1
|
Baidya L, Maity H, Reddy G. Salts Influence IDP Properties by Modulating the Population of Conformational Clusters. J Phys Chem B 2025. [PMID: 39977663 DOI: 10.1021/acs.jpcb.4c08248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Salts readily alter the physical properties of intrinsically disordered proteins (IDPs) rich in charged residues. Using a coarse-grained IDP model and computer simulations, we investigated how salts affect the heterogeneous conformational ensemble and segment-level structures of the IDP prothymosin-α, classified as a polyelectrolyte. We show that clusters of conformations with distinct structural features are present within the conformational ensemble of prothymosin-α by projecting it onto a two-dimensional latent space with the aid of autoencoders. Although prothymosin-α is inherently disordered, there are preferred transitions between these clusters of conformations. Changing the salt concentration led to the formation of new conformational clusters or/and the disappearance of existing conformational clusters, contributing to changes in IDP properties. Shuffling the Skopelitian domain (C-terminal sequence) of prothymosin-α, known for its anticancer activity, resulted in a different conformational cluster, indicating that clusters with specific structures are related to a particular IDP function. The multiple conformational clusters with distinct structural features could be correlated to different IDP functions, and salts aid or inhibit these functions by modulating the population of conformations in the clusters.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Hiranmay Maity
- Department of Chemistry, State University of New York, Buffalo, New York 14260, United States
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Nan Y, Baral P, Orr AA, Michel HM, Lemkul JA, MacKerell AD. Balancing Group 1 Monoatomic Ion-Polar Compound Interactions in the Polarizable Drude Force Field: Application in Protein and Nucleic Acid Systems. J Phys Chem B 2024; 128:12078-12091. [PMID: 39625472 PMCID: PMC11646484 DOI: 10.1021/acs.jpcb.4c06354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
An accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li+, Na+, K+, Rb+, Cs+, and Cl-) and common functional groups found in proteins and nucleic acids. The parameters generated for each ion-functional group pair were then applied to the corresponding functional groups within proteins or nucleic acids followed by MD simulations to analyze the distribution of ions around these biomolecules. The modified FF successfully addresses the issue of overbinding observed in a previous iteration of the Drude FF. Quantitatively, the model accurately reproduces the effective charge of proteins and demonstrates a level of charge neutralization for a double-helix B-DNA in good agreement with the counterion condensation theory. Additionally, simulations involving ion competition correlate well with experimental results, following the trend Li+ > Na+ ≈ K+ > Rb+. These results validate the refined model for group 1 ion-biomolecule interactions that will facilitate the application of the polarizable Drude FF in systems in which group 1 ions play an important role.
Collapse
Affiliation(s)
- Yiling Nan
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Prabin Baral
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Asuka A. Orr
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Haley M. Michel
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
- Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexander D. MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
3
|
Orr AA, Tao A, Guvench O, MacKerell AD. Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction. Mol Pharm 2023; 20:2600-2611. [PMID: 37017675 PMCID: PMC10159941 DOI: 10.1021/acs.molpharmaceut.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Protein-based therapeutics typically require high concentrations of the active protein, which can lead to protein aggregation and high solution viscosity. Such solution behaviors can limit the stability, bioavailability, and manufacturability of protein-based therapeutics and are directly influenced by the charge of a protein. Protein charge is a system property affected by its environment, including the buffer composition, pH, and temperature. Thus, the charge calculated by summing the charges of each residue in a protein, as is commonly done in computational methods, may significantly differ from the effective charge of the protein as these calculations do not account for contributions from bound ions. Here, we present an extension of the structure-based approach termed site identification by ligand competitive saturation-biologics (SILCS-Biologics) to predict the effective charge of proteins. The SILCS-Biologics approach was applied on a range of protein targets in different salt environments for which membrane-confined electrophoresis-determined charges were previously reported. SILCS-Biologics maps the 3D distribution and predicted occupancy of ions, buffer molecules, and excipient molecules bound to the protein surface in a given salt environment. Using this information, the effective charge of the protein is predicted such that the concentrations of the ions and the presence of excipients or buffers are accounted for. Additionally, SILCS-Biologics also produces 3D structures of the binding sites of ions on the proteins, which enable further analyses such as the characterization of protein surface charge distribution and dipole moments in different environments. Notable is the capability of the method to account for competition between salts, excipients, and buffers on the calculated electrostatic properties in different protein formulations. Our study demonstrates the ability of the SILCS-Biologics approach to predict the effective charge of proteins and its applicability in uncovering protein-ion interactions and their contributions to protein solubility and function.
Collapse
Affiliation(s)
- Asuka A. Orr
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Aoxiang Tao
- SilcsBio LLC, 1100 Wicomico Street, Suite 323, Baltimore, MD, USA
| | - Olgun Guvench
- SilcsBio LLC, 1100 Wicomico Street, Suite 323, Baltimore, MD, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
4
|
de Bruyn E, Dorn AE, Zimmermann O, Rossetti G. SPEADI: Accelerated Analysis of IDP-Ion Interactions from MD-Trajectories. BIOLOGY 2023; 12:581. [PMID: 37106781 PMCID: PMC10135740 DOI: 10.3390/biology12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
The disordered nature of Intrinsically Disordered Proteins (IDPs) makes their structural ensembles particularly susceptible to changes in chemical environmental conditions, often leading to an alteration of their normal functions. A Radial Distribution Function (RDF) is considered a standard method for characterizing the chemical environment surrounding particles during atomistic simulations, commonly averaged over an entire or part of a trajectory. Given their high structural variability, such averaged information might not be reliable for IDPs. We introduce the Time-Resolved Radial Distribution Function (TRRDF), implemented in our open-source Python package SPEADI, which is able to characterize dynamic environments around IDPs. We use SPEADI to characterize the dynamic distribution of ions around the IDPs Alpha-Synuclein (AS) and Humanin (HN) from Molecular Dynamics (MD) simulations, and some of their selected mutants, showing that local ion-residue interactions play an important role in the structures and behaviors of IDPs.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giulia Rossetti
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
5
|
Nachliel E, Gutman M. Reaction within the coulomb-cage; science in retrospect. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184071. [PMID: 36244436 DOI: 10.1016/j.bbamem.2022.184071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The Coulomb-cage is defined as the space where the electrostatic interaction between two bodies is more intensive than the thermal energy (kBT). For small molecule, the Coulomb-cage is a small sphere, extending only few water molecules towards the bulk and its radius is sensitive to the ionic strength of the solution. For charged proteins or membranal structures, the Coulomb-cage can engulf large fraction of the surface and provides a preferred pathway for ion propagation along the surface. Similarly, electrostatic potential at the inner space of a channel can form preferential trajectories passage for ions. The dynamics of ions inside the Coulomb-cage of ions was formulated by the studies of proton-anion recombination of excited photoacids. In the present article, we recount the study of intra- Coulomb-cage reaction taking place on the surface of macro-molecular bodies like micelles, membranes, proteins and intra-protein cavities. The study progressed stepwise, tracing the dynamics of a proton ejected from a photo-acid molecule located at defined sites (on membrane, inter-membrane space, active site of enzyme, inside Large Pore Channels etc.). Accumulation of experimental observations encouraged us to study of the reaction mechanism by molecular dynamics simulations of ions within the Coulomb-cage of proteins surface or inside large pores. The intra-Coulomb-cage proton transfer events follows closely the fine structure of the electrostatic field inside the cage and reflects the shape of nearby dielectric boundaries, the temporal ordering of the solvent molecules and the structural fluctuations of the charged side chains. The article sums some 40 years of research, which in retrospect clarifies the intra-Coulomb-cage reaction mechanism.
Collapse
Affiliation(s)
- E Nachliel
- Laser Laboratory for Fast Reactions, Dep. Of Biochemistry and Molecular Biology, Life Sciences, Tel Aviv University, Israel
| | - M Gutman
- Laser Laboratory for Fast Reactions, Dep. Of Biochemistry and Molecular Biology, Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
6
|
Ahmad S, Strunk CH, Schott-Verdugo SN, Jaeger KE, Kovacic F, Gohlke H. Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of Pseudomonas aeruginosa Concordant with Specificity and Regioselectivity. J Chem Inf Model 2021; 61:5626-5643. [PMID: 34748335 DOI: 10.1021/acs.jcim.1c00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Sabahuddin Ahmad
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of Talca, 3460000 Talca, Chile.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
7
|
El Harrar T, Frieg B, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Comput Struct Biotechnol J 2021; 19:4248-4264. [PMID: 34429845 PMCID: PMC8355836 DOI: 10.1016/j.csbj.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Benedikt Frieg
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Friedman R. Preferential Binding of Lanthanides to Methanol Dehydrogenase Evaluated with Density Functional Theory. J Phys Chem B 2021; 125:2251-2257. [PMID: 33645229 PMCID: PMC8028316 DOI: 10.1021/acs.jpcb.0c11077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Methanol dehydrogenase
(MDH) is an enzyme used by certain bacteria
for the oxidation of methanol to formaldehyde, which is a necessary
metabolic reaction. The discovery of a lanthanide-dependent MDH reveals
that lanthanide ions (Ln3+) have a role in biology. Two
types of MDH exist in methane-utilizing bacteria: one that is Ca2+-dependent (MxaF) and another that is Ln3+-dependent. Given that the triply charged Ln3+ are strongly hydrated, it is not clear how preference for Ln3+ is manifested and if the Ca2+-dependent MxaF protein can also bind Ln3+ ions. A computational
approach was used to estimate the Gibbs energy differences between
the binding of Ln3+ and Ca2+ to MDH using density
functional theory. The results show that both proteins bind La3+ with higher affinity than Ca2+, albeit with a
more pronounced difference in the case of Ln3+-dependent
MDH. Interestingly, the binding of heavier lanthanides is preferred
over the binding of La3+, with Gd3+ showing
the highest affinity for both proteins of all Ln3+ ions
that were tested (La3+, Sm3+, Gd3+, Dy3+, and Lu3+). Energy decomposition analysis
reveals that the higher affinity of La3+ than Ca2+ to MDH is due to stronger contributions of electrostatics and polarization,
which overcome the high cost of desolvating the ion.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar 391 82, Sweden
| |
Collapse
|
9
|
Gahlot DK, Taheri N, Mahato DR, Francis MS. Bioengineering of non-pathogenic Escherichia coli to enrich for accumulation of environmental copper. Sci Rep 2020; 10:20327. [PMID: 33230130 PMCID: PMC7683528 DOI: 10.1038/s41598-020-76178-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Heavy metal sequestration from industrial wastes and agricultural soils is a long-standing challenge. This is more critical for copper since copper pollution is hazardous both for the environment and for human health. In this study, we applied an integrated approach of Darwin’s theory of natural selection with bacterial genetic engineering to generate a biological system with an application for the accumulation of Cu2+ ions. A library of recombinant non-pathogenic Escherichia coli strains was engineered to express seven potential Cu2+ binding peptides encoded by a ‘synthetic degenerate’ DNA motif and fused to Maltose Binding Protein (MBP). Most of these peptide-MBP chimeras conferred tolerance to high concentrations of copper sulphate, and in certain cases in the order of 160-fold higher than the recognised EC50 toxic levels of copper in soils. UV–Vis spectroscopic analysis indicated a molar ratio of peptide-copper complexes, while a combination of bioinformatics-based structure modelling, Cu2+ ion docking, and MD simulations of peptide-MBP chimeras corroborated the extent of Cu2+ binding among the peptides. Further, in silico analysis predicted the peptides possessed binding affinity toward a broad range of divalent metal ions. Thus, we report on an efficient, cost-effective, and environment-friendly prototype biological system that is potentially capable of copper bioaccumulation, and which could easily be adapted for the removal of other hazardous heavy metals or the bio-mining of rare metals.
Collapse
Affiliation(s)
- Dharmender K Gahlot
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK. .,Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
| | - Nayyer Taheri
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | | | - Matthew S Francis
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
10
|
Chaturvedi N, Ahmad K, Yadav BS, Lee EJ, Sonkar SC, Marina N, Choi I. Understanding Calcium-Dependent Conformational Changes in S100A1 Protein: A Combination of Molecular Dynamics and Gene Expression Study in Skeletal Muscle. Cells 2020; 9:181. [PMID: 31936886 PMCID: PMC7016722 DOI: 10.3390/cells9010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
The S100A1 protein, involved in various physiological activities through the binding of calcium ions (Ca2+), participates in several protein-protein interaction (PPI) events after Ca2+-dependent activation. The present work investigates Ca2+-dependent conformational changes in the helix-EF hand-helix using the molecular dynamics (MD) simulation approach that facilitates the understanding of Ca2+-dependent structural and dynamic distinctions between the apo and holo forms of the protein. Furthermore, the process of ion binding by inserting Ca2+ into the bulk of the apo structure was simulated by molecular dynamics. Expectations of the simulation were demonstrated using cluster analysis and a variety of structural metrics, such as interhelical angle estimation, solvent accessible surface area, hydrogen bond analysis, and contact analysis. Ca2+ triggered a rise in the interhelical angles of S100A1 on the binding site and solvent accessible surface area. Significant configurational regulations were observed in the holo protein. The findings would contribute to understanding the molecular basis of the association of Ca2+ with the S100A1 protein, which may be an appropriate study to understand the Ca2+-mediated conformational changes in the protein target. In addition, we investigated the expression profile of S100A1 in myoblast differentiation and muscle regeneration. These data showed that S100A1 is expressed in skeletal muscles. However, the expression decreases with time during the process of myoblast differentiation.
Collapse
Affiliation(s)
- Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Brijesh Singh Yadav
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Subash Chandra Sonkar
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjang Hospital, New Delhi-110029, India;
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| |
Collapse
|
11
|
CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene 2019; 39:1710-1723. [PMID: 31723238 DOI: 10.1038/s41388-019-1098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Tumor cells rely on glycolysis to meet their elevated demand for energy. Thereby they produce significant amounts of lactate and protons, which are exported via monocarboxylate transporters (MCTs), supporting the formation of an acidic microenvironment. The present study demonstrates that carbonic anhydrase IX (CAIX), one of the major acid/base regulators in cancer cells, forms a protein complex with MCT1 and MCT4 in tissue samples from human breast cancer patients, but not healthy breast tissue. Formation of this transport metabolon requires binding of CAIX to the Ig1 domain of the MCT1/4 chaperon CD147 and is required for CAIX-mediated facilitation of MCT1/4 activity. Application of an antibody, directed against the CD147-Ig1 domain, displaces CAIX from the transporter and suppresses CAIX-mediated facilitation of proton-coupled lactate transport. In cancer cells, this "metabolon disruption" results in a decrease in lactate transport, reduced glycolysis, and ultimately reduced cell proliferation. Taken together, the study shows that carbonic anhydrases form transport metabolons with acid/base transporters in human tumor tissue and that these interactions can be exploited to interfere with tumor metabolism and proliferation.
Collapse
|
12
|
Vecchioni S, Capece MC, Toomey E, Nguyen L, Ray A, Greenberg A, Fujishima K, Urbina J, Paulino-Lima IG, Pinheiro V, Shih J, Wessel G, Wind SJ, Rothschild L. Construction and characterization of metal ion-containing DNA nanowires for synthetic biology and nanotechnology. Sci Rep 2019; 9:6942. [PMID: 31061396 PMCID: PMC6502794 DOI: 10.1038/s41598-019-43316-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
DNA is an attractive candidate for integration into nanoelectronics as a biological nanowire due to its linear geometry, definable base sequence, easy, inexpensive and non-toxic replication and self-assembling properties. Recently we discovered that by intercalating Ag+ in polycytosine-mismatch oligonucleotides, the resulting C-Ag+-C duplexes are able to conduct charge efficiently. To map the functionality and biostability of this system, we built and characterized internally-functionalized DNA nanowires through non-canonical, Ag+-mediated base pairing in duplexes containing cytosine-cytosine mismatches. We assessed the thermal and chemical stability of ion-coordinated duplexes in aqueous solutions and conclude that the C-Ag+-C bond forms DNA duplexes with replicable geometry, predictable thermodynamics, and tunable length. We demonstrated continuous ion chain formation in oligonucleotides of 11-50 nucleotides (nt), and enzyme ligation of mixed strands up to six times that length. This construction is feasible without detectable silver nanocluster contaminants. Functional gene parts for the synthesis of DNA- and RNA-based, C-Ag+-C duplexes in a cell-free system have been constructed in an Escherichia coli expression plasmid and added to the open-source BioBrick Registry, paving the way to realizing the promise of inexpensive industrial production. With appropriate design constraints, this conductive variant of DNA demonstrates promise for use in synthetic biological constructs as a dynamic nucleic acid component and contributes molecular electronic functionality to DNA that is not already found in nature. We propose a viable route to fabricating stable DNA nanowires in cell-free and synthetic biological systems for the production of self-assembling nanoelectronic architectures.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Mark C Capece
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emily Toomey
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Le Nguyen
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Austin Ray
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alissa Greenberg
- Department of History, Stanford University, Stanford, CA, 94305, USA
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Jesica Urbina
- Geology, Minerals, Energy, & Geophysics Science Center, U.S. Geological Survey, Menlo Park, CA, 94025, USA
- Planetary Science Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ivan G Paulino-Lima
- Blue Marble Space Institute of Science, NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA, 94035-0001, USA
| | - Vitor Pinheiro
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Joseph Shih
- Department of Natural Sciences and Mathematics, University of Saint Mary, Leavenworth, KS, 66048, USA
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Lynn Rothschild
- Planetary Science Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Friedman R. Simulations of Biomolecules in Electrolyte Solutions. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmar SE‐391 82 Sweden
| |
Collapse
|
14
|
Forero-Quintero LS, Ames S, Schneider HP, Thyssen A, Boone CD, Andring JT, McKenna R, Casey JR, Deitmer JW, Becker HM. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J Biol Chem 2018; 294:593-607. [PMID: 30446621 DOI: 10.1074/jbc.ra118.005536] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.
Collapse
Affiliation(s)
- Linda S Forero-Quintero
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Samantha Ames
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Hans-Peter Schneider
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Anne Thyssen
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Christopher D Boone
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Jacob T Andring
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Joseph R Casey
- the Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2E1, Canada, and
| | - Joachim W Deitmer
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Holger M Becker
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany, .,the Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| |
Collapse
|
15
|
The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget 2018; 9:27940-27957. [PMID: 29963253 PMCID: PMC6021347 DOI: 10.18632/oncotarget.25371] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Highly glycolytic tumor cells release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbate extracellular acidification and support the formation of a hostile environment. Transport activity of MCTs can be facilitated by non-catalytic interaction with carbonic anhydrase IX (CAIX), the expression of which has been shown to be upregulated under hypoxia. We have now studied the mechanisms that enable CAIX-mediated facilitation of proton-coupled lactate transport in breast cancer cells and Xenopus oocytes. Our results indicate that the proteoglycan like (PG) domain of CAIX could function as ‘proton antenna’ to facilitate MCT transport activity. Truncation of the PG domain and application of a PG-binding antibody significantly reduced proton-coupled lactate transport in MCT-expressing oocytes and hypoxic breast cancer cells, respectively. Furthermore, application of the PG-binding antibody reduced proliferation and migration of hypoxic cancer cells, suggesting that facilitation of proton-coupled lactate flux by the CAIX PG domain contributes to cancer cell survival under hypoxic conditions.
Collapse
|
16
|
Ahlstrand E, Zukerman Schpector J, Friedman R. Computer simulations of alkali-acetate solutions: Accuracy of the forcefields in difference concentrations. J Chem Phys 2018; 147:194102. [PMID: 29166095 DOI: 10.1063/1.4985919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
When proteins are solvated in electrolyte solutions that contain alkali ions, the ions interact mostly with carboxylates on the protein surface. Correctly accounting for alkali-carboxylate interactions is thus important for realistic simulations of proteins. Acetates are the simplest carboxylates that are amphipathic, and experimental data for alkali acetate solutions are available and can be compared with observables obtained from simulations. We carried out molecular dynamics simulations of alkali acetate solutions using polarizable and non-polarizable forcefields and examined the ion-acetate interactions. In particular, activity coefficients and association constants were studied in a range of concentrations (0.03, 0.1, and 1M). In addition, quantum-mechanics (QM) based energy decomposition analysis was performed in order to estimate the contribution of polarization, electrostatics, dispersion, and QM (non-classical) effects on the cation-acetate and cation-water interactions. Simulations of Li-acetate solutions in general overestimated the binding of Li+ and acetates. In lower concentrations, the activity coefficients of alkali-acetate solutions were too high, which is suggested to be due to the simulation protocol and not the forcefields. Energy decomposition analysis suggested that improvement of the forcefield parameters to enable accurate simulations of Li-acetate solutions can be achieved but may require the use of a polarizable forcefield. Importantly, simulations with some ion parameters could not reproduce the correct ion-oxygen distances, which calls for caution in the choice of ion parameters when protein simulations are performed in electrolyte solutions.
Collapse
Affiliation(s)
- Emma Ahlstrand
- Department of Chemistry and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
| | - Julio Zukerman Schpector
- Universidade Federal de São Carlos, Departamento de Química, CP 676, 13565-905 São Carlos, SP, Brazil
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
| |
Collapse
|
17
|
Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. eLife 2018; 7:35176. [PMID: 29809145 PMCID: PMC5986270 DOI: 10.7554/elife.35176] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
Many tumor cells produce vast amounts of lactate and acid, which have to be removed from the cell to prevent intracellular lactacidosis and suffocation of metabolism. In the present study, we show that proton-driven lactate flux is enhanced by the intracellular carbonic anhydrase CAII, which is colocalized with the monocarboxylate transporter MCT1 in MCF-7 breast cancer cells. Co-expression of MCTs with various CAII mutants in Xenopus oocytes demonstrated that CAII facilitates MCT transport activity in a process involving CAII-Glu69 and CAII-Asp72, which could function as surface proton antennae for the enzyme. CAII-Glu69 and CAII-Asp72 seem to mediate proton transfer between enzyme and transporter, but CAII-His64, the central residue of the enzyme's intramolecular proton shuttle, is not involved in proton shuttling between the two proteins. Instead, this residue mediates binding between MCT and CAII. Taken together, the results suggest that CAII features a moiety that exclusively mediates proton exchange with the MCT to facilitate transport activity.
Collapse
Affiliation(s)
- Sina Ibne Noor
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Somayeh Jamali
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Samantha Ames
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Silke Langer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Holger M Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
18
|
Singh G, Tripathi S, Shanker K, Sharma A. Cadmium-induced conformational changes in type 2 metallothionein of medicinal plant Coptis japonica: insights from molecular dynamics studies of apo, partially and fully metalated forms. J Biomol Struct Dyn 2018; 37:1520-1533. [PMID: 29624115 DOI: 10.1080/07391102.2018.1461688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Plants play an important role in the removal of excess heavy metals from soil and water. Medicinal plants can also have non-traditional use in phytoremediation technologies. Among the heavy metals, Cadmium (Cd) is the most abundant and readily taken up by the crop plants. Plant metallothioneins (MTs) are small proteins having cysteine-rich residues and appear to play key roles in metal homoeostasis. Plant metallothionein 2 (MT 2) from Coptis japonica (Gold-thread; CjMT 2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by 42 amino acids long linker region. In-silico analysis of MT 2 protein sequences of C. japonica was performed. In this study, ab initio methods were utilised for the prediction of three-dimensional structure of CjMT 2. After structure validation, heavy metal-binding sites were predicted for the selected modelled structures of CjMT 2. To obtain Cdi-CjMT 2 (i = 1-7), metalated complex individual docking experiments were performed. The stability of the metalated docked structures was assessed by molecular dynamics (MD) simulation studies. Our study showed that CjMT 2 binds up to 4 Cd2+ ions in two distinct domains: a N-terminal β-domain that binds to 2 Cd2+ ions and a C-terminal α-domain that binds with 2 Cd2+ ions. Our analysis revealed that Cys residues of alpha and beta domain and some residues of spacer region of CjMT 2 protein might be important for the cadmium interaction. MD simulation studies provided insight into metal-induced conformational changes and mechanism of metalation of CjMT 2, an intrinsically disordered protein. This study provides useful insights into mechanism of cadmium-type 2 metallothionein interaction.
Collapse
Affiliation(s)
- Garima Singh
- a Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Post Office CIMAP , Lucknow 226015 , India.,c Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Shubhandra Tripathi
- a Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Post Office CIMAP , Lucknow 226015 , India
| | - Karuna Shanker
- b Chemical Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Post Office CIMAP , Lucknow 226015 , India.,c Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Ashok Sharma
- a Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Post Office CIMAP , Lucknow 226015 , India.,c Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
19
|
Abstract
Biomembranes assemble and operate at the interface with electrolyte solutions. Interactions between ions in solutions and the lipid affect the membrane structure, dynamics and electrostatic potential. In this article, I review some of the experimental and computational methods that are used to study membrane–ions interactions. Experimental methods that account for membrane–ion interactions directly and indirectly are presented first. Then, studies in which molecular dynamics simulations were used to gain an understanding of membrane–ion interactions are surveyed. Finally, the current view on membrane–ion interactions and their significance is briefly discussed.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences and Centre of Excellence "Biomaterials Chemistry", Linnæus University, Kalmar, Sweden.
| |
Collapse
|
20
|
Monteserín M, Burrows HD, Valente AJM, Pais AACC, Di Paolo RE, Maçanita AL, Tapia MJ. Fluorescence Enhancement of a Cationic Fluorene-Phenylene Conjugated Polyelectrolyte Induced by Nonionic n-Alkyl Polyoxyethylene Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13350-13363. [PMID: 29112441 DOI: 10.1021/acs.langmuir.7b02818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The modulation of conjugated polyelectrolyte fluorescence response by nonionic surfactants is dependent on the structures of the surfactant and polymer, polymer average molecular weight, and polyelectrolyte-surfactant interactions. In this paper, we study the effect of nonionic n-alkyl polyoxyethylene surfactants (CiEj) with different alkyl chain lengths (CiE5 with i = 6, 8, 10, and 12) and number of oxyethylene groups (C12Ej with j = 5, 7, and 9) on the photophysics and ionic conductivity of poly{[9,9-bis(6'-N,N,N-trimethylammonium)-hexyl]-2,7-fluorene-alt-1,4-phenylene}bromide (HTMA-PFP) in dimethyl sulfoxide-water 4% (v/v). Molecular dynamics simulations show that HTMA-PFP chains tend to approach as the simulation evolves. However, the minimum distance between the polymer centers of mass increases upon addition of the surfactant and grows with both the surfactant alkyl chain length and the number of oxyethylene groups, although there are no specific polymer-surfactant interactions. A significant increase in the polymer emission intensity has been observed at surfactant concentrations around their critical micelle concentrations (cmcs), which is attributed to polymer aggregate disruption. However, an increase in the solution conductivity for concentrations above the C12E5 cmc has only been observed for the HTMA-PFP/C12E5 system. The enhancement of fluorescence emission intensity and conductivity upon surfactant addition increases with polymer average molecular weights and seems to be controlled by the polymer-surfactant proximity, which is maximum for C10E5 and C12E5.
Collapse
Affiliation(s)
- María Monteserín
- Departamento de Química, Universidad de Burgos , Plaza Misael Bañuelos, Burgos 09001, Spain
| | - Hugh D Burrows
- Centro de Química de Coimbra (CQC), Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- Centro de Química de Coimbra (CQC), Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
| | - A A C C Pais
- Centro de Química de Coimbra (CQC), Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Roberto E Di Paolo
- Departamento de Engenharia Química e Biologica, Instituto Superior Técnico (IST) , Avenida Rovisco Pais, P1049-001 Lisboa, Portugal
| | - Antonio L Maçanita
- Departamento de Engenharia Química e Biologica, Instituto Superior Técnico (IST) , Avenida Rovisco Pais, P1049-001 Lisboa, Portugal
| | - María J Tapia
- Departamento de Química, Universidad de Burgos , Plaza Misael Bañuelos, Burgos 09001, Spain
| |
Collapse
|
21
|
Popinako AV, Antonov MY, Chemeris AS, Shaitan KV, Sokolova OS. Analysis of the Interactions between Arp2/3 Complex and an Inhibitor Arpin by Molecular Dynamics Simulation. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917060203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Awasthi AA, Singh PK. Excited-State Proton Transfer on the Surface of a Therapeutic Protein, Protamine. J Phys Chem B 2017; 121:10306-10317. [PMID: 29032681 DOI: 10.1021/acs.jpcb.7b07151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Proton transfer reactions on biosurfaces play an important role in a myriad of biological processes. Herein, the excited-state proton transfer reaction of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) has been investigated in the presence of an important therapeutic protein, Protamine (PrS), using ground-state absorption, steady-state, and detailed time-resolved emission measurements. HPTS forms a 1:1 complex with Protamine with a high association constant of 2.6 × 104 M-1. The binding of HPTS with Protamine leads to a significant modulation in the ground-state prototropic equilibrium causing a downward shift of 1.1 unit in the acidity constant (pKa). In contrast to a large number of reports of slow proton transfer of HPTS on biosurfaces, interestingly, HPTS registers a faster proton transfer event in the presence of Protamine as compared to that of even the bulk aqueous buffer medium. Furthermore, the dimensionality of the proton diffusion process is also significantly reduced on the surface of Protamine that is in contrast to the behavior of HPTS in the bulk aqueous buffer medium, where the proton diffusion process is three-dimensional. The effect of ionic strength on the binding of HPTS toward PrS suggests a predominant role of electrostatic interaction between anionic HPTS and cationic Protamine, which is further supported by molecular docking simulations which predict that the most preferable binding site for HPTS on the surface of Protamine is surrounded by multiple cationic arginine residues.
Collapse
Affiliation(s)
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400085, India.,Homi Bhabha National Institute , Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
23
|
Ion-induced alterations of the local hydration environment elucidate Hofmeister effect in a simple classical model of Trp-cage miniprotein. J Mol Model 2017; 23:298. [PMID: 28956172 DOI: 10.1007/s00894-017-3471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Protein stability is known to be influenced by the presence of Hofmeister active ions in the solution. In addition to direct ion-protein interactions, this influence manifests through the local alterations of the interfacial water structure induced by the anions and cations present in this region. In our earlier works it was pointed out that the effects of Hofmeister active salts on the stability of Trp-cage miniprotein can be modeled qualitatively using non-polarizable force fields. These simulations reproduced the structure-stabilization and structure-destabilization effects of selected kosmotropic and chaotropic salts, respectively. In the present study we use the same model system to elucidate atomic processes behind the chaotropic destabilization and kosmotropic stabilization of the miniprotein. We focus on changes of the local hydration environment of the miniprotein upon addition of NaClO4 and NaF salts to the solution. The process is separated into two parts. In the first, 'promotion' phase, the protein structure is fixed, and the local hydration properties induced by the simultaneous presence of protein and ions are investigated, with a special focus on the interaction of Hofmeister active anions with the charged and polar sites. In the second, 'rearrangement' phase we follow changes of the hydration of ions and the protein, accompanying the conformational relaxation of the protein. We identify significant factors of an enthalpic and entropic nature behind the ion-induced free energy changes of the protein-water system, and also propose a possible atomic mechanism consistent with the Collins's rule, for the chaotropic destabilization and kosmotropic stabilization of protein conformation.
Collapse
|
24
|
Mahnam K, Foruzandeh S, Mirakhorli N, Saffar B. Experimental and theoretical studies of cadmium ions absorption by a new reduced recombinant defensin. J Biomol Struct Dyn 2017; 36:2004-2014. [PMID: 28617190 DOI: 10.1080/07391102.2017.1340851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heavy metal pollutants such as Cd, Hg, Pb, As, and Se are considered as both a global problem and a growing threat to the humanity. Being strongly poisonous to the metal-sensitive enzymes and leading to the growth inhibition and death of organisms, these metals have a toxic impact on the plants and animals. Inducing the metal-binding cysteine-rich peptides such as metallothioneins, phytochelatins, and defensins, higher organisms like plants and animals usually react to the heavy metal stress. In this study, a recombinant defensin protein was expressed in bean and its ability in the cadmium absorption was determined. Experimental studies revealed that this protein was able to absorb cadmium ions in reduced form more than oxide one. Molecular dynamics simulations were carried out in order to evaluation of experimental studies, using a model of Cd2+ or Na+ and Cl- ions enclosed in a fully hydrated simulation box with the recombinant defensin. The theoretical results also suggested that the reduced recombinant defensin was more powerful in the absorption of Cd2+ than its oxide form. The present study is the first report of Cd2+ absorption potential of this new reduced recombinant defensin. The results unraveled that this recombinant defensin can be adopted as a molecular switch in the cadmium pollution of the environment and also the important role of sulfur groups in the absorption of cadmium ions.
Collapse
Affiliation(s)
- Karim Mahnam
- a Faculty of Science, Department of Biology , Shahrekord University , Shahrekord , Iran
| | - Samira Foruzandeh
- b Faculty of Agriculture, Department of Plant Breeding and Biotechnology , Shahrekord University , Shahrekord , Iran
| | - Neda Mirakhorli
- b Faculty of Agriculture, Department of Plant Breeding and Biotechnology , Shahrekord University , Shahrekord , Iran
| | - Behnaz Saffar
- c Faculty of Science, Department of Genetics , Shahrekord University , Shahrekord , Iran
| |
Collapse
|
25
|
Gdalya H, Nachliel E, Gutman M, Einav Y, Tsfadia Y. The Translocation of Na +Ion Inside Human Thrombin Accounts for the Activation of the Enzyme. Isr J Chem 2017. [DOI: 10.1002/ijch.201600128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hagit Gdalya
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| | - Esther Nachliel
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| | - Menachem Gutman
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| | - Yulia Einav
- Bioengineering Department; Faculty of Engineering, HIT; Israel
| | - Yossi Tsfadia
- Department of Biochemistry and Molecular Biology; Faculty of Life Sciences; Tel-Aviv University; Israel
| |
Collapse
|
26
|
Chakraborty K, Sinha SK, Bandyopadhyay S. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein. J Chem Phys 2017; 144:205105. [PMID: 27250333 DOI: 10.1063/1.4952441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4-DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3-DNA complex.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
27
|
Ahlstrand E, Hermansson K, Friedman R. Interaction Energies in Complexes of Zn and Amino Acids: A Comparison of Ab Initio and Force Field Based Calculations. J Phys Chem A 2017; 121:2643-2654. [DOI: 10.1021/acs.jpca.6b12969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emma Ahlstrand
- Department of Chemistry
and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| | - Kersti Hermansson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Ran Friedman
- Department of Chemistry
and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| |
Collapse
|
28
|
Mahnam K, Raisi F. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame. J Biol Phys 2017; 43:87-103. [PMID: 28150114 DOI: 10.1007/s10867-016-9435-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022] Open
Abstract
Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe2+, Ca2+, Cd2+, and Zn2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.
Collapse
Affiliation(s)
- Karim Mahnam
- Biology Department, Faculty of Sciences, Shehrekord University, Shahrekord, Iran.
| | - Fatame Raisi
- Biology Department, Faculty of Sciences, Payam Nour University, Isfahan, Iran
| |
Collapse
|
29
|
Pineda De Castro LF, Dopson M, Friedman R. Biological Membranes in Extreme Conditions: Anionic Tetraether Lipid Membranes and Their Interactions with Sodium and Potassium. J Phys Chem B 2016; 120:10628-10634. [PMID: 27668511 DOI: 10.1021/acs.jpcb.6b06206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Archaea such as Sulfolobus acidocaldarius tolerate extreme temperatures and high acidity and can grow in the presence of toxic metals and low concentrations of Na+ or K+. It is believed that their unique tetraether membranes protect them from harsh environments and allow their survival under such conditions. We used molecular dynamics simulations to study membranes comprising glycerol dialkylnonitol tetraether lipids, which are the main component of S. acidocaldarius membranes, in solutions containing different concentrations of NaCl and KCl or with Na+ or K+ counterions (trace cations, 0 M). Anionic binding sites on the membranes were almost 50% occupied in the presence of counterions. The free energy of cation-phosphate complexation and the residence times of ions near the membranes were found to be both ion- and concentration-dependent. Sodium ions had more favorable interactions with the membranes and a longer residence time, whereas higher cation concentrations led to shorter ion residence times. When only counterions were present in the solutions, large residence times suggested that the membrane may function as a cation-attracting reservoir. The results suggested that the ions can be easily transferred to the cytoplasm as needed, explaining the growth curves of S. acidocaldarius under different salinities and pH.
Collapse
Affiliation(s)
- Luis Felipe Pineda De Castro
- Computational Chemistry and Biochemistry Research Group (CCBG), Department of Chemistry and Biomedical Sciences, ‡Centre of Excellence "Biomaterials Chemistry", and §Linnaeus University Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University , 391 82 Kalmar, Sweden
| | - Mark Dopson
- Computational Chemistry and Biochemistry Research Group (CCBG), Department of Chemistry and Biomedical Sciences, ‡Centre of Excellence "Biomaterials Chemistry", and §Linnaeus University Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University , 391 82 Kalmar, Sweden
| | - Ran Friedman
- Computational Chemistry and Biochemistry Research Group (CCBG), Department of Chemistry and Biomedical Sciences, ‡Centre of Excellence "Biomaterials Chemistry", and §Linnaeus University Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University , 391 82 Kalmar, Sweden
| |
Collapse
|
30
|
Galano-Frutos JJ, Morón MC, Sancho J. The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin. Phys Chem Chem Phys 2016; 17:28635-46. [PMID: 26443502 DOI: 10.1039/c5cp04504e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.
Collapse
Affiliation(s)
- Juan J Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain
| | - M Carmen Morón
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain and Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain
| |
Collapse
|
31
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
32
|
Chang CK, Wang SSS, Lo CH, Hsiao HC, Wu JW. Investigation of the early stages of human γD-crystallin aggregation process. J Biomol Struct Dyn 2016; 35:1042-1054. [PMID: 27025196 DOI: 10.1080/07391102.2016.1170632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cataract, a major cause of visual impairment worldwide, is a common disease of the eye lens related to protein aggregation. Several factors including the exposure of ultraviolet irradiation and possibly acidic condition may induce the unfolding and subsequent aggregation of the crystallin proteins leading to crystalline lens opacification. Human γD-crystallin (HγDC), a 173 residue monomeric protein, abundant in the nucleus of the human eye lens, has been shown to aggregate and form amyloid fibrils under acidic conditions and that this aggregation route is thought to be a potential initiation pathway for the onset of age-related nuclear cataract. However, the underlying mechanism of fibril formation remains elusive. This report is aimed at examining the structural changes and possible amyloid fibril formation pathway of HγDC using molecular dynamics and molecular docking simulations. Our findings demonstrated that incubation of HγDC under the acidic condition redistributes the protein surface charges and affects the protein interaction with its surrounding solvent environment. This brings about a twist motion in the overall tertiary structure that gives rise to newly formed anti-parallel β-strands in the C-terminal flexible loop regions. The change in protein structural conformation also involves an alteration in specific salt-bridge interactions. Altogether, these findings revealed a plausible mechanism for amyloid fibril formation of HγDC that is important to the early stages of HγDC aggregation involved in cataractogenesis.
Collapse
Affiliation(s)
- Chih-Kai Chang
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Steven S-S Wang
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Chun-Hsien Lo
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Hsiang-Chun Hsiao
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Josephine W Wu
- b Department of Optometry, Central Taiwan University of Science and Technology , Taichung 40601 , Taiwan
| |
Collapse
|
33
|
Saffar B, Mehri Ghahfarrokhi A, Mahnam K, Mobini-Dehkordi M. Improvement of Cd(2+) uptake ability of SmtA protein by Lys/Cys mutation; experimental and theoretical studies. J Biomol Struct Dyn 2015; 33:2347-59. [PMID: 26006175 DOI: 10.1080/07391102.2015.1054431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The improved Cd(2+) surface affinity characteristics of a mutated cyanobacterial metallothionein SmtA (K45C) were investigated via experimental and theoretical methods. Molecular dynamics simulations were carried out using a model of Cd(2+) and other ions enclosed in a fully hydrated simulation box with the wild-type or mutated SmtA protein. The theoretical results suggested that mutated SmtA was more powerful in absorption of Cd(2+) than the wild-type protein. Then, the mutated smtA gene (from Synechococcus PCC 7942) was synthesized by simplified gene synthesis method and expressed on isopropyl-beta-d-thiogalactopyranoside induction. The protein expression was investigated by SDS-PAGE and verified by Western blotting. Finally, cadmium uptake ratio of mutant protein toward wild type was analyzed by atomic absorption. This study is the first example of cytoplasmic expression of a mutant protein. Experimental results also verified that the mutation intensifies uptake of Cd(2+) ions.
Collapse
Affiliation(s)
- B Saffar
- a Faculty of Science, Department of Genetics , Shahrekord University , Shahrekord , Iran.,b Biotechnology Research Institute , Shahrekord University , Shahrekord , Iran
| | - A Mehri Ghahfarrokhi
- c Master of Science, Department of Genetics , Shahrekord University , Shahrekord , Iran
| | - K Mahnam
- d Faculty of Science, Department of Biology , Shahrekord University , Shahrekord , Iran
| | - M Mobini-Dehkordi
- a Faculty of Science, Department of Genetics , Shahrekord University , Shahrekord , Iran
| |
Collapse
|
34
|
Ou SC, Cui D, Wezowicz M, Taufer M, Patel S. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations. J Comput Chem 2015; 36:1196-212. [PMID: 25868455 PMCID: PMC4445429 DOI: 10.1002/jcc.23906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 11/06/2022]
Abstract
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Di Cui
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Matthew Wezowicz
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michela Taufer
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
35
|
Friedman R. Structural and computational insights into the versatility of cadmium binding to proteins. Dalton Trans 2014; 43:2878-87. [PMID: 24346117 DOI: 10.1039/c3dt52810c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cadmium is a highly toxic group XII metal, similar to zinc and mercury. Unlike zinc, which is one of the most common metal cofactors in biology, cadmium is highly toxic. Many Zn(2+)-binding proteins can bind Cd(2+)-ions without significantly affecting their structures. Here, the protein data bank is analysed with regard to protein-cadmium interactions, which shows that cadmium can bind to a variety of ion binding sites in proteins. Statistical analysis of Cd(2+)-side chain interactions is compared with a similar analysis of other ions. This analysis reveals that with regard to amino acid side-chain preference, Cd(2+) is more similar to Mn(2+) than to Zn(2+) or Hg(2+). Finally, the interaction energies of three native metal binding proteins are calculated where Cd(2+) binds instead of Zn(2+), Ca(2+) or Cu(2+). The interaction energies are decomposed into individual components whose contributions are discussed.
Collapse
Affiliation(s)
- Ran Friedman
- Computational Chemistry and Biochemistry Research Group, Department of Chemistry and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
| |
Collapse
|
36
|
Cui D, Ou S, Peters E, Patel S. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces. J Phys Chem B 2014; 118:4490-504. [PMID: 24701961 PMCID: PMC4010293 DOI: 10.1021/jp4105294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/03/2014] [Indexed: 11/29/2022]
Abstract
We explore anion-induced interface fluctuations near protein-water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler ( J. Phys. Chem. B 2010 , 114 , 1954 - 1958 ). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein-water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid-vapor interfaces. We find that as in the case of a pure liquid-vapor interface, at the hydrophobic protein-water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid-vapor interfaces, we find that iodide induces larger fluctuations of the protein-water interface than chloride.
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Shuching Ou
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric Peters
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
37
|
Gillespie CM, Asthagiri D, Lenhoff AM. Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase. CRYSTAL GROWTH & DESIGN 2014; 14:46-57. [PMID: 24955067 PMCID: PMC4061714 DOI: 10.1021/cg401063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Crystal polymorphs of glucose isomerase were examined to characterize the properties and to quantify the energetics of protein crystal growth. Transitions of polymorph stability were measured in poly(ethylene glycol)/NaCl solutions, and one transition point was singled out for more detailed quantitative analysis. Single crystal x-ray diffraction was used to confirm space groups and identify complementary crystal structures. Crystal polymorph stability was found to depend on the NaCl concentration, with stability transitions requiring > 1 M NaCl combined with a low concentration of PEG. Both salting-in and salting-out behavior was observed and was found to differ for the two polymorphs. For NaCl concentrations above the observed polymorph transition, the increase in solubility of the less stable polymorph together with an increase in the osmotic second virial coefficient suggests that changes in protein hydration upon addition of salt may explain the experimental trends. A combination of atomistic and continuum models was employed to dissect this behavior. Molecular dynamics simulations of the solvent environment were interpreted using quasi-chemical theory to understand changes in protein hydration as a function of NaCl concentration. The results suggest that protein surface hydration and Na+ binding may introduce steric barriers to contact formation, resulting in polymorph selection.
Collapse
|
38
|
Mahnam K, Saffar B, Mobini-Dehkordi M, Fassihi A, Mohammadi A. Design of a novel metal binding peptide by molecular dynamics simulation to sequester Cu and Zn ions. Res Pharm Sci 2014; 9:69-82. [PMID: 25598801 PMCID: PMC4292183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal toxicity has serious adverse effects on the environment. The metal sequestering characteristics of a novel metal binding peptide (Glu-Cys)11 Gly+linker+hexahistidine (EC11:His6) was investigated to determine if it can absorb Cu(2+) or Zn(2+) cations. Molecular dynamics simulations were carried out using a model of 6 Cu(2+) or Zn(2+) and other ions enclosed in a fully hydrated simulation box with the designed peptide. Totally, 240 nano second (ns) simulations were done in three phases. Results showed that the selected linker is able to separate two domains of this peptide and that the carboxyl oxygens of Glu residues of EC11 in the designed peptide can absorb these ions. Sequestration of Cu(2+) or Zn(2+) ions by the designed peptide does not change overall tertiary and secondary structures of peptide.
Collapse
Affiliation(s)
- K. Mahnam
- Biology Department, Faculty of Science, Shahrekord University, Shahrekord, I.R. Iran
| | - B. Saffar
- Genetics Department, Faculty of Science, Shahrekord University, Shahrekord, I.R. Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, I.R. Iran
| | - M. Mobini-Dehkordi
- Genetics Department, Faculty of Science, Shahrekord University, Shahrekord, I.R. Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, I.R. Iran
| | - A. Fassihi
- Department of Medicinal Chemistry, and Isfahan Bioinformatic Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - A. Mohammadi
- Genetics Department, Faculty of Science, Shahrekord University, Shahrekord, I.R. Iran
| |
Collapse
|
39
|
A systematic method for analysing the protein hydration structure of T4 lysozyme. J Mol Recognit 2013; 26:479-87. [DOI: 10.1002/jmr.2290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/07/2022]
|
40
|
An in vitro study of the role of β-boswellic acid in the microtubule assembly dynamics. FEBS Lett 2012; 586:4132-8. [DOI: 10.1016/j.febslet.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/15/2012] [Accepted: 10/05/2012] [Indexed: 11/24/2022]
|
41
|
Extended protein/water H-bond networks in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1177-90. [PMID: 22503827 DOI: 10.1016/j.bbabio.2012.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
Abstract
Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
42
|
Friedman R, Caflisch A. Surfactant effects on amyloid aggregation kinetics. J Mol Biol 2011; 414:303-12. [PMID: 22019473 DOI: 10.1016/j.jmb.2011.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/06/2011] [Accepted: 10/09/2011] [Indexed: 10/16/2022]
Abstract
There is strong experimental evidence of the influence of surfactants (e.g., fatty acids) on the kinetics of amyloid fibril formation. However, the structures of mixed assemblies and interactions between surfactants and fibril-forming peptides are still not clear. Here, coarse-grained simulations are employed to study the aggregation kinetics of amyloidogenic peptides in the presence of amphiphilic lipids. The simulations show that the lower the fibril formation propensity of the peptides, the higher the influence of the surfactants on the peptide self-assembly kinetics. In particular, the lag phase of weakly aggregating peptides increases because of the formation of mixed oligomers, which are promoted by hydrophobic interactions and favorable entropy of mixing. A transient peak in the number of surfactants attached to the growing fibril is observed before reaching the mature fibril in some of the simulations. This peak originates from transient fibrillar defects consisting of exposed hydrophobic patches on the fibril surface, which provide a possible explanation for the temporary maximum of fluorescence observed sometimes in kinetic traces of the binding of small-molecule dyes to amyloid fibrils.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
43
|
Friedman R. Ions and the Protein Surface Revisited: Extensive Molecular Dynamics Simulations and Analysis of Protein Structures in Alkali-Chloride Solutions. J Phys Chem B 2011; 115:9213-23. [DOI: 10.1021/jp112155m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ran Friedman
- School of Natural Sciences, Linnæus University, 391 82 Kalmar, Sweden
| |
Collapse
|
44
|
Abstract
Ubiquitin-like modifications are macromolecular chemistry for which our understanding of the enzymatic mechanisms is lacking. Most E3 ligases in ubiquitin-like modifications do not directly participate in chemistry but are thought to confer allosteric effects; however, the nature of the allosteric effects has been elusive. Recent molecular dynamics simulations suggested that an E3 binding enhances the population of the conformational states of the E2·SUMO thioester that favor reactions. In this study, we conducted the first temperature-dependent enzyme kinetic analysis to investigate the role of an E3 on activation entropy and enthalpy. The small ubiquitin-like modifier (SUMO) E3, RanBP2, confers unusually large, favorable activation entropy to lower the activation energy of the reaction. Mutants of RanBP2, designed to alter the flexibilities of the E2·SUMO thioester, showed a direct correlation of their favorable entropic effects with their ability to restrict the conformational flexibility of the E2·SUMO thioester. While the more favorable activation entropy is consistent with the previously suggested role of E3 in conformational selection, the large positive entropy suggests a significant role of solvent in catalysis. Indeed, molecular dynamics simulations in explicit water revealed that the more stable E2·SUMO thioester upon E3 binding results in stabilization of a large number of bound water molecules. Liberating such structured water at the transition state can result in large favorable activation entropy but unfavorable activation enthalpy. The entropy-driven mechanism of the E3 is consistent with the lack of structural conservation among E3s despite their similar functions. This study also illustrates how proteins that bind both SUMO and E2 can function as E3s and how intrinsically unstructured proteins can enhance macromolecular chemistry in addition to their known advantages in protein--protein interactions.
Collapse
Affiliation(s)
- Khue Truong
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
45
|
Cohen B, Martin Álvarez C, Alarcos Carmona N, Organero JA, Douhal A. Proton-Transfer Reaction Dynamics within the Human Serum Albumin Protein. J Phys Chem B 2011; 115:7637-47. [DOI: 10.1021/jp200294q] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Cristina Martin Álvarez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Noemí Alarcos Carmona
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Juan Angel Organero
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
46
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
47
|
The dynamics of Ca2+ ions within the solvation shell of calbindin D9k. PLoS One 2011; 6:e14718. [PMID: 21364983 PMCID: PMC3043054 DOI: 10.1371/journal.pone.0014718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/28/2011] [Indexed: 11/25/2022] Open
Abstract
The encounter of a Ca2+ ion with a protein and its subsequent
binding to specific binding sites is an intricate process that cannot be fully
elucidated from experimental observations. We have applied Molecular Dynamics to
study this process with atomistic details, using Calbindin D9k (CaB) as a model
protein. The simulations show that in most of the time the Ca2+
ion spends within the Debye radius of CaB, it is being detained at the 1st and
2nd solvation shells. While being detained near the protein, the diffusion
coefficient of the ion is significantly reduced. However, due to the relatively
long period of detainment, the ion can scan an appreciable surface of the
protein. The enhanced propagation of the ion on the surface has a functional
role: significantly increasing the ability of the ion to scan the protein's
surface before being dispersed to the bulk. The contribution of this mechanism
to Ca2+ binding becomes significant at low ion concentrations,
where the intervals between successive encounters with the protein are getting
longer. The efficiency of the surface diffusion is affected by the distribution
of charges on the protein's surface. Comparison of the Ca2+
binding dynamics in CaB and its E60D mutant reveals that in the wild type (WT)
protein the carboxylate of E60 function as a preferred landing-site for the
Ca2+ arriving from the bulk, followed by delivering it to
the final binding site. Replacement of the glutamate by aspartate significantly
reduced the ability to transfer Ca2+ ions from D60 to the final
binding site, explaining the observed decrement in the affinity of the mutated
protein to Ca2+.
Collapse
|
48
|
Tapia M, Monteserín M, Costoyas A, Burrows H, Marques, A, Pais A, Valente A, Mallavia R, Scherf U, Pinazo A, Pérez L, Morán M. Effects of commercial non-ionic alkyl oxyethylene and ionic biocompatible arginine-based surfactants on the photophysical behaviour of several poly(fluorene-1,4-phenylene)s. J Mol Liq 2010. [DOI: 10.1016/j.molliq.2010.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Ojemyr L, Sandén T, Widengren J, Brzezinski P. Lateral proton transfer between the membrane and a membrane protein. Biochemistry 2009; 48:2173-9. [PMID: 19166299 DOI: 10.1021/bi8022152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.
Collapse
Affiliation(s)
- Linda Ojemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | |
Collapse
|
50
|
|