR). The possible attachment to actin filaments was further explored by identifying linear QD-chains in actin-rich regions, which also showed an inter-label distance of 36 nm.
Collapse
Affiliation(s)
| | - Patrick Trampert
- German Research Center for Artificial Intelligence, Saarbrücken, Germany
| | | | | | - Franziska Lautenschläger
- INM – Leibniz Institute for New Materials, Saarbrücken, Germany
- Department of Physics, Saarland University, Saarbrücken, Germany
| | - Niels de Jonge
- INM – Leibniz Institute for New Materials, Saarbrücken, Germany
- Department of Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
21
|
Zhao R, Yuan J, Li N, Sun Y, Xia T, Fang X. Analysis of the Diffusivity Change from Single-Molecule Trajectories on Living Cells. Anal Chem 2019; 91:13390-13397. [PMID: 31580655 DOI: 10.1021/acs.analchem.9b01005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the wide application of live-cell single-molecule imaging and tracking of biomolecules at work, deriving diffusion state changes of individual molecules is of particular interest as these changes reflect molecular oligomerization or interaction with other cellular components and thus correlate with functional changes. We have developed a Rayleigh mixture distribution-based hidden Markov model method to analyze time-lapse diffusivity change of single molecules, especially membrane proteins, with unknown dynamic states in living cells. With this method, the diffusion parameters, including diffusion state number, state transition probability, diffusion coefficient, and state mixture ratio, can be extracted from the single-molecule diffusion trajectories accurately via easy computation. The validity of our method has been demonstrated with not only experiments on synthetic trajectories but also single-molecule fluorescence imaging data of two typical membrane receptors. Our method offers a new analytical tool for the investigation of molecular interaction kinetics at the single-molecule level.
Collapse
Affiliation(s)
- Rong Zhao
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jinghe Yuan
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Nan Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yahong Sun
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,The Second High School Attached to Beijing Normal University , Beijing 100088 , P. R. China
| | - Tie Xia
- Institute for Immunology, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
22
|
Clarke DT, Martin-Fernandez ML. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods Protoc 2019; 2:mps2010012. [PMID: 31164594 PMCID: PMC6481046 DOI: 10.3390/mps2010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.
Collapse
Affiliation(s)
- David T Clarke
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Marisa L Martin-Fernandez
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| |
Collapse
|
23
|
Pereira PMR, Sharma SK, Carter LM, Edwards KJ, Pourat J, Ragupathi A, Janjigian YY, Durack JC, Lewis JS. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat Commun 2018; 9:5137. [PMID: 30510281 PMCID: PMC6277446 DOI: 10.1038/s41467-018-07608-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) gene amplification and/or protein overexpression in tumors is a prerequisite for initiation of trastuzumab therapy. Although HER2 is a cell membrane receptor, differential rates of endocytosis and recycling engender a dynamic surface pool of HER2. Since trastuzumab must bind to the extracellular domain of HER2, a depressed HER2 surface pool hinders binding. Using in vivo biological models and cultures of fresh human tumors, we find that the caveolin-1 (CAV1) protein is involved in HER2 cell membrane dynamics within the context of receptor endocytosis. The translational significance of this finding is highlighted by our observation that temporal CAV1 depletion with lovastatin increases HER2 half-life and availability at the cell membrane resulting in improved trastuzumab binding and therapy against HER2-positive tumors. These data show the important role that CAV1 plays in the effectiveness of trastuzumab to target HER2-positive tumors. Trastuzumab binding to tumor cells depends on the availability of HER2 at the cell membrane. Here the authors show that caveolin-1 (CAV1) regulates HER2 density at the cell membranes and that CAV1 gene knockdown or protein depletion via the cholesterol modulator lovastatin, increases trastuzumab binding and anti-tumor activity.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jacob Pourat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeremy C Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA. .,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA. .,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Bile acids target proteolipid nano-assemblies of EGFR and phosphatidic acid in the plasma membrane for stimulation of MAPK signaling. PLoS One 2018; 13:e0198983. [PMID: 30169511 PMCID: PMC6118352 DOI: 10.1371/journal.pone.0198983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Bile acids are critical biological detergents in the gastrointestinal tract and also act as messengers to regulate a multitude of intracellular signaling events, including mitogenic signaling, lipid metabolism and endo/exocytosis. In particular, bile acids stimulate many receptors and ion channels on the cell surface, the mechanisms of which are still poorly understood. Membrane-associating proteins depend on the local spatial distribution of lipids in the plasma membrane (PM) for their function. Here, we report that the highly amphipathic secondary bile acid deoxycholic acid (DCA), a major constituent in the human bile, at doses <1μM enhances the nanoclustering and the PM localization of phosphatidic acid (PA) but disrupts the local segregation of phosphatidylserine in the basolateral PM of the human colorectal adenocarcinoma Caco-2 cells. PA is a key structural component of the signaling nano-domains of epidermal growth factor receptor (EGFR) on the cell surface. We show that DCA promotes the co-localization between PA and EGFR, the PA-driven EGFR dimerization/oligomerization and EGFR signaling. Depletion of PA abolishes the stimulatory effects of DCA on the EGFR oligomerization and signaling. This effect occurs in the cultured Caco-2 cells and the ex vivo human intestinal enteroids. We propose a novel mechanism, where the amphiphilic DCA monomers alter the nano-assemblies of anionic phospholipids and in turn change the dynamic structural integrity of the lipid-driven oligomerization of cell surface receptors and their signal transduction.
Collapse
|
25
|
Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment. Horm Mol Biol Clin Investig 2017; 32:/j/hmbci.ahead-of-print/hmbci-2017-0020/hmbci-2017-0020.xml. [PMID: 29087955 DOI: 10.1515/hmbci-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Obesity is associated with the risk of several health disorders including certain cancers. Among obesity-related cancers, postmenopausal breast carcinoma is a well-studied one. Apart from an increase in certain types of lipids in obesity, excess adipose tissue releases many hormone-like cytokines/adipokines, which are usually pro-inflammatory in nature. Leptin is one of such adipokines and significantly linked with the intracellular signaling pathways of other growth factors such as insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2). In general, HER2 is overexpressed in roughly 30% of breast carcinomas; its presence indicates aggressive tumor behavior. Conversely, HER2 has certain effects in normal conditions such as differentiation of preadipocytes, cardiovascular health and vitamin D metabolism. HER2 has no known endogenous ligand, but it may form dimers with other three members of the epidermal growth factor receptor (EGFR) family and can activate downstream signaling pathways. Furthermore, HER2 is intimately connected with several enzymes, e.g. fatty acid synthase (FASN), phosphatidylinositol 3-kinase (PI3K), AKT and mechanistic target of rapamycin (mTOR), all of which play significant regulatory roles in lipogenic pathways or lipid metabolism. In obesity-related carcinogenesis, characteristics like insulin resistance and elevated IGF-1 are commonly observed. Both IGF-1 and leptin can modulate EGFR and HER2 signaling pathways. Although clinical studies have shown mixed results, the behavior of HER2+ tumor cells including HER2 levels can be altered by several factors such as obesity, leptin and fatty acids. A precise knowledge is useful in new therapeutic approaches against HER+ tumors.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, 20 Seton Hill Drive, Greensburg, PA 15601, USA, Phone: +(724) 552-2882, Fax: +(724) 552-2865
| |
Collapse
|
26
|
Jayakar SK, Loudig O, Brandwein-Gensler M, Kim RS, Ow TJ, Ustun B, Harris TM, Prystowsky MB, Childs G, Segall JE, Belbin TJ. Apolipoprotein E Promotes Invasion in Oral Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2259-2272. [PMID: 28751006 PMCID: PMC5762938 DOI: 10.1016/j.ajpath.2017.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Oral squamous cell carcinoma (OSCC) patients generally have a poor prognosis, because of the invasive nature of these tumors. In comparing transcription profiles between OSCC tumors with a more invasive (worst pattern of tumor invasion 5) versus a less invasive (worst pattern of tumor invasion 3) pattern of invasion, we identified a total of 97 genes that were overexpressed at least 1.5-fold in the more invasive tumor subtype. The most functionally relevant genes were assessed using in vitro invasion assays with an OSCC cell line (UM-SCC-1). Individual siRNA knockdown of 15 of these 45 genes resulted in significant reductions in tumor cell invasion compared to a nontargeting siRNA control. One gene whose knockdown had a strong effect on invasion corresponded to apolipoprotein E (APOE). Both matrix degradation and the number of mature invadopodia were significantly decreased with APOE knockdown. APOE knockdown also resulted in increased cellular cholesterol, consistent with APOE's role in regulating cholesterol efflux. APOE knockdown resulted in decreased levels of phospho-extracellular signal-regulated kinase 1/2, phospho-c-Jun N-terminal kinase, and phospho-cJun, as well as decreased activator protein 1 (AP-1) activity. Expression of matrix metalloproteinase 7 (MMP7), an AP-1 target, was also significantly decreased. Our findings suggest that APOE protein plays a significant role in OSCC tumor invasion because of its effects on cellular cholesterol and subsequent effects on cell signaling and AP-1 activity, leading to changes in the expression of invasion-related proteins, including MMP7.
Collapse
Affiliation(s)
- Sangeeta K Jayakar
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Olivier Loudig
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Margaret Brandwein-Gensler
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology and Anatomical Sciences, Erie County Medical Center, Buffalo, New York
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas J Ow
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center, Bronx, New York
| | - Berrin Ustun
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas M Harris
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Geoffrey Childs
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
| | - Thomas J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
27
|
Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots. PLoS One 2017; 12:e0169905. [PMID: 28114413 PMCID: PMC5256950 DOI: 10.1371/journal.pone.0169905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/23/2016] [Indexed: 01/06/2023] Open
Abstract
Brassinosteroids (BRs) are plant hormones that are perceived at the plasma membrane (PM) by the ligand binding receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) and the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 3/BRI1 ASSOCIATED KINASE 1 (SERK3/BAK1). To visualize BRI1-GFP and SERK3/BAK1-mCherry in the plane of the PM, variable-angle epifluorescence microscopy (VAEM) was employed, which allows selective illumination of a thin surface layer. VAEM revealed an inhomogeneous distribution of BRI1-GFP and SERK3/BAK1-mCherry at the PM, which we attribute to the presence of distinct nanoclusters. Neither the BRI1 nor the SERK3/BAK1 nanocluster density is affected by depletion of endogenous ligands or application of exogenous ligands. To reveal interacting populations of receptor complexes, we utilized selective-surface observation—fluorescence lifetime imaging microscopy (SSO-FLIM) for the detection of Förster resonance energy transfer (FRET). Using this approach, we observed hetero-oligomerisation of BRI1 and SERK3 in the nanoclusters, which did not change upon depletion of endogenous ligand or signal activation. Upon ligand application, however, the number of BRI1-SERK3 /BAK1 hetero-oligomers was reduced, possibly due to endocytosis of active signalling units of BRI1-SERK3/BAK1 residing in the PM. We propose that formation of nanoclusters in the plant PM is subjected to biophysical restraints, while the stoichiometry of receptors inside these nanoclusters is variable and important for signal transduction.
Collapse
|
28
|
Huebinger J, Masip ME, Christmann J, Wehner F, Bastiaens PIH. Reversible Cryo-arrests of Living Cells to Pause Molecular Movements for High-resolution Imaging. Bio Protoc 2017; 7:e2236. [PMID: 28580376 DOI: 10.21769/bioprotoc.2236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fluorescence live-cell imaging by single molecule localization microscopy (SMLM) or fluorescence lifetime imaging microscopy (FLIM) in principle allows for the spatio-temporal observation of molecular patterns in individual, living cells. However, the dynamics of molecules within cells hamper their precise observation. We present here a detailed protocol for consecutive cycles of reversible cryo-arrest of living cells on a microscope that allows for a precise determination of the evolution of molecular patterns within individual living cells. The usefulness of this approach has been demonstrated by observing ligand-induced clustering of receptor tyrosine kinases as well as their activity patterns by SMLM and FLIM (Masip et al., 2016).
Collapse
Affiliation(s)
- Jan Huebinger
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Martin E Masip
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jens Christmann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Frank Wehner
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
29
|
Melkes B, Hejnova L, Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1289-1300. [PMID: 27600870 DOI: 10.1007/s00210-016-1293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
30
|
Masip ME, Huebinger J, Christmann J, Sabet O, Wehner F, Konitsiotis A, Fuhr GR, Bastiaens PIH. Reversible cryo-arrest for imaging molecules in living cells at high spatial resolution. Nat Methods 2016; 13:665-672. [PMID: 27400419 PMCID: PMC5038880 DOI: 10.1038/nmeth.3921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
The dynamics of molecules in living cells hampers precise imaging of molecular patterns by functional and super-resolution microscopy. We developed a method that circumvents lethal chemical fixation and allows on-stage cryo-arrest for consecutive imaging of molecular patterns within the same living, but arrested, cells. The reversibility of consecutive cryo-arrests was demonstrated by the high survival rate of different cell lines and by intact growth factor signaling that was not perturbed by stress response. Reversible cryo-arrest was applied to study the evolution of ligand-induced receptor tyrosine kinase activation at different scales. The nanoscale clustering of epidermal growth factor receptor (EGFR) in the plasma membrane was assessed by single-molecule localization microscopy, and endosomal microscale activity patterns of ephrin receptor A2 (EphA2) were assessed by fluorescence lifetime imaging microscopy. Reversible cryo-arrest allows the precise determination of molecular patterns while conserving the dynamic capabilities of living cells.
Collapse
Affiliation(s)
- Martin E Masip
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jens Christmann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| | - Ola Sabet
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Frank Wehner
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Antonios Konitsiotis
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Günther R Fuhr
- Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| |
Collapse
|
31
|
Lin CY, Huang JY, Lo LW. Exploring in vivo cholesterol-mediated interactions between activated EGF receptors in plasma membrane with single-molecule optical tracking. BMC BIOPHYSICS 2016; 9:6. [PMID: 27347397 PMCID: PMC4919887 DOI: 10.1186/s13628-016-0030-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/06/2016] [Indexed: 11/10/2022]
Abstract
Background The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear. Methods In this study, we measured single-molecule optical trajectories of epidermal growth factor receptors moving in the plasma membranes of two cancerous cell lines and one normal endothelial cell line. A stochastic model was developed and applied to identify critical information from single-molecule trajectories. Results We discovered that unliganded epidermal growth factor receptors may reside nearby cholesterol-riched regions of the plasma membrane and can move into these lipid domains when subjected to ligand binding. The amount of membrane cholesterol considerably affects the stability of correlated motion of activated epidermal growth factor receptors. Conclusions Our results provide single-molecule evidence of membrane cholesterol in regulating signaling receptors. Because the three cell lines used for this study are quite diverse, our results may be useful to shed light on the mechanism of cholesterol-mediated interaction between activated receptors in live cells.
Collapse
Affiliation(s)
- Chien Y Lin
- Department of Photonics, Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan
| | - Jung Y Huang
- The T.K.P. Research Center for Photonics, Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan, Taiwan
| |
Collapse
|
32
|
Huang JY, Lin CY. Exploring the stochastic dynamics of correlated movement of receptor proteins in plasma membranes in vivo. J Chem Phys 2015; 143:225101. [PMID: 26671403 DOI: 10.1063/1.4936963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligand-induced receptor dimerization plays a crucial role in the signaling process of living cells. In this study, we developed a theoretical model and performed single-molecule tracking to explore the correlated diffusion processes of liganded epidermal growth factor receptors prior to dimer formation. We disclosed that both an attractive potential between liganded receptor proteins in proximity and correlated fluctuations in the local environments of the proteins play an important role to produce the observed correlated movement of the receptors. This result can serve as the foundation to shed light on the way in which receptor functions are regulated in plasma membranes in vivo.
Collapse
Affiliation(s)
- Jung Y Huang
- The T.K.B. Research Center of Photonics, Chiao Tung University, Hsinchu 300, Taiwan
| | - Chien Y Lin
- Department of Photonics, Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
33
|
Krager KJ, Koland JG. Metabolically Biotinylated Reporters for Electron Microscopic Imaging of Cytoplasmic Membrane Microdomains. Methods Mol Biol 2015; 1376:87-96. [PMID: 26552677 DOI: 10.1007/978-1-4939-3170-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The protein and lipid substituents of cytoplasmic membranes are not in general homogeneously distributed across the membrane surface. Many membrane proteins, including ion channels, receptors, and other signaling molecules, exhibit a profound submicroscopic spatial organization, in some cases clustering in submicron membrane subdomains having a protein and lipid composition distinct from that of the bulk membrane. In the case of membrane-associated signaling molecules, mounting evidence indicates that their nanoscale organization, for example the colocalization of differing signaling molecules in the same membrane microdomains versus their segregation into distinct microdomain species, can significantly impact signal transduction. Biochemical membrane fractionation approaches have been used to characterize membrane subdomains of unique protein and lipid composition, including cholesterol-rich lipid raft structures. However, the intrinsically perturbing nature of fractionation methods makes the interpretation of such characterization subject to question, and indeed the existence and significance of lipid rafts remain controversial. Electron microscopic (EM) imaging of immunogold-labeled proteins in plasma membrane sheets has emerged as a powerful method for visualizing the nanoscale organization and colocalization of membrane proteins, which is not as perturbing of membrane structure as are biochemical approaches. For the purpose of imaging putative lipid raft structures, we recently developed a streamlined EM membrane sheet imaging procedure that employs a unique genetically encoded and metabolically biotinylated reporter that is targeted to membrane inner leaflet lipid rafts. We describe here the principles of this procedure and its application in the imaging of plasma membrane inner leaflet lipid rafts.
Collapse
Affiliation(s)
- Kimberly J Krager
- Department of Pharmacology, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.,Division of Radiation Health, University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, 72205, USA
| | - John G Koland
- Department of Pharmacology, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
34
|
Probing the dynamics of growth factor receptor by single-molecule fluorescence imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:95-102. [DOI: 10.1016/j.pbiomolbio.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
|
35
|
Bosch PJ, Kanger JS, Subramaniam V. Classification of dynamical diffusion states in single molecule tracking microscopy. Biophys J 2015; 107:588-598. [PMID: 25099798 DOI: 10.1016/j.bpj.2014.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/04/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022] Open
Abstract
Single molecule tracking of membrane proteins by fluorescence microscopy is a promising method to investigate dynamic processes in live cells. Translating the trajectories of proteins to biological implications, such as protein interactions, requires the classification of protein motion within the trajectories. Spatial information of protein motion may reveal where the protein interacts with cellular structures, because binding of proteins to such structures often alters their diffusion speed. For dynamic diffusion systems, we provide an analytical framework to determine in which diffusion state a molecule is residing during the course of its trajectory. We compare different methods for the quantification of motion to utilize this framework for the classification of two diffusion states (two populations with different diffusion speed). We found that a gyration quantification method and a Bayesian statistics-based method are the most accurate in diffusion-state classification for realistic experimentally obtained datasets, of which the gyration method is much less computationally demanding. After classification of the diffusion, the lifetime of the states can be determined, and images of the diffusion states can be reconstructed at high resolution. Simulations validate these applications. We apply the classification and its applications to experimental data to demonstrate the potential of this approach to obtain further insights into the dynamics of cell membrane proteins.
Collapse
Affiliation(s)
- Peter J Bosch
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Johannes S Kanger
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands.
| |
Collapse
|
36
|
Zhou Y, Mao H, Joddar B, Umeki N, Sako Y, Wada KI, Nishioka C, Takahashi E, Wang Y, Ito Y. The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness. Sci Rep 2015; 5:11386. [PMID: 26065582 PMCID: PMC4464345 DOI: 10.1038/srep11386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/22/2015] [Indexed: 11/09/2022] Open
Abstract
The biological activity of cell-derived substrates to maintain undifferentiated murine-induced pluripotent stem (iPS) cells was correlated to membrane fluidity as a new parameter of cell culture substrates. Murine embryonic fibroblasts (MEFs) were employed as feeder cells and their membrane fluidity was tuned by chemical fixation using formaldehyde (FA). Membrane fluidity was evaluated by real-time single-molecule observations of green fluorescent protein-labeled epidermal growth factor receptors on chemically fixed MEFs. Biological activity was monitored by colony formation of iPS cells. Treatment with a low concentration of FA sustained the membrane fluidity and biological activity, which were comparable to those of mitomycin C-treated MEFs. The biological activity was further confirmed by sustained expression of alkaline phosphatase, SSEA-1, and other pluripotency markers in iPS cells after 3-5 days of culture on FA-fixed MEFs. Chemical fixation of feeder cells has several advantages such as providing ready-to-use culture substrates without contamination by proliferating feeder cells. Therefore, our results provide an important basis for the development of chemically fixed culture substrates for pluripotent stem cell culture as an alternative to conventional treatment by mitomycin C or x-ray irradiation.
Collapse
Affiliation(s)
- Yue Zhou
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu Province 210023, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Hongli Mao
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Binata Joddar
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ken-Ichi Wada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieko Nishioka
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Webb SED, Hirsch M, Needham SR, Coles BC, Scherer KM, Roberts SK, Zanetti-Domingues LC, Tynan CJ, Martin-Fernandez ML, Rolfe DJ. Nanometric molecular separation measurements by single molecule photobleaching. Methods 2015; 88:76-80. [PMID: 25980369 DOI: 10.1016/j.ymeth.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Although considerable progress has been made in imaging distances in cells below the diffraction limit using FRET and super-resolution microscopy, methods for determining the separation of macromolecules in the 10-50 nm range have been elusive. We have developed fluorophore localisation imaging with photobleaching (FLImP), based on the quantised bleaching of individual protein-bound dye molecules, to quantitate the molecular separations in oligomers and nanoscale clusters. We demonstrate the benefits of using our method in studying the nanometric organisation of the epidermal growth factor receptor in cells.
Collapse
Affiliation(s)
- Stephen E D Webb
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Benjamin C Coles
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Kathrin M Scherer
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
38
|
Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C. EGFR Inhibition by Curcumin in Cancer Cells: A Dual Mode of Action. Biomacromolecules 2015; 16:1634-42. [PMID: 25893361 DOI: 10.1021/acs.biomac.5b00229] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) is an important target of anticancer therapy. Nowadays, the search for new molecules inhibiting this receptor is turning toward natural substances. One of the most promising natural compounds that have shown an anti-EGFR activity is curcumin, a polyphenol found in turmeric. Its effect on the receptor kinase activity and on the receptor autophosphorylation has been already described, but the mechanism of how curcumin interacts with EGFR is not fully elucidated. We demonstrate that the mode of action of curcumin is dual. This polyphenol is able to inhibit directly but partially the enzymatic activity of the EGFR intracellular domain. The present work shows that curcumin also influences the cell membrane environment of EGFR. Using biomimetic membrane models, we show that curcumin insertion into the lipid bilayer leads to its rigidification. Single particle tracking analyses performed in the membrane of A431 cancer cells confirmed that this effect of curcumin on the membrane slows down the receptor diffusion. This is likely to affect the receptor dimerization and, in turn, its activation.
Collapse
Affiliation(s)
- Marcelina Starok
- †Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| | - Pascal Preira
- ‡CNRS; Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France.,§Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Muriel Vayssade
- ∥Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| | - Karsten Haupt
- †Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| | - Laurence Salomé
- ‡CNRS; Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France.,§Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Claire Rossi
- †Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| |
Collapse
|
39
|
Pandžić E, Rossy J, Gaus K. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy. Methods Appl Fluoresc 2015; 3:014006. [PMID: 29148482 DOI: 10.1088/2050-6120/3/1/014006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
Collapse
Affiliation(s)
- Elvis Pandžić
- ARC Centre for Advanced Molecular Imaging, Australian Centre for NanoMedicine University of New South Wales Australia, Sydney, NSW, Australia
| | - Jérémie Rossy
- ARC Centre for Advanced Molecular Imaging, Australian Centre for NanoMedicine University of New South Wales Australia, Sydney, NSW, Australia
| | - Katharina Gaus
- ARC Centre for Advanced Molecular Imaging, Australian Centre for NanoMedicine University of New South Wales Australia, Sydney, NSW, Australia
- Lowy Cancer Research Centre, Centre for Vascular Research Level 3, Kensington, NSW, Australia
| |
Collapse
|
40
|
Lin CY, Huang JY, Lo LW. Unraveling the impact of lipid domains on the dimerization processes of single-molecule EGFRs of live cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:886-93. [DOI: 10.1016/j.bbamem.2014.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
41
|
Abstract
Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors.
Collapse
|
42
|
Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 2014; 6:25. [PMID: 25414663 PMCID: PMC4220116 DOI: 10.3389/fnsyn.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, Faculty of Medical Sciences, Pontifical Catholic University of Argentina-National Scientific and Technical Research Council Buenos Aires, Argentina
| |
Collapse
|
43
|
Almarza G, Sánchez F, Barrantes FJ. Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS One 2014; 9:e100346. [PMID: 24971757 PMCID: PMC4074099 DOI: 10.1371/journal.pone.0100346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/24/2014] [Indexed: 11/23/2022] Open
Abstract
To what extent do cholesterol-rich lipid platforms modulate the supramolecular organization of the nicotinic acetylcholine receptor (AChR)? To address this question, the dynamics of AChR particles at high density and its cholesterol dependence at the surface of mammalian cells were studied by combining total internal reflection fluorescence microscopy and single-particle tracking. AChR particles tagged with a monovalent ligand, fluorescent α-bungarotoxin (αBTX), exhibited two mobile pools: i) a highly mobile one undergoing simple Brownian motion (16%) and ii) one with restricted motion (∼50%), the rest being relatively immobile (∼44%). Depletion of membrane cholesterol by methyl-α-cyclodextrin increased the fraction of the first pool to 22% and 33% after 15 and 40 min, respectively; the pool undergoing restricted motion diminished from 50% to 44% and 37%, respectively. Monoclonal antibody binding results in AChR crosslinking-internalization after 2 h; here, antibody binding immobilized within minutes ∼20% of the totally mobile AChR. This proportion dramatically increased upon cholesterol depletion, especially during the initial 10 min (83.3%). Thus, antibody crosslinking and cholesterol depletion exhibited a mutually synergistic effect, increasing the average lifetime of cell-surface AChRs∼10 s to ∼20 s. The instantaneous (microscopic) diffusion coefficient D2-4 of the AChR obtained from the MSD analysis diminished from ∼0.001 µm2 s(-1) to ∼0.0001-0.00033 µm2 s(-1) upon cholesterol depletion, ∼30% of all particles falling into the stationary mode. Thus, muscle-type AChR exhibits heterogeneous motional regimes at the cell surface, modulated by the combination of intrinsic (its supramolecular organization) and extrinsic (membrane cholesterol content) factors.
Collapse
Affiliation(s)
- Gonzalo Almarza
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco Sánchez
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Dória ML, Ribeiro AS, Wang J, Cotrim CZ, Domingues P, Williams C, Domingues MR, Helguero LA. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J 2014; 28:4247-64. [PMID: 24970396 DOI: 10.1096/fj.14-249672] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work combined gene and protein expression, gas chromatography-flame ionization detector, and hydrophilic interaction liquid chromatography-tandem mass spectrometry to compare lipid metabolism changes in undifferentiated/proliferating vs. functionally differentiated mammary epithelial cells (MECs) and to study their correlation to breast cancer survival. Sixty-eight genes involved in lipid metabolism were changed in MEC differentiation. Differentiated cells showed induction of Elovl6 (2-fold), Scd1 (4-fold), and Fads2 (2-fold), which correlated with increased levels of C16:1 n-7 and C18:1 n-9 (1.5-fold), C20:3 n-6 (2.5-fold), and C20:4 n-6 (6-fold) fatty acids (FAs) and more phospholipids (PLs) containing these species. Further, increased expression (2- to 3-fold) of genes in phosphatidylethanolamine (PE) de novo biosynthesis resulted in a 20% PE increase. Proliferating/undifferentiated cells showed higher C16:0 (1.7-fold) and C18:2 n-6 (4.2-fold) levels and more PLs containing C16:0 FAs [PC(16:0/16:1), PG(16:0/18:2), PG(16:0/18:1), and SM(16:0/18:0)]. Kaplan-Meier analysis of data from 3455 patients with breast cancer disclosed a positive correlation for 59% of genes expressed in differentiated MECs with better survival. PE biosynthesis and FA oxidation correlated with better prognosis in patients with breast cancer, including the basal-like subtype. Therefore, genes involved in mammary gland FA and PL metabolism and their resulting molecular species reflect the cellular proliferative ability and differentiation state and deserve further studies as potential markers of breast cancer progression
Collapse
Affiliation(s)
- M Luisa Dória
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Ana S Ribeiro
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Cândida Z Cotrim
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Pedro Domingues
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Cecilia Williams
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - M Rosário Domingues
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Luisa A Helguero
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| |
Collapse
|
45
|
Clausen MP, Arnspang EC, Ballou B, Bear JE, Lagerholm BC. Simultaneous multi-species tracking in live cells with quantum dot conjugates. PLoS One 2014; 9:e97671. [PMID: 24892555 PMCID: PMC4043679 DOI: 10.1371/journal.pone.0097671] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
Quantum dots are available in a range of spectrally separated emission colors and with a range of water-stabilizing surface coatings that offers great flexibility for enabling bio-specificity. In this study, we have taken advantage of this flexibility to demonstrate that it is possible to perform a simultaneous investigation of the lateral dynamics in the plasma membrane of i) the transmembrane epidermal growth factor receptor, ii) the glucosylphospatidylinositol-anchored protein CD59, and iii) ganglioside GM1-cholera toxin subunit B clusters in a single cell. We show that a large number of the trajectories are longer than 50 steps, which we by simulations show to be sufficient for robust single trajectory analysis. This analysis shows that the populations of the diffusion coefficients are heterogeneously distributed for all three species, but differ between the different species. We further show that the heterogeneity is decreased upon treating the cells with methyl-β-cyclodextrin.
Collapse
Affiliation(s)
- Mathias P. Clausen
- MEMPHYS – Center for Biomembrane Physics and Danish Molecular Biomedical Imaging Center (DaMBIC), University of Southern Denmark, Odense M, Denmark
| | - Eva C. Arnspang
- MEMPHYS – Center for Biomembrane Physics and Danish Molecular Biomedical Imaging Center (DaMBIC), University of Southern Denmark, Odense M, Denmark
| | - Byron Ballou
- Molecular Biosensor and Imaging Center (MBIC), Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - James E. Bear
- Lineberger Comprehensive Cancer Center and Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - B. Christoffer Lagerholm
- MEMPHYS – Center for Biomembrane Physics and Danish Molecular Biomedical Imaging Center (DaMBIC), University of Southern Denmark, Odense M, Denmark
- * E-mail:
| |
Collapse
|
46
|
Pryor MM, Low-Nam ST, Halász AM, Lidke DS, Wilson BS, Edwards JS. Dynamic transition states of ErbB1 phosphorylation predicted by spatial stochastic modeling. Biophys J 2014; 105:1533-43. [PMID: 24048005 DOI: 10.1016/j.bpj.2013.07.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022] Open
Abstract
ErbB1 overexpression is strongly linked to carcinogenesis, motivating better understanding of erbB1 dimerization and activation. Recent single-particle-tracking data have provided improved measures of dimer lifetimes and strong evidence that transient receptor coconfinement promotes repeated interactions between erbB1 monomers. Here, spatial stochastic simulations explore the potential impact of these parameters on erbB1 phosphorylation kinetics. This rule-based mathematical model incorporates structural evidence for conformational flux of the erbB1 extracellular domains, as well as asymmetrical orientation of erbB1 cytoplasmic kinase domains during dimerization. The asymmetric dimer model considers the theoretical consequences of restricted transactivation of erbB1 receptors within a dimer, where the N-lobe of one monomer docks with the C-lobe of the second monomer and triggers its catalytic activity. The dynamic nature of the erbB1 phosphorylation state is shown by monitoring activation states of individual monomers as they diffuse, bind, and rebind after ligand addition. The model reveals the complex interplay between interacting liganded and nonliganded species and the influence of their distribution and abundance within features of the membrane landscape.
Collapse
Affiliation(s)
- Meghan McCabe Pryor
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico
| | | | | | | | | | | |
Collapse
|
47
|
Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J. Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in Arabidopsis. THE PLANT CELL 2014; 26:1729-1745. [PMID: 24755455 PMCID: PMC4036582 DOI: 10.1105/tpc.113.122358] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana respiratory burst oxidase homolog D (RbohD) functions as an essential regulator of reactive oxygen species (ROS). However, our understanding of the regulation of RbohD remains limited. By variable-angle total internal reflection fluorescence microscopy, we demonstrate that green fluorescent protein (GFP)-RbohD organizes into dynamic spots at the plasma membrane. These RbohD spots have heterogeneous diffusion coefficients and oligomerization states, as measured by photobleaching techniques. Stimulation with ionomycin and calyculin A, which activate the ROS-producing enzymatic activity of RbohD, increases the diffusion and oligomerization of RbohD. Abscisic acid and flg22 treatments also increase the diffusion coefficient and clustering of GFP-RbohD. Single-particle analysis in clathrin heavy chain2 mutants and a Flotillin1 artificial microRNA line demonstrated that clathrin- and microdomain-dependent endocytic pathways cooperatively regulate RbohD dynamics. Under salt stress, GFP-RbohD assembles into clusters and then internalizes into the cytoplasm. Dual-color fluorescence cross-correlation spectroscopy analysis further showed that salt stress stimulates RbohD endocytosis via membrane microdomains. We demonstrate that microdomain-associated RbohD spots diffuse at the membrane with high heterogeneity, and these dynamics closely relate to RbohD activity. Our results provide insight into the regulation of RbohD activity by clustering and endocytosis, which facilitate the activation of redox signaling pathways.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lusheng Fan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qihua He
- Peking University Health Science Center, Beijing 100191, China
| | - Miguel A Botella
- Departamento de Biología Celular, Genética, y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
48
|
Rodrigues Dos Santos C, Fonseca I, Dias S, Mendes de Almeida JC. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer 2014; 14:132. [PMID: 24571647 PMCID: PMC3942620 DOI: 10.1186/1471-2407-14-132] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022] Open
Abstract
Background Among women, breast cancer (BC) is the leading cancer and the most common cause of cancer-related death between 30 and 69 years. Although lifestyle and diet are considered to have a role in global BC incidence pattern, the specific influence of dyslipidemia in BC onset and progression is not yet completely understood. Methods Fasting lipid profile (total cholesterol, LDL-C, HDL-C, and triglycerides) was prospectively assessed in 244 women with BC who were enrolled according to pre-set inclusion criteria: diagnosis of non-hereditary invasive ductal carcinoma; selection for surgery as first treatment, and no history of treatment with lipid-lowering or anti-diabetic drugs in the previous year. Pathological and clinical follow-up data were recorded for further inclusion in the statistical analysis. Results Univariate associations show that BC patients with higher levels of LDL-C at diagnosis have tumors that are larger, with higher differentiation grade, higher proliferative rate (assessed by Ki67 immunostaining), are more frequently Her2-neu positive and are diagnosed in more advanced stages. Cox regression model for disease-free survival (DFS), adjusted to tumor T and N stages of TNM classification, and immunohistochemical subtypes, revealed that high LDL-C at diagnosis is associated with poor DFS. At 25 months of follow up, DFS is 12% higher in BC patients within the third LDL-C tertile compared to those in the first tertile. Conclusions This is a prospective study where LDL-C levels, at diagnosis, emerge as a prognostic factor; and this parameter can be useful in the identification and follow-up of high-risk groups. Our results further support a possible role for systemic cholesterol in BC progression and show that cholesterol metabolism may be an important therapeutic target in BC patients.
Collapse
|
49
|
Valley CC, Lidke KA, Lidke DS. The spatiotemporal organization of ErbB receptors: insights from microscopy. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a020735. [PMID: 24370847 DOI: 10.1101/cshperspect.a020735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Signal transduction is regulated by protein-protein interactions. In the case of the ErbB family of receptor tyrosine kinases (RTKs), the precise nature of these interactions remains a topic of debate. In this review, we describe state-of-the-art imaging techniques that are providing new details into receptor dynamics, clustering, and interactions. We present the general principles of these techniques, their limitations, and the unique observations they provide about ErbB spatiotemporal organization.
Collapse
Affiliation(s)
- Christopher C Valley
- Department of Pathology and the Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131
| | | | | |
Collapse
|
50
|
DE KEERSMAECKER H, ROCHA S, FRON E, UJI-I H, HOFKENS J, MIZUNO H. EGF RECEPTOR DYNAMICS IN EGF-RESPONDING CELLS REVEALED BY FUNCTIONAL IMAGING DURING SINGLE PARTICLE TRACKING. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013500070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The epidermal growth factor (EGF) receptor transduces the extracellular EGF signal into the cells. The distribution of these EGF receptors in the plasma membrane is heterogeneous and dynamic, which is proposed to be important for the regulation of cell signaling. The response of the cells to a physiological concentration of EGF is not homogeneous, which makes it difficult to analyze the dynamics related to the response. Here we developed a system to perform functional imaging during single particle tracking (SPT) analysis. This system made it possible to observe the cytosolic Ca 2+ concentration to monitor the cell response while tracking individual EGF molecules and found that about half of the cells responded to the stimulation with 1.6 nM EGF. In the responding cells, the EGF receptor showed 3 modes of movement: fast (the diffusion coefficient of 0.081 ± 0.009 μm2/sec, 29 ± 9%), slow (0.020 ± 0.005 μm2/sec, 22 ± 6%), and stationary (49 ± 13%). The diffusion coefficient of the fast mode movement in the responding cells was significantly larger than that in the nonresponding cells (0.069 ± 0.009 μm2/sec, p < 0.05). The diffusion coefficient of the fast mode movement is thought to reflect the monomer–dimer equilibrium of the EGF receptor. We assumed that the feedback regulation via the Ca 2+ signaling pathway slightly shifts the equilibrium from dimer to monomer in the responding cells. [Formula: see text]Special Issue Comment: This research paper is about the diffusion of EGF receptors in the membrane. It is therefore related with various projects in this Special Issue: the reviews about FRET41 and enzymes,42 and the projects about solving single molecules trajectories.43
Collapse
Affiliation(s)
- H. DE KEERSMAECKER
- Department of Chemistry, Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200G Box 2403, 3001 Heverlee, Belgium
| | - S. ROCHA
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - E. FRON
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - H. UJI-I
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - J. HOFKENS
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - H. MIZUNO
- Department of Chemistry, Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200G Box 2403, 3001 Heverlee, Belgium
| |
Collapse
|