1
|
Doudi S, Kamalabadi-Farahani M, Atashi A, Ai J, Cheraghali D, Zamani S, Salehi M. Injectable multifunctional hydrogel containing Sphingosine 1-phosphate and human acellular amniotic membrane for skin wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1134-1147. [PMID: 39055866 PMCID: PMC11266740 DOI: 10.22038/ijbms.2024.76681.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/10/2023] [Indexed: 07/28/2024]
Abstract
Objectives The skin serves as the main defense barrier, protecting against injuries, and preventing infection and water loss. Consequently, wound healing and skin regeneration are crucial aspects of wound management. A novel hydrogel scaffold was developed by incorporating carboxymethyl cellulose (CMC) and gelatin (Gel) hydrogels cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) containing Sphingosine 1-phosphate (S1P). This hydrogel is applied topically to treat acute wounds and is covered with a human acellular amniotic membrane (hAAM) as a secondary dressing. Materials and Methods The scaffold was subjected to in vitro cell viability, red blood cell hemolysis, blood clotting index, and in vivo assays. Real-time PCR was implemented to verify the expression of genes involved in skin wounds. The physical and chemical properties of the scaffolds were also tested using weight loss, swelling ratio, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and mechanical tensile analysis. Results The synthetic scaffold is biocompatible as evidenced by the high percentage of 3T3 cell viability (127%) after 72 hr. Additionally, excellent hemocompatibility with a low hemolytic effect (2.26%) was observed. Our in vivo wound healing assay demonstrated that CMC/Gel/S1P/hAAM wound dressing led to faster wound healing in treated rats compared to the control group over 14.Also, the mechanical tests showed that the amniotic membrane and the hAAM had very different Young's modulus and elongation at break values. Conclusion This study demonstrates the effectiveness of the CMC/Gel/EDC hydrogel with S1P as a wound dressing. Additionally, hAAM exhibits excellent characteristics as a protective layer for the treatment of acute wounds.
Collapse
Affiliation(s)
- Shaghayegh Doudi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Atashi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Hematology, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical
| | | | - Sepehr Zamani
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Mechanical Engineering, New Jersey Institute of Technology, New Jersey, United States of America (USA)
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Ren T, Maitusong M, Zhou X, Hong X, Cheng S, Lin Y, Xue J, Xu D, Chen J, Qian Y, Lu Y, Liu X, Zhu Y, Wang J. Programing Cell Assembly via Ink-Free, Label-Free Magneto-Archimedes Based Strategy. ACS NANO 2023; 17:12072-12086. [PMID: 37363813 DOI: 10.1021/acsnano.2c10704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Collapse
Affiliation(s)
- Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xiaoqian Hong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yin Lin
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Junhui Xue
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| |
Collapse
|
3
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Leppiniemi J, Mutahir Z, Dulebo A, Mikkonen P, Nuopponen M, Turkki P, Hytönen VP. Avidin-Conjugated Nanofibrillar Cellulose Hydrogel Functionalized with Biotinylated Fibronectin and Vitronectin Promotes 3D Culture of Fibroblasts. Biomacromolecules 2021; 22:4122-4137. [PMID: 34542997 DOI: 10.1021/acs.biomac.1c00579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The future success of physiologically relevant three-dimensional (3D) cell/tissue models is dependent on the development of functional biomaterials, which can provide a well-defined 3D environment instructing cellular behavior. To establish a platform to produce tailored hydrogels, we conjugated avidin (Avd) to anionic nanofibrillar cellulose (aNFC) and demonstrated the use of the resulting Avd-NFC hydrogel for 3D cell culture, where Avd-NFC allows easy functionalization via biotinylated molecules. Avidin was successfully conjugated to nanocellulose and remained functional, as demonstrated by electrophoresis and titration with fluorescent biotin. Rheological analysis indicated that Avd-NFC retained shear-thinning and gel-forming properties. Topological characterization using AFM revealed the preserved fiber structure and confirmed the binding of biotinylated vitronectin (B-VN) on the fiber surface. The 3D cell culture experiments with mouse embryonic fibroblasts demonstrated the performance of Avd-NFC hydrogels functionalized with biotinylated fibronectin (B-FN) and B-VN. Cells cultured in Avd-NFC hydrogels functionalized with B-FN or B-VN formed matured integrin-mediated adhesions, indicated by phosphorylated focal adhesion kinase. We observed significantly higher cell proliferation rates when biotinylated proteins were bound to the Avd-NFC hydrogel compared to cells cultured in Avd-NFC alone, indicating the importance of the presence of adhesive sites for fibroblasts. The versatile Avd-NFC allows the easy functionalization of hydrogels with virtually any biotinylated molecule and may become widely utilized in 3D cell/tissue culture applications.
Collapse
Affiliation(s)
- Jenni Leppiniemi
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland
| | - Zeeshan Mutahir
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,School of Biochemistry and Biotechnology, University of the Punjab, 54590 Lahore, Pakistan
| | - Alexander Dulebo
- JPK BioAFM Business, Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Piia Mikkonen
- UPM-Kymmene Corporation, Alvar Aallon Katu 1, 00101 Helsinki, Finland
| | - Markus Nuopponen
- UPM-Kymmene Corporation, Alvar Aallon Katu 1, 00101 Helsinki, Finland
| | - Paula Turkki
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, FI-33014 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| |
Collapse
|
5
|
A modular polymer microbead angiogenesis scaffold to characterize the effects of adhesion ligand density on angiogenic sprouting. Biomaterials 2021; 264:120231. [DOI: 10.1016/j.biomaterials.2020.120231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
|
6
|
Rios De La Rosa JM, Spadea A, Donno R, Lallana E, Lu Y, Puri S, Caswell P, Lawrence MJ, Ashford M, Tirelli N. Microfluidic-assisted preparation of RGD-decorated nanoparticles: exploring integrin-facilitated uptake in cancer cell lines. Sci Rep 2020; 10:14505. [PMID: 32879363 PMCID: PMC7468293 DOI: 10.1038/s41598-020-71396-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
This study is about fine tuning the targeting capacity of peptide-decorated nanoparticles to discriminate between cells that express different integrin make-ups. Using microfluidic-assisted nanoprecipitation, we have prepared poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles with a PEGylated surface decorated with two different arginine-glycine-aspartic acid (RGD) peptides: one is cyclic (RGDFC) and has specific affinity towards αvβ3 integrin heterodimers; the other is linear (RGDSP) and is reported to bind equally αvβ3 and α5β1. We have then evaluated the nanoparticle internalization in two cell lines with a markedly different integrin fingerprint: ovarian carcinoma A2780 (almost no αvβ3, moderate in α5β1) and glioma U87MG (very high in αvβ3, moderate/high in α5β1). As expected, particles with cyclic RGD were heavily internalized by U87MG (proportional to the peptide content and abrogated by anti-αvβ3) but not by A2780 (same as PEGylated particles). The linear peptide, on the other hand, did not differentiate between the cell lines, and the uptake increase vs. control particles was never higher than 50%, indicating a possible low and unselective affinity for various integrins. The strong preference of U87MG for cyclic (vs. linear) peptide-decorated nanoparticles was shown in 2D culture and further demonstrated in spheroids. Our results demonstrate that targeting specific integrin make-ups is possible and may open the way to more precise treatment, but more efforts need to be devoted to a better understanding of the relation between RGD structure and their integrin-binding capacity.
Collapse
Affiliation(s)
- Julio M Rios De La Rosa
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Cambridge Enterprise Limited, University of Cambridge, The Hauser Forum, 3 Charles Babbage Road, Cambridge, CB3 0GT, UK.
| | - Alice Spadea
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Roberto Donno
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Enrique Lallana
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Yu Lu
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Cambridge, UK
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - M Jayne Lawrence
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Macclesfield, UK
| | - Nicola Tirelli
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy.
| |
Collapse
|
7
|
Lopez Mora N, Owens M, Schmidt S, Silva AF, Bradley M. Poly-Epsilon-Lysine Hydrogels with Dynamic Crosslinking Facilitates Cell Proliferation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3851. [PMID: 32882810 PMCID: PMC7504584 DOI: 10.3390/ma13173851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) is a three-dimensional network within which fundamental cell processes such as cell attachment, proliferation, and differentiation occur driven by its inherent biological and structural cues. Hydrogels have been used as biomaterials as they possess many of the ECM characteristics that control cellular processes. However, the permanent crosslinking often found in hydrogels fails to recapitulate the dynamic nature of the natural ECM. This not only hinders natural cellular migration but must also limit cellular expansion and growth. Moreover, there is an increased interest in the use of new biopolymers to create biomimetic materials that can be used for biomedical applications. Here we report on the natural polymer poly-ε-lysine in forming dynamic hydrogels via reversible imine bond formation, with cell attachment promoted by arginine-glycine-aspartic acid (RGD) incorporation. Together, the mechanical properties and cell behavior of the dynamic hydrogels with low poly-ε-lysine quantities indicated good cell viability and high metabolic activity.
Collapse
Affiliation(s)
- Nestor Lopez Mora
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| | - Matthew Owens
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| | - Sara Schmidt
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| | - Andreia F. Silva
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK;
| | - Mark Bradley
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK; (M.O.); (S.S.)
| |
Collapse
|
8
|
Khorolsuren Z, Lang O, Pallinger E, Foldes A, Szabolcs GG, Varga G, Mezo G, Vag J, Kohidai L. Functional and cell surface characteristics of periodontal ligament cells (PDLCs) on RGD-synthetic polypeptide conjugate coatings. J Periodontal Res 2020; 55:713-723. [PMID: 32406091 DOI: 10.1111/jre.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells (PDLCs) are an important source for periodontal tissue healing and regeneration. Proper cell adhesion is a key for survival of anchorage-dependent cells and also initiates further intracellular signals for essential cellular functions. We aimed to test 3 different synthetic conjugates with integrin-binding RGD sequence (SAK-c[RGDfC], AK-c[RGDfC], and SAK-opn on the adhesion of human PDLCs and subsequent events including proliferation, migration, behavior of cell surface molecules, and osteogenic differentiation. MATERIALS AND METHODS Synthetic peptides were synthesized by solid-phase technique and attached to branched chain polymeric polypeptides via thioether linkage. Simple adsorption method was used to coat tissue culture plastic or electric arrays. PDLCs were isolated from 24 surgically extracted human third molars. Cell adhesion and proliferation were measured with real-time impedimetric xCELLigence SP system. Cell migration assay was performed with Ibidi® Culture inserts. Cell surface antigens were detected using flow cytometry analysis. Osteogenic differentiation was assessed with alkaline phosphatase (ALP) assay and Alizarin Red S staining, and real-time qPCR was performed to analyze the osteoblast-related gene expression. Osteogenic differentiation and adipogenic differentiation of PDLCs were monitored by real-time Electrical Cell-Substrate Impedance Spectroscopy (ECIS). RESULTS Primary outcome of this study relies on that all three synthetic RGD peptides improved PDLC adhesion (P < .05). When animal serum is absent in culture medium, SAK-c[RGDfC] and AK-c[RGDfC] elevated cell adhesion (P < .05). Cell migration was enhanced by SAK-c[RGDfC] and AK-c[RGDfC] (P < .05). After 1-week treatment, all synthetic peptides elevated CD105 (1.7- to 2.2-fold) and CD146 (1.3- to 1.5-fold) markers and caused different integrin patterns. ALP activity (1.4-fold) and ARS (1.8- and 2.0-fold) were increased by SAK-c[RGDfC] and AK-c[RGDfC] in absence of osteogenic supplements, and all the peptides supported the mineralization under osteogenic condition (P < .05). RT-qPCR revealed the upregulation of bone sialoprotein (5.0- to 7.8-fold), osteocalcin (2.3- to 2.7-fold), and ALP (1.9- to 2.3-fold) gene expression in osteogenesis-induced PDLCs. ECIS monitoring showed that higher impedance was generated by the osteogenic induction compared with the adipogenic or the non-induced (P < .05). CONCLUSIONS Our study demonstrates that SAK-c[RGDfC] and AK-c[RGDfC] improved adhesion and migration of PDLCs and supported osteogenic differentiation of PDLCs. These cyclic RGD peptides proved to be applicable biocompatible material in regenerative medicine.
Collapse
Affiliation(s)
- Zambaga Khorolsuren
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Orsolya Lang
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Anna Foldes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Gyulai-Gaál Szabolcs
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Gabor Mezo
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Janos Vag
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Kohidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Iwasa M. A mechanical toy model linking cell-substrate adhesion to multiple cellular migratory responses. J Biol Phys 2019; 45:401-421. [PMID: 31834551 DOI: 10.1007/s10867-019-09536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022] Open
Abstract
During cell migration, forces applied to a cell from its environment influence the motion. When the cell is placed on a substrate, such a force is provided by the cell-substrate adhesion. Modulation of adhesivity, often performed by the modulation of the substrate stiffness, tends to cause common responses for cell spreading, cell speed, persistence, and random motility coefficient. Although the reasons for the response of cell spreading and cell speed have been suggested, other responses are not well understood. In this study, we develop a simple toy model for cell migration driven by the relation of two forces: the adhesive force and the plasma membrane tension. The simplicity of the model allows us to perform the calculation not only numerically but also analytically, and the analysis provides formulas directly relating the adhesivity to cell spreading, persistence, and the random motility coefficient. Accordingly, the results offer a unified picture on the causal relations between those multiple cellular responses. In addition, cellular properties that would influence the migratory behavior are suggested.
Collapse
Affiliation(s)
- Masatomo Iwasa
- Center for General Education, Aichi Institute of Technology, Toyota, 470-0392, Japan.
| |
Collapse
|
10
|
Du W, Gao C. Selective Adhesion and Directional Migration of Endothelial Cells Guided by Cys‐Ala‐Gly Peptide Density Gradient on Antifouling Polymer Brushes. Macromol Biosci 2019; 19:e1900292. [DOI: 10.1002/mabi.201900292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
11
|
Albertini B, Mathieu V, Iraci N, Van Woensel M, Schoubben A, Donnadio A, Greco SM, Ricci M, Temperini A, Blasi P, Wauthoz N. Tumor Targeting by Peptide-Decorated Gold Nanoparticles. Mol Pharm 2019; 16:2430-2444. [DOI: 10.1021/acs.molpharmaceut.9b00047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Albertini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | | | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Matthias Van Woensel
- Research Group Experimental Neurosurgery and Neuroanatomy, Laboratory of Pediatric Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Silvio M.L. Greco
- CNR-IOM—Istituto Officina dei Materiali, Strada Statale 14 km 163,5, 34149 Trieste, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Andrea Temperini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Paolo Blasi
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | | |
Collapse
|
12
|
Crosby CO, Zoldan J. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regen Biomater 2019; 6:61-73. [PMID: 30967961 PMCID: PMC6447000 DOI: 10.1093/rb/rbz003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
A functional microvascular system is imperative to build and maintain healthy tissue. Impaired microvasculature results in ischemia, thereby limiting the tissue's intrinsic regeneration capacity. Therefore, the ability to regenerate microvascular networks is key to the development of effective cardiovascular therapies. To stimulate the formation of new microvasculature, researchers have focused on fabricating materials that mimic the angiogenic properties of the native extracellular matrix (ECM). Here, we will review biomaterials that seek to imitate the physical cues that are natively provided by the ECM to encourage the formation of microvasculature in engineered constructs and ischemic tissue in the body.
Collapse
Affiliation(s)
- Cody O Crosby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Christoffersson J, Aronsson C, Jury M, Selegård R, Aili D, Mandenius CF. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication 2018; 11:015013. [DOI: 10.1088/1758-5090/aaf657] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Karel S, Sogorkova J, Hermannova M, Nesporova K, Marholdova L, Chmelickova K, Bednarova L, Flegel M, Drasar P, Velebny V. Stabilization of hyaluronan-based materials by peptide conjugation and its use as a cell-seeded scaffold in tissue engineering. Carbohydr Polym 2018; 201:300-307. [PMID: 30241822 DOI: 10.1016/j.carbpol.2018.08.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
Abstract
New materials based on molecules naturally occurred in body are assumed to be fully biocompatible and biodegradable. In our study, we used hyaluronic acid (HA) modified with peptides, which meet all this criterion and could be advantageously used in tissue engineering. Peptides with RGD, IKVAV or SIKVAV adhesive motif were attached to HA-based fiber or non-woven textile through ester bond in the term of solid phase peptide synthesis. A linker between HA and peptide containing three glycine or two 6-aminohexanoyl units was applied to make peptides more available for cell surface receptors. Dermal fibroblasts adhered readily on this material, preferentially to RGD peptide with 6-aminohexanoyl linker. Contrary, the absence of adhesive peptide did not allow the cell attachment but maintained the material stability.
Collapse
Affiliation(s)
- Sergej Karel
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-166 10 Prague, Czech Republic.
| | - Jana Sogorkova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | - Martina Hermannova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | - Kristina Nesporova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | - Lucie Marholdova
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| | | | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-166 10 Prague, Czech Republic
| | - Martin Flegel
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, CZ-166 28 Prague, Czech Republic
| | - Pavel Drasar
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, CZ-166 28 Prague, Czech Republic
| | - Vladimir Velebny
- Contipro a. s., Dolni Dobrouc 401, CZ-561 02 Dolni Dobrouc, Czech Republic
| |
Collapse
|
15
|
Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel. Acta Biomater 2017; 64:67-79. [PMID: 28966094 DOI: 10.1016/j.actbio.2017.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022]
Abstract
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. STATEMENT OF SIGNIFICANCE We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment.
Collapse
|
16
|
Heller M, Kumar VV, Pabst A, Brieger J, Al-Nawas B, Kämmerer PW. Osseous response on linear and cyclic RGD-peptides immobilized on titanium surfaces in vitro and in vivo. J Biomed Mater Res A 2017; 106:419-427. [PMID: 28971567 DOI: 10.1002/jbm.a.36255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Biomimetic surface modifications of titanium (Ti) implants using the Arg-Gly-Asp-sequence (RGD) are promising to accelerate bone healing in cases of medical implants. Therefore, we compared the impact of linear and cyclic RGD (l- and c-RGD) covalently coupled onto Ti surfaces on the osseous response in vitro and in vivo. In vitro, osteoblasts' behavior on different surfaces (unmodified, amino-silanized [APTES], l- and c-RGD) was analysed regarding adhesion (fluorescence microscopy), proliferation (resazurin stain) and differentiation (reverse transcription polymerase chain reaction on alkaline phosphatase and osteocalcin). In vivo, osteosynthesis screws (unmodified n = 8, l-RGD n = 8, c-RGD n = 8) were inserted into the proximal tibiae of 12 rabbits and evaluated for bone growth parameters (bone implant contact [%] and vertical bone apposition [VBA;%]) at 3 and 6 weeks. In vitro, c- as well as l-RGD surfaces stimulated osteoblasts' adherence, proliferation and differentiation in a similar manner, with only subtle evidence of superiority of the c-RGD modifications. In vivo, c-RGD-modifications led to a significantly increased VBA after 3 and 6 weeks. Thus, coating with c-RGD appears to play an important role influencing osteoblasts' behaviour in vitro but especially in vivo. These findings can be applied prospectively to implantable biomaterials with hypothetically improved survival and success rates. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 106A: 419-427, 2018.
Collapse
Affiliation(s)
- M Heller
- Department of Otorhinolaryngology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - V V Kumar
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - A Pabst
- Department of Oral, Maxillofacial and Plastic Surgery, Federal Armed Forces Hospital Koblenz, Germany
| | - J Brieger
- Department of Otorhinolaryngology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - B Al-Nawas
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Halle (Saale), Germany
| | - P W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
17
|
Abstract
Click chemistries have been investigated for use in numerous biomaterials applications, including drug delivery, tissue engineering, and cell culture. In particular, light-mediated click reactions, such as photoinitiated thiol-ene and thiol-yne reactions, afford spatiotemporal control over material properties and allow the design of systems with a high degree of user-directed property control. Fabrication and modification of hydrogel-based biomaterials using the precision afforded by light and the versatility offered by these thiol-X photoclick chemistries are of growing interest, particularly for the culture of cells within well-defined, biomimetic microenvironments. Here, we describe methods for the photoencapsulation of cells and subsequent photopatterning of biochemical cues within hydrogel matrices using versatile and modular building blocks polymerized by a thiol-ene photoclick reaction. Specifically, an approach is presented for constructing hydrogels from allyloxycarbonyl (Alloc)-functionalized peptide crosslinks and pendant peptide moieties and thiol-functionalized poly(ethylene glycol) (PEG) that rapidly polymerize in the presence of lithium acylphosphinate photoinitiator and cytocompatible doses of long wavelength ultraviolet (UV) light. Facile techniques to visualize photopatterning and quantify the concentration of peptides added are described. Additionally, methods are established for encapsulating cells, specifically human mesenchymal stem cells, and determining their viability and activity. While the formation and initial patterning of thiol-alloc hydrogels are shown here, these techniques broadly may be applied to a number of other light and radical-initiated material systems (e.g., thiol-norbornene, thiol-acrylate) to generate patterned substrates.
Collapse
Affiliation(s)
- Lisa A Sawicki
- Department of Chemical and Biomolecular Engineering, University of Delaware
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware; Department of Materials Science and Engineering, University of Delaware;
| |
Collapse
|
18
|
Munoz-Pinto DJ, Guiza-Arguello VR, Becerra-Bayona SM, Erndt-Marino J, Samavedi S, Malmut S, Russell B, Hӧӧk M, Hahn MS. Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation. J Mater Chem B 2015; 3:7912-7919. [PMID: 28989705 DOI: 10.1039/c5tb00990a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work evaluates the response of human aortic endothelial cells (HAECs) to thromboresistant collagen-mimetic hydrogel coatings toward improving the biocompatibility of existing "off-the-shelf" small-caliber vascular grafts. Specifically, bioactive hydrogels - previously shown to support α1/α2 integrin-mediated cell adhesion but to resist platelet activation - were fabricated by combining poly(ethylene glycol) (PEG) with a 120 kDa, triple-helical collagen-mimetic protein(Scl2-2) containing the GFPGER adhesion sequence. Analysis of HAECs seeded onto the resulting PEG-Scl2-2 hydrogels demonstrated that HAEC adhesion increased with increasing Scl2-2 concentration, while HAEC migration rate decreased over this same concentration range. In addition, evaluation of HAEC phenotype at confluence indicated significant differences in the gene expression of NOS3, thrombomodulin, and E-selectin on the PEG-Scl2-2 hydrogels relative to PEG-collagen controls. At the protein level, however, only NOS3 was significantly different between the PEG-Scl2-2 and PEG-collagen surfaces. Furthermore, PECAM-1 and VE-cadherin expression on PEG-Scl2-2 hydrogels versus PEG-collagen controls could not be distinguished at either the gene or protein level. Cumulatively, these data indicate the PEG-Scl2-2 hydrogels warrant further investigation as "off-the-shelf" graft coatings. In future studies, the Scl2-2 protein can potentially be modified to include additional extracellular matrix or cytokine binding sites to further improve endothelial cell responses.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | | | | | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Sarah Malmut
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Brooke Russell
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Houston, TX
| | - Magnus Hӧӧk
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Houston, TX
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
19
|
Iturri J, García-Fernández L, Reuning U, García AJ, del Campo A, Salierno MJ. Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding. Sci Rep 2015; 5:9533. [PMID: 25825012 PMCID: PMC4379501 DOI: 10.1038/srep09533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies.
Collapse
Affiliation(s)
- Jagoba Iturri
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Ute Reuning
- Clinical Research Unit, Dept. for Obstetrics &Gynecology, Technische Universitaet München, Munich, Germany
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aránzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marcelo J Salierno
- 1] Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany [2] National Scientific and Technical Research Council, Av. Rivadavia 1917, C1033AAJ CABA, Argentina
| |
Collapse
|
20
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
21
|
Nemeth CL, Janebodin K, Yuan AE, Dennis JE, Reyes M, Kim DH. Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A 2014; 20:2817-29. [PMID: 24749806 DOI: 10.1089/ten.tea.2013.0614] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers (Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X), while downregulating the pluripotent stem cell gene, Nanog, and epithelial-mesenchymal genes (Twist, Snail, Slug) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Cameron L Nemeth
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | | | | | | | | | | |
Collapse
|
22
|
Missirlis D, Spatz JP. Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration. Biomacromolecules 2013; 15:195-205. [PMID: 24274760 DOI: 10.1021/bm4014827] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development and use of synthetic, cross-linked, macromolecular substrates with tunable elasticity has been instrumental in revealing the mechanisms by which cells sense and respond to their mechanical microenvironment. We here describe a hydrogel based on radical-free, cross-linked poly(ethylene glycol) to study the effects of both substrate elasticity and type of adhesive coating on fibroblast adhesion and migration. Hydrogel elasticity was controlled through the structure and concentration of branched precursors, which efficiently react via Michael-type addition to produce the polymer network. We found that cell spreading and focal adhesion characteristics are dependent on elasticity for all types of coatings (RGD peptide, fibronectin, vitronectin), albeit with significant differences in magnitude. Importantly, fibroblasts migrated slower but more persistently on stiffer hydrogels, with the effects being more pronounced on fibronectin-coated substrates. Therefore, our results validate the hydrogels presented in this study as suitable for future mechanosensing studies and indicate that cell adhesion, polarity, and associated migration persistence are tuned by substrate elasticity and biochemical properties.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | |
Collapse
|
23
|
Bartneck M, Skazik C, Paul NE, Salber J, Klee D, Zwadlo-Klarwasser G. The RGD Coupling Strategy Determines the Inflammatory Response of Human Primary Macrophages In Vitro and Angiogenesis In Vivo. Macromol Biosci 2013; 14:411-8. [DOI: 10.1002/mabi.201300362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/23/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias Bartneck
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Medical Faculty; Department of Medicine III; RWTH Aachen; Aachen Germany
| | - Claudia Skazik
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Department of Dermatology; RWTH Aachen; Aachen Germany
| | - Nora E. Paul
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Department of Plastic Surgery and Hand Surgery - Burn Center; RWTH Aachen; Aachen Germany
| | - Jochen Salber
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Institute of Technical and Macromolecular Chemistry of RWTH Aachen University and DWI at RWTH Aachen; Aachen Germany
| | - Doris Klee
- Institute of Technical and Macromolecular Chemistry of RWTH Aachen University and DWI at RWTH Aachen; Aachen Germany
| | - Gabriele Zwadlo-Klarwasser
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Department of Dermatology; RWTH Aachen; Aachen Germany
| |
Collapse
|
24
|
Wang Y, Han B, Shi R, Pan L, Zhang H, Shen Y, Li C, Huang F, Xie A. Preparation and characterization of a novel hybrid hydrogel shell for localized photodynamic therapy. J Mater Chem B 2013; 1:6411-6417. [PMID: 32261339 DOI: 10.1039/c3tb20779j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to the limits of photodynamic therapy (PDT) in clinical use, the development of a new system for PDT may hold promise to improve the situation. In this article, we report the preparation of a novel hybrid hydrogel (HHG) containing poly (ethylene glycol) double acrylates (PEGDA), polyethylene glycol 400 (PEG400), phthalocyanine zinc (ZnPc) and phosphotungstic acid (PTA) based on in situ photopolymerization. ZnPc is used as both the photoinitiator for initiating the formation of HHG and the photosensitizer for producing singlet oxygen to kill tumor cells. PTA plays a significant co-initiator role in the photopolymerization process and has a positive impact on the acceleration of singlet oxygen generation. The HHG shows good biocompatibility, swelling and drug retention abilities, and especially can be easily and rapidly formed on tumor cells in situ by irradiating the precursor with near-infrared light. The HHG shell not only prevents diffusion of the photosensitizer, but also maintains a high ZnPc concentration in or on tumor cells for more effective PDT. Thus, this novel HHG is an attractive candidate for local PDT and has a huge potential application in the future development of cancer treatment.
Collapse
Affiliation(s)
- Yunlong Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang K, Liu T, Li JA, Chen JY, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res A 2013; 102:588-609. [PMID: 23520056 DOI: 10.1002/jbm.a.34714] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kun Zhang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Wu J, Mao Z, Hong Y, Han L, Gao C. Conjugation of Basic Fibroblast Growth Factor on a Heparin Gradient for Regulating the Migration of Different Types of Cells. Bioconjug Chem 2013; 24:1302-13. [DOI: 10.1021/bc300670t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jindan Wu
- MOE Key Laboratory
of Macromolecular
Synthesis and Functionalization, Department of Polymer
Science and Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengwei Mao
- MOE Key Laboratory
of Macromolecular
Synthesis and Functionalization, Department of Polymer
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Hong
- MOE Key Laboratory
of Macromolecular
Synthesis and Functionalization, Department of Polymer
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lulu Han
- MOE Key Laboratory
of Macromolecular
Synthesis and Functionalization, Department of Polymer
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory
of Macromolecular
Synthesis and Functionalization, Department of Polymer
Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Diagnosis
and Treatment for Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
27
|
Smith AW, Hoyne JD, Nguyen PK, McCreedy DA, Aly H, Efimov IR, Rentschler S, Elbert DL. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Biomaterials 2013; 34:6559-71. [PMID: 23773820 DOI: 10.1016/j.biomaterials.2013.05.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.
Collapse
Affiliation(s)
- Amanda W Smith
- Department of Biomedical Engineering and Center for Materials Innovation, Washington University, Campus Box 1097, One Brookings Dr., St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hoffmann JC, West JL. Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration. Integr Biol (Camb) 2013; 5:817-27. [PMID: 23460015 PMCID: PMC3742361 DOI: 10.1039/c3ib20280a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to independently study the numerous variables that influence cell movement, it will be necessary to employ novel tools and materials that allow for exquisite control of the cellular microenvironment. In this work, we have applied advanced 3D micropatterning technology, known as two-photon laser scanning lithography (TP-LSL), to poly(ethylene glycol) (PEG) hydrogels modified with bioactive peptides in order to fabricate precisely designed microenvironments to guide and quantitatively investigate cell migration. Specifically, TP-LSL was used to fabricate cell adhesive PEG-RGDS micropatterns on the surface of non-degradable PEG-based hydrogels (2D) and in the interior of proteolytically degradable PEG-based hydrogels (3D). HT1080 cell migration was guided down these adhesive micropatterns in both 2D and 3D, as observed via time-lapse microscopy. Differences in cell speed, cell persistence, and cell shape were observed based on variation of adhesive ligand, hydrogel composition, and patterned area for both 2D and 3D migration. Results indicated that HT1080s migrate faster and with lower persistence on 2D surfaces, while HT1080s migrating in 3D were smaller and more elongated. Further, cell migration was shown to have a biphasic dependence on PEG-RGDS concentration and cells moving within PEG-RGDS micropatterns were seen to move faster and with more persistence over time. Importantly, the work presented here begins to elucidate the multiple complex factors involved in cell migration, with typical confounding factors being independently controlled. The development of this unique platform will allow researchers to probe how cells behave within increasingly complex 3D microenvironments that begin to mimic specifically chosen aspects of the in vivo landscape.
Collapse
Affiliation(s)
- Joseph C. Hoffmann
- Department of Bioengineering: MS-142, Rice University, 6100 Main Street, Houston, Texas, 77005, USA. Fax: 713-348-5877; Tel: 713-348-5955;
| | - Jennifer L. West
- Department of Biomedical Engineering: Box 90281, Duke University Durham, North Carolina, 27708, USA. Fax: 919-684-4488; Tel: 919-660-5131;
| |
Collapse
|
29
|
Endothelial Wound Recovery is Influenced by Treatment with Shear Stress, Wound Direction, and Substrate. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0277-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Lee YB, Shin YM, Lee JH, Jun I, Kang JK, Park JC, Shin H. Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials 2012; 33:8343-52. [PMID: 22917738 DOI: 10.1016/j.biomaterials.2012.08.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
Abstract
In this study, we introduced a simple method for polydopamine-mediated immobilization of dual bioactive factors for the preparation of functionalized vascular graft materials. Polydopamine was deposited on elastic and biodegradable poly(lactic acid-co-ɛ-caprolactone) (PLCL) films, and a cell adhesive RGD-containing peptide and basic fibroblast growth factor were subsequently immobilized by simple dipping. We used an enzyme-linked immunosorbent assay and fluorescamine assay to confirm that we had stably immobilized bioactive molecules on the polydopamine-coated PLCL film in a reaction time-dependent manner. When human umbilical vein endothelial cells (HUVEC) were cultured on the prepared substrates, the number of adherent cells and proliferation of HUVEC for up to 14 days were greatest on the film immobilized with dual factors. On the other hand, the film immobilized with RGD peptide exhibited the highest migration speed compared to the other groups. The expression of cluster of differentiation 31 and von Willebrand factor, which indicates maturation of endothelial cells, was highly stimulated in the dual factor-immobilized group, and passively adsorbed factors showed a negligible effect. The immobilization of bioactive molecules inspired by polydopamine was successful, and adhesion, migration, proliferation and differentiation of HUVEC were synergistically accelerated by the presence of multiple signaling factors. Collectively, our results have demonstrated that a simple coating with polydopamine enables the immobilization of multiple bioactive molecules for preparation of polymeric functionalized vascular graft materials.
Collapse
Affiliation(s)
- Yu Bin Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Lin RY, Dayananda K, Chen TJ, Chen CY, Liu GC, Lin KL, Wang YM. Targeted RGD nanoparticles for highly sensitive in vivo integrin receptor imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:7-18. [DOI: 10.1002/cmmi.457] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ren-Yen Lin
- Department of Biological Science and Technology; National Chiao Tung University; 75 Bo-Ai Street; Hsinchu; 300; Taiwan
| | - Kasala Dayananda
- Department of Biological Science and Technology; National Chiao Tung University; 75 Bo-Ai Street; Hsinchu; 300; Taiwan
| | - Ting-Jung Chen
- Department of Biological Science and Technology; National Chiao Tung University; 75 Bo-Ai Street; Hsinchu; 300; Taiwan
| | | | - Gin-Chung Liu
- Department of Medical Imaging; Kaohsiung Medical University Hospital; Kaohsiung; 807; Taiwan
| | - Kun-Liang Lin
- Department of Biological Science and Technology; National Chiao Tung University; 75 Bo-Ai Street; Hsinchu; 300; Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology; National Chiao Tung University; 75 Bo-Ai Street; Hsinchu; 300; Taiwan
| |
Collapse
|
32
|
Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:64-70, 2. [PMID: 22174081 PMCID: PMC3517145 DOI: 10.1002/adma.201103574] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 05/20/2023]
Abstract
Engineered polyethylene glycol-maleimide matrices for regenerative medicine exhibit improved reaction efficiency and wider range of Young’s moduli by utilizing maleimide cross-linking chemistry. This hydrogel chemistry is advantageous for cell delivery due to the mild reaction that occurs rapidly enough for in situ delivery, while easily lending itself to “plug-and-play” design variations such as incorporation of enzyme-cleavable cross-links and cell-adhesion peptides.
Collapse
Affiliation(s)
- Edward A. Phelps
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Nduka O. Enemchukwu
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Vincent F. Fiore
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Jay C. Sy
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Niren Murthy
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Todd A. Sulchek
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Thomas H. Barker
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| |
Collapse
|
33
|
Kim HD, Peyton SR. Bio-inspired materials for parsing matrix physicochemical control of cell migration: a review. Integr Biol (Camb) 2011; 4:37-52. [PMID: 22025169 DOI: 10.1039/c1ib00069a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell motility is ubiquitous in both normal and pathophysiological processes. It is a complex biophysical response elicited via the integration of diverse extracellular physicochemical cues. The extracellular matrix directs cell motility via gradients in morphogens (a.k.a. chemotaxis), adhesive proteins (haptotaxis), and stiffness (durotaxis). Three-dimensional geometrical and proteolytic cues also constitute key regulators of motility. Therefore, cells process a variety of physicochemical signals simultaneously, while making informed decisions about migration via intracellular processing. Over the last few decades, bioengineers have created and refined natural and synthetic in vitro platforms in an attempt to isolate these extracellular cues and tease out how cells are able to translate this complex array of dynamic biochemical and biophysical features into functional motility. Here, we review how biomaterials have played a key role in the development of these types of model systems, and how recent advances in engineered materials have significantly contributed to our current understanding of the mechanisms of cell migration.
Collapse
Affiliation(s)
- Hyung-Do Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
34
|
Ravindran S, Roam JL, Nguyen PK, Hering TM, Elbert DL, McAlinden A. Changes of chondrocyte expression profiles in human MSC aggregates in the presence of PEG microspheres and TGF-β3. Biomaterials 2011; 32:8436-45. [PMID: 21820171 DOI: 10.1016/j.biomaterials.2011.07.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/17/2011] [Indexed: 11/27/2022]
Abstract
Biomaterial microparticles are commonly utilized as growth factor delivery vehicles to induce chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs). To address whether the presence of microparticles could themselves affect differentiation of MSCs, a 3D co-aggregate system was developed containing an equal volume of human primary bone marrow-derived MSCs and non-degradable RGD-conjugated poly(ethylene glycol) microspheres (PEG-μs). Following TGF-β3 induction, differences in cell phenotype, gene expression and protein localization patterns were found when compared to MSC aggregate cultures devoid of PEG-μs. An outer fibrous layer always found in differentiated MSC aggregate cultures was not formed in the presence of PEG-μs. Type II collagen protein was synthesized by cells in both culture systems, although increased levels of the long (embryonic) procollagen isoforms were found in MSC/PEG-μs aggregates. Ubiquitous deposition of type I and type X collagen proteins was found in MSC/PEG-μs cultures while the expression patterns of these collagens was restricted to specific areas in MSC aggregates. These findings show that MSCs respond differently to TGF-β3 when in a PEG-μs environment due to effects of cell dilution, altered growth factor diffusion and/or cellular interactions with the microspheres. Although not all of the expression patterns pointed toward improved chondrogenic differentiation in the MSC/PEG-μs cultures, the surprisingly large impact of the microparticles themselves should be considered when designing drug delivery/scaffold strategies.
Collapse
Affiliation(s)
- Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jeon WB, Park BH, Wei J, Park RW. Stimulation of fibroblasts and neuroblasts on a biomimetic extracellular matrix consisting of tandem repeats of the elastic VGVPG domain and RGD motif. J Biomed Mater Res A 2011; 97:152-7. [DOI: 10.1002/jbm.a.33041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 11/11/2022]
|
36
|
Porter AM, Klinge CM, Gobin AS. Biomimetic hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC. Biomacromolecules 2010; 12:242-6. [PMID: 21128597 DOI: 10.1021/bm101220b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis is the process by which new blood vessels arise from the pre-existing vasculature. Human endothelial cells are known to be involved in three key cellular processes during angiogenesis: increased cell proliferation, degradation of the extracellular matrix during cell migration, and the survival of apoptosis. The above processes depend upon the presence of growth factors, such as vascular endothelial growth factor isoform 165 (VEGF(165)) that is released from the extracellular matrix as it is being degraded or secreted from activated endothelial cells. Thus, the goal of the current study is to develop a system with a backbone of polyethylene glycol (PEG) and grafted angiogenic signals to compare the initial angiogenic response of human umbilical vein endothelial cells (hUVEC) or human microvascular endothelial cells (hMEC). Adhesion ligands (PEG-RGDS) for cell attachment and PEG-modified VEGF(165) (PEG-VEGF(165)) are grafted into the hydrogels to encourage the angiogenic response. Our data suggest that our biomimetic system is equally effective in stimulating proliferation, migration, and survival of apoptosis in hMEC as compared to the response to hUVEC.
Collapse
Affiliation(s)
- Alex M Porter
- Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, United States
| | | | | |
Collapse
|
37
|
Andrade FK, Costa R, Domingues L, Soares R, Gama M. Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 2010; 6:4034-41. [PMID: 20438872 DOI: 10.1016/j.actbio.2010.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 02/02/2023]
Abstract
Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC-BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequence. The images obtained by scanning electron microscopy showed that the cells on the RGD-treated BC present a more elongated morphology 48h after cell seeding. The results also showed that RGD decreased the in-growth of HMEC cells through the BC and stimulated the early formation of cord-like structures by these endothelial cells. Thus, the use of recombinant proteins containing a CBM domain, with high affinity and specificity for cellulose surfaces allows control of the interaction of this material with cells. CBM may be combined with virtually any biologically active protein for the modification of cellulose-based materials, for in vitro or in vivo applications.
Collapse
|
38
|
Cai K, Kong T, Wang L, Liu P, Yang W, Chen C. Regulation of endothelial cells migration on poly(D, L-lactic acid) films immobilized with collagen gradients. Colloids Surf B Biointerfaces 2010; 79:291-7. [PMID: 20462745 DOI: 10.1016/j.colsurfb.2010.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 11/15/2022]
Abstract
To investigate the effect of protein surface-density gradient on the motility of endothelial cells, we developed a novel approach for the fabrication of a collagen density gradient onto poly(d, l-lactic acid) (PDLLA) films in this study. The approach involves a sequential alkali hydrolysis of PDLLA films to produce a density gradient of -COOH moieties onto the films, which were activated and then covalently linked with collagen. A collagen surface-density gradient onto PDLLA films was thus generated by this approach. Contact angle measurement and confocal laser scanning microscopy (CLSM) were employed to confirm the formation of -COOH gradient and collagen gradient, respectively. All results proved the feasibility of the fabrication of a collagen density gradient onto PDLLA films via the approach. Endothelial cells cultured on the gradient areas with low and moderate collagen surface-densities displayed a strong motility tendency, with the values such as net displacement, total distance, chemotactic index, migration rate and cell trajectories in parallel to the gradient. However, endothelial cells grew on the gradient area with high collagen density demonstrated a reverse response to the collagen gradient clue. These results suggest that cell motility is regulated by the collagen gradient with a surface-density dependent manner. This study provides an alternative for the fabrication of protein surface-density gradient onto biodegradable substrates to investigate chemical stimuli induced cell directional motility. It is potentially important for understanding the controlled angiogenesis for implantation of tissue-engineered constructs.
Collapse
Affiliation(s)
- Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | |
Collapse
|
39
|
Prediction of sphingosine 1-phosphate-stimulated endothelial cell migration rates using biochemical measurements. Ann Biomed Eng 2010; 38:2775-90. [PMID: 20358290 DOI: 10.1007/s10439-010-0014-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/12/2010] [Indexed: 01/08/2023]
Abstract
The ability to predict endothelial cell migration rates may aid in the design of biomaterials that endothelialize following implantation. However, the complexity of the signaling response to migration-promoting stimuli such as sphingosine 1-phosphate (S1P) makes such predictions quite challenging. A number of signaling pathways impact S1P-mediated cell migration, including the Akt and Src pathways, which both affect activation of the small GTPase Rac. Rac activation promotes the formation of lamellipodia, and thus should be intimately linked to cell migration rates. In immortalized endothelial cells, expression of proteins that inhibit Akt, Src, and Rac (PTEN, CSK, and beta2-chimaerin, respectively) was decreased using RNA interference, resulting in increases in the basal level of activation of Akt, Src, and Rac. Cells were scrape-wounded and stimulated with 1 microM S1P. The timecourse of Akt, Src, and Rac activation was followed over 2 h in the perturbed cells, while migration into the scrape wound was measured over 6 h. Rac activation at 120 min post-stimulation was highly correlated with the mean migration rate of cells, but only in cells stimulated with S1P. Using partial least squares regression, the migration rate of cells into the scrape wound was found to be highly correlated with the magnitude of the early Akt peak (e.g., 5-15 min post-stimulation). These results demonstrated that biochemical measurements might be useful in predicting rates of endothelial cell migration.
Collapse
|
40
|
Villanueva I, Weigel CA, Bryant SJ. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater 2009; 5:2832-46. [PMID: 19508905 DOI: 10.1016/j.actbio.2009.05.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
The pericellular matrix (PCM) surrounding chondrocytes is thought to play an important role in transmitting biochemical and biomechanical signals to the cells, which regulates many cellular functions including tissue homeostasis. To better understand chondrocytes interactions with their PCM, three-dimensional poly(ethylene glycol) (PEG) hydrogels containing Arg-Gly-Asp (RGD), the cell-adhesion sequence found in fibronectin and which is present in the PCM of cartilage, were employed. RGD was incorporated into PEG hydrogels via tethers at 0.1, 0.4 and 0.8 mM concentrations. Bovine chondrocytes were encapsulated in the hydrogels and subjected to dynamic compressive strains (0.3 Hz, 18% amplitude strain) for 48h, and their response assessed by cell morphology, ECM gene expression, cell proliferation and matrix synthesis. Incorporation of RGD did not influence cell morphology under free swelling conditions. However, the level of cell deformation upon an applied strain was greater in the presence of RGD. In the absence of dynamic loading, RGD appears to have a negative effect on chondrocyte phenotype, as seen by a 4.7-fold decrease in collagen II/collagen I expressions in 0.8mM RGD constructs. However, RGD had little effect on early responses of chondrocytes (i.e. cell proliferation and matrix synthesis/deposition). When isolating RGD as a biomechanical cue, cellular response was very different. Chondrocyte phenotype (collagen II/collagen I ratio) and proteoglycan synthesis were enhanced with higher concentrations of RGD. Overall, our findings demonstrate that RGD ligands enhance cartilage-specific gene expression and matrix synthesis, but only when mechanically stimulated, suggesting that cell-matrix interactions mediate chondrocyte response to mechanical stimulation.
Collapse
|
41
|
|
42
|
Scott EA, Nichols MD, Cordova LH, George BJ, Jun YS, Elbert DL. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels. Biomaterials 2008; 29:4481-93. [PMID: 18771802 DOI: 10.1016/j.biomaterials.2008.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/05/2008] [Indexed: 11/17/2022]
Abstract
Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with approximately <100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end-group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating.
Collapse
Affiliation(s)
- Evan A Scott
- Department of Biomedical Engineering and Center for Materials Innovation, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63105, USA
| | | | | | | | | | | |
Collapse
|
43
|
Luong E, Gerecht S. Stem cells and scaffolds for vascularizing engineered tissue constructs. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 114:129-72. [PMID: 19082932 DOI: 10.1007/10_2008_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.
Collapse
Affiliation(s)
- E Luong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | | |
Collapse
|