1
|
Zhou H, Shiel E, Bell T, Lin S, Lenhert S. Kinetic Mechanism of Surfactant-Based Molecular Recognition: Selective Permeability across an Oil-Water Interface Regulated by Supramolecular Aggregates. J Phys Chem B 2023; 127:10201-10214. [PMID: 37972386 DOI: 10.1021/acs.jpcb.3c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Lipids are known to play a vital role in the molecular organization of all cellular life. Molecular recognition is another fundamental biological process that is generally attributed to biological polymers, such as proteins and nucleic acids. However, there is evidence that aggregates of lipids and lipid-like molecules are also capable of selectively binding to or regulating the partitioning of other molecules. We previously demonstrated that a model two-phase octanol/water system can selectively partition Red 40 and Blue 1 dyes added to an aqueous phase, with the selectivity depending on the surfactant (e.g., cetyltrimethylammonium bromide) dissolved in the organic phase. Here, we elucidate the mechanism of molecular recognition in this system by using quantitative partitioning experiments and molecular dynamics (MD) simulations. Our results indicate that the selectivity for the red dye is thermodynamically favored at all surfactant concentrations, while selectivity for the blue dye is kinetically favored at high surfactant concentrations. The kinetic selectivity for the blue dye correlates with the presence of molecular aggregation at the oil-water interface. Coarse-grained MD simulations elucidate nanoscale supramolecular structures that can preferentially bind one small molecule rather than another at an interface, providing a selectively permeable barrier in the absence of proteins. The results suggest a new supramolecular mechanism for molecular recognition with potential applications in drug delivery, drug discovery, and biosensing.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306, United States
| | - Emily Shiel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Tracey Bell
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306, United States
| | - Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
2
|
Koh DHZ, Naito T, Na M, Yeap YJ, Rozario P, Zhong FL, Lim KL, Saheki Y. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat Commun 2023; 14:6773. [PMID: 37880244 PMCID: PMC10600248 DOI: 10.1038/s41467-023-42498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Cholesterol is important for membrane integrity and cell signaling, and dysregulation of the distribution of cellular cholesterol is associated with numerous diseases, including neurodegenerative disorders. While regulated transport of a specific pool of cholesterol, known as "accessible cholesterol", contributes to the maintenance of cellular cholesterol distribution and homeostasis, tools to monitor accessible cholesterol in live cells remain limited. Here, we engineer a highly sensitive accessible cholesterol biosensor by taking advantage of the cholesterol-sensing element (the GRAM domain) of an evolutionarily conserved lipid transfer protein, GRAMD1b. Using this cholesterol biosensor, which we call GRAM-W, we successfully visualize in real time the distribution of accessible cholesterol in many different cell types, including human keratinocytes and iPSC-derived neurons, and show differential dependencies on cholesterol biosynthesis and uptake for maintaining levels of accessible cholesterol. Furthermore, we combine GRAM-W with a dimerization-dependent fluorescent protein (ddFP) and establish a strategy for the ultrasensitive detection of accessible plasma membrane cholesterol. These tools will allow us to obtain important insights into the molecular mechanisms by which the distribution of cellular cholesterol is regulated.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Minyoung Na
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, 308232, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Zhukov A, Popov V. Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling. Int J Mol Sci 2023; 24:11226. [PMID: 37446404 DOI: 10.3390/ijms241311226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This paper deals with the problems encountered in the study of eukaryotic cell membranes. A discussion on the structure and composition of membranes, lateral heterogeneity of membranes, lipid raft formation, and involvement of actin and cytoskeleton networks in the maintenance of membrane structure is included. Modern methods for the study of membranes and their constituent domains are discussed. Various simplified models of biomembranes and lipid rafts are presented. Computer modelling is considered as one of the most important methods. This is stated that from the study of the plasma membrane structure, it is desirable to proceed to the diverse membranes of all organelles of the cell. The qualitative composition and molar content of individual classes of polar lipids, free sterols and proteins in each of these membranes must be considered. A program to create an open access electronic database including results obtained from the membrane modelling of individual cell organelles and the key sites of the membranes, as well as models of individual molecules composing the membranes, has been proposed.
Collapse
Affiliation(s)
- Anatoly Zhukov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Popov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
4
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
5
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Schoop V, Martello A, Eden ER, Höglinger D. Cellular cholesterol and how to find it. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158989. [PMID: 34118431 DOI: 10.1016/j.bbalip.2021.158989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.
Collapse
Affiliation(s)
- Valentin Schoop
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Andrea Martello
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Emily R Eden
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Doris Höglinger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Sankaran J, Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng 2020; 4:020901. [PMID: 32478279 PMCID: PMC7228782 DOI: 10.1063/1.5143945] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence spectroscopy has been a cornerstone of research in membrane dynamics and organization. Technological advances in fluorescence spectroscopy went hand in hand with discovery of various physicochemical properties of membranes at nanometric spatial and microsecond timescales. In this perspective, we discuss the various challenges associated with quantification of physicochemical properties of membranes and how various modes of fluorescence spectroscopy have overcome these challenges to shed light on the structure and organization of membranes. Finally, we discuss newer measurement strategies and data analysis tools to investigate the structure, dynamics, and organization of membranes.
Collapse
|
8
|
Lubart Q, Hannestad JK, Pace H, Fjällborg D, Westerlund F, Esbjörner EK, Bally M. Lipid vesicle composition influences the incorporation and fluorescence properties of the lipophilic sulphonated carbocyanine dye SP-DiO. Phys Chem Chem Phys 2020; 22:8781-8790. [DOI: 10.1039/c9cp04158c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid membrane composition influences insertion efficiency and photophysical properties of lipophilic membrane-inserting dyes.
Collapse
Affiliation(s)
- Quentin Lubart
- Division of Biological Physics
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Jonas K. Hannestad
- Division of Biological Physics
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Hudson Pace
- Department of Integrative Medical Biology
- Umeå University
- 90185 Umeå
- Sweden
| | - Daniel Fjällborg
- Division of Biological Physics
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Fredrik Westerlund
- Division of Chemical Biology
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Elin K. Esbjörner
- Division of Chemical Biology
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine
- Umeå University
- 90185 Umeå
- Sweden
| |
Collapse
|
9
|
Lee TH, Hall K, Aguilar MI. The Effect of Charge on Melittin-Induced Changes in Membrane Structure and Morphology. Aust J Chem 2020. [DOI: 10.1071/ch19500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The binding of melittin to a range of phospholipid bilayers was studied using dual polarisation interferometry and atomic force microscopy. The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC), together with mixtures of DMPC/dimyristylphosphatidylglycerol (DMPG) and DMPC/DMPG/cholesterol. Melittin caused significant disruption on all bilayers, but differences in morphological changes during binding were different on each membrane. Overall, the results demonstrate that the process of membrane disruption follows distinct structural changes for different lipid mixtures irrespective of the strength of binding to the membrane surface.
Collapse
|
10
|
Collard L, Sinjab F, Notingher I. Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles. Biophys J 2019; 117:1589-1598. [PMID: 31587827 PMCID: PMC6839040 DOI: 10.1016/j.bpj.2019.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular plasma membrane deformability and stability is important in a range of biological processes. Changes in local curvature of the membrane affect the lateral movement of lipids, affecting the biophysical properties of the membrane. An integrated holographic optical tweezers and Raman microscope was used to investigate the effect of curvature gradients induced by optically stretching individual giant unilamellar vesicles (GUVs) on lipid packing and lateral segregation of cholesterol in the bilayer. The spatially resolved Raman analysis enabled detection of induced phase separation and changes in lipid ordering in individual GUVs. Using deuterated cholesterol, the changes in lipid ordering and phase separation were linked to lateral sorting of cholesterol in the stretched GUVs. Stretching the GUVs in the range of elongation factors 1-1.3 led to an overall decrease in cholesterol concentration at the edges compared to the center of stretched GUVs. The Raman spectroscopy results were consistent with a model of the bilayer accounting for cholesterol sorting in both bilayer leaflets, with a compositional asymmetry of 0.63 ± 0.04 in favor of the outer leaflet. The results demonstrate the potential of the integrated holographic optical tweezers-Raman technique to induce deformations to individual lipid vesicles and to simultaneously provide quantitative and spatially resolved molecular information. Future studies can extend to include more realistic models of cell membranes and potentially live cells.
Collapse
Affiliation(s)
- Liam Collard
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Faris Sinjab
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.
| |
Collapse
|
11
|
Reinholdt P, Wind S, Wüstner D, Kongsted J. Computational Characterization of a Cholesterol-Based Molecular Rotor in Lipid Membranes. J Phys Chem B 2019; 123:7313-7326. [PMID: 31381343 DOI: 10.1021/acs.jpcb.9b04967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biophysical properties of cellular membranes critically depend on their content of cholesterol and its interaction with various other lipid species. Cholesterol-dependent friction at the nanoscale can be studied with molecular rotors, whose quantum yield depends on rotational dynamics of functional groups during their excited state lifetime. Here, we present a detailed computational analysis of a phenyl-BODIPY-linked cholesterol based molecular rotor in direct comparison with the well-known TopFluor-cholesterol. We describe a new parametrization strategy of force field parameters for the BODIPY moiety and carry out extensive molecular dynamics simulations of the probe in membranes in the absence or presence of cholesterol. Our study quantifies the extent of membrane perturbation by these probes, analyzes their tilting resistance in the bilayer and derives dynamic properties directly related to the rotor propensity. We show that phenyl-BODIPY-cholesterol bears potential as a cholesterol-dependent molecular rotor to report about microviscosity of sterol-containing model and cell membranes.
Collapse
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Signe Wind
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| |
Collapse
|
12
|
Mechanism of local anesthetic-induced disruption of raft-like ordered membrane domains. Biochim Biophys Acta Gen Subj 2019; 1863:1381-1389. [PMID: 31207252 DOI: 10.1016/j.bbagen.2019.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Because ordered membrane domains, called lipid rafts, regulate activation of ion channels related to the nerve pulse, lipids rafts are thought to be a possible target for anesthetic molecules. To understand the mechanism of anesthetic action, we examined influence of representative local anesthetics (LAs); dibucaine, tetracaine, and lidocaine, on raft-like liquid-ordered (Lo)/non-raft-like liquid-disordered (Ld) phase separation. METHODS Impact of LAs on the phase separation was observed by fluorescent microscopy. LA-induced perturbation of the Lo and Ld membranes was examined by DPH anisotropy measurements. Incorporation of LAs to the membranes was examined by fluorescent anisotropy of LAs. The biding location of the LAs was indicated by small angle x-ray diffraction (SAXD). RESULTS Fluorescent experiments showed that dibucaine eliminated the phase separation the most effectively, followed by tetracaine and lidocaine. The disruption of the phase separation can be explained by their disordering effects on the Lo membrane. SAXD and other experiments further suggested that dibucaine's most potent perturbation of the Lo membrane is attributable to its deeper immersion and bulky molecular structure. Tetracaine, albeit immersed in the Lo membrane as deeply as dibucaine, less perturbs the Lo membrane probably because of its smaller bulkiness. Lidocaine hardly reaches the hydrophobic region, resulting in the weakest Lo membrane perturbation. CONCLUSION Dibcaine perturbs the Lo membrane the most effectively, followed by tetracaine and lidocaine. This ranking correlates with their anesthetic potency. GENERAL SIGNIFICANCE This study suggests a possible mechanistic link between anesthetic action and perturbation of lipid rafts.
Collapse
|
13
|
Oropesa-Nuñez R, Keshavan S, Dante S, Diaspro A, Mannini B, Capitini C, Cecchi C, Stefani M, Chiti F, Canale C. Toxic HypF-N Oligomers Selectively Bind the Plasma Membrane to Impair Cell Adhesion Capability. Biophys J 2019; 114:1357-1367. [PMID: 29590593 DOI: 10.1016/j.bpj.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
The deposition of fibrillar protein aggregates in human organs is the hallmark of several pathological states, including highly debilitating neurodegenerative disorders and systemic amyloidoses. It is widely accepted that small oligomers arising as intermediates in the aggregation process, released by fibrils, or growing in secondary nucleation steps are the cytotoxic entities in protein-misfolding diseases, notably neurodegenerative conditions. Increasing evidence indicates that cytotoxicity is triggered by the interaction between nanosized protein aggregates and cell membranes, even though little information on the molecular details of such interaction is presently available. In this work, we propose what is, to our knowledge, a new approach, based on the use of single-cell force spectroscopy applied to multifunctional substrates, to study the interaction between protein oligomers, cell membranes, and/or the extracellular matrix. We compared the interaction of single Chinese hamster ovary cells with two types of oligomers (toxic and nontoxic) grown from the N-terminal domain of the Escherichia coli protein HypF. We were able to quantify the affinity between both oligomer type and the cell membrane by measuring the mechanical work needed to detach the cells from the aggregates, and we could discriminate the contributions of the membrane lipid and protein fractions to such affinity. The fundamental role of the ganglioside GM1 in the membrane-oligomers interaction was also highlighted. Finally, we observed that the binding of toxic oligomers to the cell membrane significantly affects the functionality of adhesion molecules such as Arg-Gly-Asp binding integrins, and that this effect requires the presence of the negatively charged sialic acid moiety of GM1.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Sandeep Keshavan
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy.
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
14
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
15
|
Zhong Y, Wang G. Three-Dimensional Heterogeneous Structure Formation on a Supported Lipid Bilayer Disclosed by Single-Particle Tracking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11857-11865. [PMID: 30170491 DOI: 10.1021/acs.langmuir.8b01690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3D) single-particle tracking was employed to study the lipid membrane morphology change at different pHs on glass supported lipid bilayers (SLBs) [1,2-dioleoyl- sn-glycero-3-phosphoethanolamine/1,2-dioleoyl- sn-glycero-3-phospho-l-serine (sodium salt)/1,2-dioleoyl- sn-glycero-3-phosphocholine = 5:3:2]. Fluorescently tagged, carboxylated polystyrene nanoparticles (of 100 nm) were used as the probes. At neutral pHs, the particles' diffusion was close to two-dimensional Brownian motion, indicating a mainly planar structure of the SLBs. When the environmental pH was tuned to be basic at 10.0, transiently confined diffusions within small areas were frequently observed. These confinements had a lateral dimension of 100-200 nm. Most interestingly, they showed 3D bulged structures protruding from the planar lipid bilayer. The particles were trapped by these 3D structures for a short period of time (∼0.75 s), with an estimated escape activation energy of ∼4.2 kB T. Nonuniform distribution of pH-sensitive lipids in the membrane was proposed to explain the formation of these 3D heterogeneous structures. This work suggests that the geometry of the 3D lipid structures can play a role in tuning the particle-lipid surface interactions. It sheds new light on the origin of lateral heterogeneity on the lipid membrane.
Collapse
Affiliation(s)
- Yaning Zhong
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Gufeng Wang
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
16
|
Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2012-2017. [DOI: 10.1016/j.bbamem.2018.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/19/2022]
|
17
|
Yeager AN, Weber PK, Kraft ML. Cholesterol is enriched in the sphingolipid patches on the substrate near nonpolarized MDCK cells, but not in the sphingolipid domains in their plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2004-2011. [PMID: 29684331 DOI: 10.1016/j.bbamem.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Information about the distributions of cholesterol and sphingolipids within the plasma membranes of mammalian cells provides insight into the roles of these molecules in membrane function. In this report, high-resolution secondary ion mass spectrometry was used to image the distributions of metabolically incorporated rare isotope-labeled sphingolipids and cholesterol on the surfaces of nonpolarized epithelial cells. Sphingolipid domains that were not enriched with cholesterol were detected in the plasma membranes of subconfluent Madin-Darby canine kidney cells. Surprisingly, cholesterol-enriched sphingolipid patches were observed on the substrate adjacent to these cells. Based on the shapes of these cholesterol-enriched sphingolipid patches on the substrate and their proximity to cellular projections, we hypothesize that they are deposits of membranous particles released by the cell.
Collapse
Affiliation(s)
- Ashley N Yeager
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
| | - Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
18
|
Dumitru AC, Conrard L, Lo Giudice C, Henriet P, Veiga-da-Cunha M, Derclaye S, Tyteca D, Alsteens D. High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes. Chem Commun (Camb) 2018; 54:6903-6906. [DOI: 10.1039/c8cc02201a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific mapping using AFM tips derivatized with toxin fragments targeting specific lipids as a novel approach to evidence lateral lipid heterogeneities at high-resolution.
Collapse
Affiliation(s)
- Andra C. Dumitru
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Louise Conrard
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Patrick Henriet
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Maria Veiga-da-Cunha
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Sylvie Derclaye
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Donatienne Tyteca
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| |
Collapse
|
19
|
Teske N, Sibold J, Schumacher J, Teiwes NK, Gleisner M, Mey I, Steinem C. Continuous Pore-Spanning Lipid Bilayers on Silicon Oxide-Coated Porous Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14175-14183. [PMID: 29148811 DOI: 10.1021/acs.langmuir.7b02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A number of techniques has been developed and analyzed in recent years to generate pore-spanning membranes (PSMs). While quite a number of methods rely on nanoporous substrates, only a few use micrometer-sized pores to be able to individually resolve suspending membranes by means of fluorescence microscopy. To be able to produce PSMs on pores that are micrometer in size, an orthogonal functionalization strategy resulting in a hydrophilic surface is highly desirable. Here, we report on a method to prepare PSMs based on the evaporation of a thin layer of silicon monoxide on top of the porous substrate. PM-IRRAS experiments demonstrate that the final surface is composed of SiOx with 1 < x < 2. The hydrophilic surface turned out to be well suited to spread giant unilamellar vesicles forming PSMs. As the method does not rely on a gold coating as frequently used for orthogonal functionalization, fluorescence micrographs provide information not only from the freestanding membrane areas but also from the supported ones. The observation of the entire PSM area enabled us to observe phase-separation in these membranes on the freestanding and supported parts as well as protein binding and possible lipid reorganization of the membranes induced by binding of the protein Shiga toxin.
Collapse
Affiliation(s)
- Nelli Teske
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Jeremias Sibold
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Johannes Schumacher
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolas K Teiwes
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Martin Gleisner
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
21
|
Mo GCH, Yip CM. Structural templating of J-aggregates: Visualizing bis(monoacylglycero)phosphate domains in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1687-1695. [PMID: 28844737 DOI: 10.1016/j.bbapap.2017.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Identifying the key structural and dynamical determinants that drive the association of biomolecules, whether in solution, or perhaps more importantly in a membrane environment, has critical implications for our understanding of cellular dynamics, processes, and signaling. With recent advances in high-resolution imaging techniques, from the development of new molecular labels to technical advances in imaging methodologies and platforms, researchers are now reaping the benefits of being able to directly characterize and quantify local dynamics, structures, and conformations in live cells and tissues. These capabilities are providing unique insights into association stoichiometries, interactions, and structures on sub-micron length scales. We previously examined the role of lipid headgroup chemistry and phase state in guiding the formation of pseudoisocyanine (PIC) dye J-aggregates on supported planar bilayers [Langmuir, 25, 10719]. We describe here how these same J-aggregates can report on the in situ formation of organellar membrane domains in live cells. Live cell hyperspectral confocal microscopy using GFP-conjugated GTPase markers of early (Rab5) and late (Rab7) endosomes revealed that the PIC J-aggregates were confined to domains on either the limiting membrane or intralumenal vesicles (ILV) of late endosomes, known to be enriched in the anionic lipid bis(monoacylglycero)phosphate (BMP). Correlated confocal fluorescence - atomic force microscopy performed on endosomal membrane-mimetic supported planar lipid bilayers confirmed BMP-specific templating of the PIC J-aggregates. These data provide strong evidence for the formation of BMP-rich lipid domains during multivesicular body formation and portend the application of structured dye aggregates as markers of cellular membrane domain structure, size, and formation.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher M Yip
- Department of Biochemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada.
| |
Collapse
|
22
|
Hariri AA, Hamblin GD, Hardwick JS, Godin R, Desjardins JF, Wiseman PW, Sleiman HF, Cosa G. Stoichiometry and Dispersity of DNA Nanostructures Using Photobleaching Pair-Correlation Analysis. Bioconjug Chem 2017; 28:2340-2349. [DOI: 10.1021/acs.bioconjchem.7b00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Jean-Francois Desjardins
- Department
of Physics, McGill University, 3600 University Street, Montreal, Quebec H3A 0B8, Canada
| | - Paul W. Wiseman
- Department
of Physics, McGill University, 3600 University Street, Montreal, Quebec H3A 0B8, Canada
| | | | | |
Collapse
|
23
|
Burgert A, Schlegel J, Bécam J, Doose S, Bieberich E, Schubert-Unkmeir A, Sauer M. Characterization of Plasma Membrane Ceramides by Super-Resolution Microscopy. Angew Chem Int Ed Engl 2017; 56:6131-6135. [PMID: 28379629 DOI: 10.1002/anie.201700570] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 01/04/2023]
Abstract
The sphingolipid ceramide regulates cellular processes such as differentiation, proliferation, growth arrest, and apoptosis. Ceramide-rich membrane areas promote structural changes within the plasma membrane that segregate membrane receptors and affect membrane curvature and vesicle formation, fusion, and trafficking. Ceramides were labeled by immunocytochemistry to visualize their distribution on the plasma membrane of different cells with virtually molecular resolution by direct stochastic optical reconstruction microscopy (dSTORM). Super-resolution images show that independent of labeling conditions and cell type 50-60 % of all membrane ceramides are located in ceramide-rich platforms (CRPs) with a size of about 75 nm that are composed of at least about 20 ceramides. Treatment of cells with Bacillus cereus sphingomyelinase (bSMase) increases the overall ceramide concentration in the plasma membrane, the quantity of CRPs, and their size. Simultaneously, the ceramide concentration in CRPs increases approximately twofold.
Collapse
Affiliation(s)
- Anne Burgert
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jérôme Bécam
- Institute of Hygiene and Microbiology, Julius Maximilian University Würzburg, 97080, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
24
|
Burgert A, Schlegel J, Bécam J, Doose S, Bieberich E, Schubert‐Unkmeir A, Sauer M. Characterization of Plasma Membrane Ceramides by Super‐Resolution Microscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anne Burgert
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| | - Jérôme Bécam
- Institute of Hygiene and Microbiology Julius Maximilian University Würzburg 97080 Würzburg Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine Medical College of Georgia Augusta University Augusta GA 30912 USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
25
|
Kraft ML. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Front Cell Dev Biol 2017; 4:154. [PMID: 28119913 PMCID: PMC5222807 DOI: 10.3389/fcell.2016.00154] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.
Collapse
Affiliation(s)
- Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana, IL, USA
| |
Collapse
|
26
|
Gaibelet G, Tercé F, Allart S, Lebrun C, Collet X, Jamin N, Orlowski S. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.1.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Stetter FW, Hyun SH, Brander S, Urban JM, Thompson DH, Hugel T. Nanomechanical characterization of lipid bilayers with AFM-based methods. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Cascione M, de Matteis V, Rinaldi R, Leporatti S. Atomic force microscopy combined with optical microscopy for cells investigation. Microsc Res Tech 2016; 80:109-123. [DOI: 10.1002/jemt.22696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
- Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT) of Consiglio Nazionale delle Ricerche; Istituto Nanoscienze; Via Arnesano 16, Lecce Italy
| | - Valeria de Matteis
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
- Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT) of Consiglio Nazionale delle Ricerche; Istituto Nanoscienze; Via Arnesano 16, Lecce Italy
| | - Stefano Leporatti
- CNR Nantotec-Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecoteckne, Via Monteroni; 73100, Lecce Italy
| |
Collapse
|
29
|
Solanko KA, Modzel M, Solanko LM, Wüstner D. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport. Lipid Insights 2016; 8:95-114. [PMID: 27330304 PMCID: PMC4902042 DOI: 10.4137/lpi.s31617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications.
Collapse
Affiliation(s)
- Katarzyna A Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Maciej Modzel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Lukasz M Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
30
|
Osati S, Ali H, van Lier JE. BODIPY–steroid conjugates: Syntheses and biological applications. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616300019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BODIPY and aza-BODIPY fluorophores linked to steroids are being developed as multimodal-imaging agents to monitor the mechanism of action of biologically active components in living systems.
Collapse
Affiliation(s)
- Samira Osati
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke QC J1H 5N4, Canada
| | - Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke QC J1H 5N4, Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke QC J1H 5N4, Canada
| |
Collapse
|
31
|
Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:812-829. [PMID: 26993577 DOI: 10.1016/j.bbalip.2016.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, Université Lyon 1, Villeurbanne 69621, France.
| |
Collapse
|
32
|
Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 2016; 44:3617-38. [PMID: 25893228 DOI: 10.1039/c4cs00508b] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Collapse
Affiliation(s)
- Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | |
Collapse
|
33
|
Faller R. Molecular modeling of lipid probes and their influence on the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2353-2361. [PMID: 26891817 DOI: 10.1016/j.bbamem.2016.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/03/2023]
Abstract
In this review a number of Molecular Dynamics simulation studies are discussed which focus on the understanding of the behavior of lipid probes in biomembranes. Experiments often use specialized probe moieties or molecules to report on the behavior of a membrane and try to gain information on the membrane as a whole from the probe lipids as these probes are the only things an experiment sees. Probes can be used to make NMR, EPR and fluorescence accessible to the membrane and use fluorescent or spin-active moieties for this purpose. Clearly membranes with and without probes are not identical which makes it worthwhile to elucidate the differences between them with detailed atomistic simulations. In almost all cases these differences are confined to the local neighborhood of the probe molecules which are sparsely used and generally present as single molecules. In general, the behavior of the bulk membrane lipids can be qualitatively understood from the probes but in most cases their properties cannot be directly quantitatively deduced from the probe behavior. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Roland Faller
- Department of Chemical Engineering & Materials Science, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Niko Y, Didier P, Mely Y, Konishi GI, Klymchenko AS. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci Rep 2016; 6:18870. [PMID: 26750324 PMCID: PMC4707542 DOI: 10.1038/srep18870] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022] Open
Abstract
Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.
Collapse
Affiliation(s)
- Yosuke Niko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Gen-ichi Konishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| |
Collapse
|
35
|
Reprint of: “Synthetic lipids and their role in defining macromolecular assemblies”. Chem Phys Lipids 2016; 194:149-57. [DOI: 10.1016/j.chemphyslip.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022]
|
36
|
Wüstner D, Lund FW, Röhrl C, Stangl H. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells. Chem Phys Lipids 2016; 194:12-28. [DOI: 10.1016/j.chemphyslip.2015.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023]
|
37
|
Wilson RL, Frisz JF, Klitzing HA, Zimmerberg J, Weber PK, Kraft ML. Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids. Biophys J 2016; 108:1652-1659. [PMID: 25863057 DOI: 10.1016/j.bpj.2015.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 01/28/2023] Open
Abstract
The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane.
Collapse
Affiliation(s)
- Robert L Wilson
- Department of Chemistry, University of Illinois, Urbana, Illinois
| | - Jessica F Frisz
- Department of Chemistry, University of Illinois, Urbana, Illinois
| | - Haley A Klitzing
- Department of Chemistry, University of Illinois, Urbana, Illinois
| | - Joshua Zimmerberg
- Section on Cellular and Membrane Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Peter K Weber
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California
| | - Mary L Kraft
- Department of Chemistry, University of Illinois, Urbana, Illinois; Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illnois.
| |
Collapse
|
38
|
Karilainen T, Vuorela T, Vattulainen I. How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles? J Phys Chem B 2015; 119:15848-56. [DOI: 10.1021/acs.jpcb.5b10188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Topi Karilainen
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Timo Vuorela
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
- Department
of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland
| |
Collapse
|
39
|
Assemblies of pore-forming toxins visualized by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:500-11. [PMID: 26577274 DOI: 10.1016/j.bbamem.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023]
Abstract
A number of pore-forming toxins (PFTs) can assemble on lipid membranes through their specific interactions with lipids. The oligomeric assemblies of some PFTs have been successfully revealed either by electron microscopy (EM) and/or atomic force microscopy (AFM). Unlike EM, AFM imaging can be performed under physiological conditions, enabling the real-time visualization of PFT assembly and the transition from the prepore state, in which the toxin does not span the membrane, to the pore state. In addition to characterizing PFT oligomers, AFM has also been used to examine toxin-induced alterations in membrane organization. In this review, we summarize the contributions of AFM to the understanding of both PFT assembly and PFT-induced membrane reorganization. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
40
|
Parrill AL. Synthetic lipids and their role in defining macromolecular assemblies. Chem Phys Lipids 2015; 191:38-47. [DOI: 10.1016/j.chemphyslip.2015.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
41
|
Gonzalez-Horta A. The Interaction of Alpha-synuclein with Membranes and its Implication in Parkinson's Disease: A Literature Review. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein belongs to the class of intrinsically disordered proteins lacking a well-folded structure under physiological conditions. The conversion of alpha-synuclein from a soluble monomer to an insoluble fibril may underlie the neurodegeneration associated with Parkinson's disease (PD). Although the exact mechanism of alpha-synuclein toxicity is still unknown, it has been proposed that alpha-synuclein disturbs membrane structure, leading to increased membrane permeability and eventual cell death. This review highlights the significant role played by fluorescence techniques in unraveling the nature of interactions between alpha-synuclein and membranes and its implications in PD.
Collapse
Affiliation(s)
- Azucena Gonzalez-Horta
- Laboratory of Genomic Science, Faculty of Biological Science, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, N.L. Mexico
| |
Collapse
|
42
|
Ikonen E, Blom T. Lipoprotein-mediated delivery of BODIPY-labeled sterol and sphingolipid analogs reveals lipid transport mechanisms in mammalian cells. Chem Phys Lipids 2015; 194:29-36. [PMID: 26343174 DOI: 10.1016/j.chemphyslip.2015.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/29/2023]
Abstract
Lipids are often introduced into cell membranes directly from solvent or from lipophilic artificial carriers, such as cyclodextrins. A physiological lipid entry route into mammalian cells is via lipoprotein mediated uptake. In this review, we discuss the introduction of BODIPY-labeled sterol and sphingolipid analogs into mammalian cells via high- or low-density lipoproteins, and the novel findings made by using this strategy. Lipoprotein mediated delivery favors endocytic uptake and initial incorporation of the lipid into membranes of the endosomal compartments. This routing can therefore highlight physiological mechanisms of lipid entry into and exit from the endo-lysosomal membrane system. The underlying principles are of key importance for instance in controlling plasma cholesterol levels and in the development and regression of lysosomal lipid storage diseases. A common denominator for the BODIPY-labeled lipid analogs discussed in this review is that they were synthesized by late Robert Bittman, whose scientific impact radiates far beyond his lifework in organic chemistry.
Collapse
Affiliation(s)
- Elina Ikonen
- Dept of Anatomy, Faculty of Medicine, University of Helsinki and Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tomas Blom
- Dept of Anatomy, Faculty of Medicine, University of Helsinki and Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
43
|
Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes. Bioorg Med Chem Lett 2015; 25:3893-6. [PMID: 26243368 DOI: 10.1016/j.bmcl.2015.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 11/23/2022]
Abstract
Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery.
Collapse
|
44
|
Jamasbi E, Ciccotosto GD, Tailhades J, Robins-Browne RM, Ugalde CL, Sharples RA, Patil N, Wade JD, Hossain MA, Separovic F. Site of fluorescent label modifies interaction of melittin with live cells and model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2031-9. [PMID: 26051124 DOI: 10.1016/j.bbamem.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
The mechanism of membrane disruption by melittin (MLT) of giant unilamellar vesicles (GUVs) and live cells was studied using fluorescence microscopy and two fluorescent synthetic analogues of MLT. The N-terminus of one of these was acylated with thiopropionic acid to enable labeling with maleimido-AlexaFluor 430 to study the interaction of MLT with live cells. It was compared with a second analogue labeled at P14C. The results indicated that the fluorescent peptides adhered to the membrane bilayer of phosphatidylcholine GUVs and inserted into the plasma membrane of HeLa cells. Fluorescence and light microscopy revealed changes in cell morphology after exposure to MLT peptides and showed bleb formation in the plasma membrane of HeLa cells. However, the membrane disruptive effect was dependent upon the location of the fluorescent label on the peptide and was greater when MLT was labeled at the N-terminus. Proline at position 14 appeared to be important for antimicrobial activity, hemolysis and cytotoxicity, but not essential for cell membrane disruption.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| | | | - Julien Tailhades
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3010, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Cathryn L Ugalde
- Department of Biochemistry & Molecular Biology, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| | - Robyn A Sharples
- Department of Biochemistry & Molecular Biology, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| | - Nitin Patil
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
45
|
Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc Natl Acad Sci U S A 2015; 112:4558-63. [PMID: 25825736 DOI: 10.1073/pnas.1418088112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.
Collapse
|
46
|
DeWitt BN, Dunn RC. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:995-1004. [PMID: 25531175 DOI: 10.1021/la503797w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence measurements of the sterol analog 23-(dipyrrometheneboron difluoride)-24-norcholesterol (BODIPY-cholesterol) are used to compare the effects of cholesterol (Chol) in monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and chicken egg sphingomyelin (SM)/DOPC/Chol. Monolayers are formed using the Langmuir-Blodgett technique and compared at surface pressures of 8 and 30 mN/m. In particular, these ternary lipid mixtures are compared using both ensemble and single-molecule fluorescence measurements of BODIPY-cholesterol. In mixed monolayers incorporating 0.10 mol % BODIPY-cholesterol, fluorescence microscopy measurements as a function of cholesterol added reveal similar trends in monolayer phase structure for both DPPC/DOPC/Chol and SM/DOPC/Chol films. With a probe concentration reduced to ∼10(-8) mol % BODIPY-cholesterol, single-molecule fluorescence measurements using defocused polarized total internal reflection microscopy are used to characterize the orientations of BODIPY-cholesterol in the monolayers. Population histograms of the BODIPY emission dipole tilt angle away from the membrane normal reveal distinct insertion geometries with a preferred angle observed near 78°. The measured angles and populations are relatively insensitive to added cholesterol and changes in surface pressure for monolayers of SM/DOPC/Chol. For monolayers of DPPC/DOPC/Chol, however, the single-molecule measurements reveal significant changes in the BODIPY-cholesterol insertion geometry when the surface pressure is increased to 30 mN/m. These changes are discussed in terms of a squeeze-out mechanism for BODIPY-cholesterol in these monolayers and provide insight into the partitioning and arrangement of BODIPY-cholesterol in ternary lipid mixtures.
Collapse
Affiliation(s)
- Brittany N DeWitt
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
47
|
Sacchi M, Balleza D, Vena G, Puia G, Facci P, Alessandrini A. Effect of neurosteroids on a model lipid bilayer including cholesterol: An Atomic Force Microscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1258-67. [PMID: 25620773 DOI: 10.1016/j.bbamem.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties.
Collapse
Affiliation(s)
- Mattia Sacchi
- Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Via Campi 213/A, 41125 Modena, Italy; CNR - Istituto Nanoscienze, S3, Via Campi 213/A, 41125 Modena, Italy
| | - Daniel Balleza
- CNR - Istituto Nanoscienze, S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giulia Vena
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, Modena 287, Italy
| | - Giulia Puia
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, Modena 287, Italy
| | - Paolo Facci
- CNR - Istituto di Biofisica, Via De Marini 6, 16149 Genova, Italy
| | - Andrea Alessandrini
- Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Via Campi 213/A, 41125 Modena, Italy; CNR - Istituto Nanoscienze, S3, Via Campi 213/A, 41125 Modena, Italy.
| |
Collapse
|
48
|
Aigal S, Claudinon J, Römer W. Plasma membrane reorganization: A glycolipid gateway for microbes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:858-71. [PMID: 25450969 DOI: 10.1016/j.bbamcr.2014.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/27/2014] [Accepted: 11/11/2014] [Indexed: 02/08/2023]
Abstract
Ligand-receptor interactions, which represent the core for cell signaling and internalization processes are largely affected by the spatial configuration of host cell receptors. There is a growing piece of evidence that receptors are not homogeneously distributed within the plasma membrane, but are rather pre-clustered in nanodomains, or clusters are formed upon ligand binding. Pathogens have evolved many strategies to evade the host immune system and to ensure their survival by hijacking plasma membrane receptors that are most often associated with lipid rafts. In this review, we discuss the early stage molecular and physiological events that occur following ligand binding to host cell glycolipids. The ability of various biological ligands (e.g. toxins, lectins, viruses or bacteria) that bind to glycolipids to induce their own uptake into mammalian cells by creating negative membrane curvature and membrane invaginations is explored. We highlight recent trends in understanding nanoscale plasma membrane (re-)organization and present the benefits of using synthetic membrane systems. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Sahaja Aigal
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| | - Julie Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| |
Collapse
|
49
|
Alessandrini A, Facci P. Phase transitions in supported lipid bilayers studied by AFM. SOFT MATTER 2014; 10:7145-7164. [PMID: 25090108 DOI: 10.1039/c4sm01104j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We review the capabilities of Atomic Force Microscopy (AFM) in the study of phase transitions in Supported Lipid Bilayers (SLBs). AFM represents a powerful technique to cover the resolution range not available to fluorescence imaging techniques and where spectroscopic data suggest what the relevant lateral scale for domain formation might be. Phase transitions of lipid bilayers involve the formation of domains characterized by different heights with respect to the surrounding phase and are therefore easily identified by AFM in liquid solution once the bilayer is confined to a flat surface. Even if not endowed with high time resolution, AFM allows light to be shed on some aspects related to lipid phase transitions in the case of both a single lipid component and lipid mixtures containing sterols also. We discuss here the obtained results in light of the peculiarities of supported lipid bilayer model systems.
Collapse
Affiliation(s)
- Andrea Alessandrini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/A, 41125, Modena, Italy.
| | | |
Collapse
|
50
|
Basit H, Lopez SG, Keyes TE. Fluorescence correlation and lifetime correlation spectroscopy applied to the study of supported lipid bilayer models of the cell membrane. Methods 2014; 68:286-99. [DOI: 10.1016/j.ymeth.2014.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022] Open
|