1
|
Fuenzalida L, Indo S, Contreras HR, Rappoport D, Cabané P. Basic-Clinical Analysis of Parathyroid Cancer. Biomedicines 2025; 13:687. [PMID: 40149663 PMCID: PMC11940549 DOI: 10.3390/biomedicines13030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Parathyroid cancer (PC) presents clinically as a case of hyperparathyroidism associated with local compression symptoms. The definitive diagnosis of PC is complex as it requires unequivocal criteria of invasion in postoperative biopsy. Given the difficulty in confirming the diagnosis of PC, attempts have been made to address this problem through the search for biomarkers, mainly using immunohistochemistry. Within this theme, the phenomenon of epithelial-mesenchymal transition and cancer stem cell markers have been scarcely studied; this could eventually help discriminate between a diagnosis of parathyroid adenoma or carcinoma. On the other hand, identification of oncogenes and tumor suppressing genes, as well as epigenetic markers such as miRNAs, lncRNAs, and circRNAs all play a crucial role in tumorigenesis and have enormous potential as diagnostic tools. Furthermore, proteomic-based and inflammatory markers have also been described as diagnostic aids for this uncommon neoplasm. This review presents a clinical approach to the disease, as well as providing a state-of-the-art analysis of basic biomarkers in diagnosis and future projections in this field.
Collapse
Affiliation(s)
- Lucas Fuenzalida
- Doctorate in Medical Sciences and Clinical Specialty Program, Postgraduate School, Faculty of Medicine, University of Chile, Santiago 8320328, Chile;
- Department of Surgery, Clinical Hospital—University of Chile, Santiago 8320328, Chile;
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8320328, Chile; (S.I.); (H.R.C.)
| | - Sebastián Indo
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8320328, Chile; (S.I.); (H.R.C.)
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8320328, Chile
| | - Héctor R. Contreras
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8320328, Chile; (S.I.); (H.R.C.)
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8320328, Chile
- Center for Cancer Prevention and Control (CECAN), Santiago 8380453, Chile
| | - Daniel Rappoport
- Department of Surgery, Clinical Hospital—University of Chile, Santiago 8320328, Chile;
| | - Patricio Cabané
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8320328, Chile; (S.I.); (H.R.C.)
- Department of Surgery, Faculty of Medicine, Universidad Andres Bello, Santiago 7501015, Chile
- Department of Head and Neck Surgery, Clinca INDISA, Santiago 7520440, Chile
| |
Collapse
|
2
|
Hu Y, Mo S, Xiao J, Cui M, Zheng Q, Chen T, Chang X, Liao Q. The significance of an immunohistochemical marker-based panel in assisting the diagnosis of parathyroid carcinoma. Endocrine 2024; 84:1146-1153. [PMID: 38340242 PMCID: PMC11208242 DOI: 10.1007/s12020-024-03687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Parathyroid carcinoma (PC) is an endocrine malignancy with a poor prognosis. However, the diagnosis of PC is still a difficult problem. A model with immunohistochemical (IHC) staining of 5 biomarkers has been reported from limited samples for the differential diagnosis of PC. In the present study, a series of IHC markers was applied in relatively large samples to optimize the diagnostic model for PC. METHODS In this study, 44 patients with PC, 6 patients with atypical parathyroid tumors and 57 patients with parathyroid adenomas were included. IHC staining for parafibromin, Ki-67, galectin-3, protein-encoding gene product 9.5 (PGP9.5), E-cadherin, and enhancer of zeste homolog 2 (EZH2) was performed on formalin-fixed, paraffin-embedded tissue samples. The effects of clinical characteristics, surgical procedure, and IHC staining results of tumor tissues on the diagnosis and prognosis of PC were evaluated retrospectively. RESULTS A logistic regression model with IHC results of parafibromin, Ki-67, and E-cadherin was created to differentiate PC with an area under the curve of 0.843. Cox proportional hazards analysis showed that negative parafibromin staining (hazard ratio: 3.26, 95% confidence interval: 1.28-8.34, P = 0.013) was related to the recurrence of PC. CONCLUSION An IHC panel of parafibromin, Ki-67 and E-cadherin may help to distinguish PC from parathyroid neoplasms. Among the 6 IHC markers and clinical features examined, the risk factor related to PC recurrence was parafibromin staining loss.
Collapse
Affiliation(s)
- Ya Hu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shengwei Mo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinheng Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qingyuan Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tianqi Chen
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
4
|
Makino H, Notsu M, Asayama I, Otani H, Morita M, Yamamoto M, Yamauchi M, Nakao M, Miyake H, Araki A, Uchino S, Kanasaki K. Successful Control of Hypercalcemia with Sorafenib, Evocalcet, and Denosumab Combination Therapy for Recurrent Parathyroid Carcinoma. Intern Med 2022; 61:3383-3390. [PMID: 35370235 PMCID: PMC9751735 DOI: 10.2169/internalmedicine.9261-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parathyroid carcinoma (PC) is a rare type of endocrine cancer. Recurrence and metastasis are common after surgery, and refractory hypercalcemia often leads to a poor prognosis. However, there are currently no specific strategies for PC recurrence. We herein report a 61-year-old Japanese man with metastatic PC who was treated with sorafenib, a multikinase inhibitor. In this case, the serum calcium level was under control for 10 months after the initiation of sorafenib. This case suggests that combination therapy with sorafenib, evocalcet, and denosumab may be an alternative, stronger management option for refractory hypercalcemia in recurrent PC.
Collapse
Affiliation(s)
- Hirofumi Makino
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | - Itsuko Asayama
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | - Hazuki Otani
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | - Miwa Morita
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | | | - Mika Yamauchi
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
- Research Institute for Metabolic Bone Diseases, Eikokai Ono Hospital, Japan
| | - Mika Nakao
- Cancer Genome Medical Center, Shimane University Faculty of Medicine, Japan
| | - Hitomi Miyake
- Department of Internal Medicine, Unnan City Hospital, Japan
| | - Asuka Araki
- Organ Pathology Unit, Department of Pathology, Shimane University Faculty of Medicine, Japan
| | - Shinya Uchino
- Noguchi Thyroid Clinic and Hospital Foundation, Japan
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| |
Collapse
|
5
|
Matsumiya-Matsumoto Y, Morita Y, Uzawa N. Pleomorphic Adenoma of the Salivary Glands and Epithelial–Mesenchymal Transition. J Clin Med 2022; 11:jcm11144210. [PMID: 35887973 PMCID: PMC9324325 DOI: 10.3390/jcm11144210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/06/2023] Open
Abstract
Pleomorphic adenoma (PA) is a localized tumor that presents pleomorphic or mixed characteristics of epithelial origin and is interwoven with mucoid tissue, myxoid tissue, and chondroid masses. The literature reported that PA most often occurs in adults aged 30–60 years and is a female predilection; the exact etiology remains unclear. Epithelial–mesenchymal transition (EMT) is the transdifferentiation of stationary epithelial cells primarily activated by a core set of transcription factors (EMT-TFs) involved in DNA repair and offers advantages under various stress conditions. Data have suggested that EMTs represent the basic principle of tissue heterogeneity in PAs, demonstrating the potential of adult epithelial cells to transdifferentiate into mesenchymal cells. It has also been reported that multiple TFs, such as TWIST and SLUG, are involved in EMT in PA and that SLUG could play an essential role in the transition from myoepithelial to mesenchymal cells. Given this background, this review aims to summarize and clarify the involvement of EMT in the development of PA, chondrocyte differentiation, and malignant transformation to contribute to the fundamental elucidation of the mechanisms underlying EMT.
Collapse
|
6
|
Uljanovs R, Sinkarevs S, Strumfs B, Vidusa L, Merkurjeva K, Strumfa I. Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23136981. [PMID: 35805976 PMCID: PMC9266566 DOI: 10.3390/ijms23136981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
Immunohistochemistry remains an indispensable tool in diagnostic surgical pathology. In parathyroid tumours, it has four main applications: to detect (1) loss of parafibromin; (2) other manifestations of an aberrant immunophenotype hinting towards carcinoma; (3) histogenesis of a neck mass and (4) pathogenetic events, including features of tumour microenvironment and immune landscape. Parafibromin stain is mandatory to identify the new entity of parafibromin-deficient parathyroid neoplasm, defined in the WHO classification (2022). Loss of parafibromin indicates a greater probability of malignant course and should trigger the search for inherited or somatic CDC73 mutations. Aberrant immunophenotype is characterised by a set of markers that are lost (parafibromin), down-regulated (e.g., APC protein, p27 protein, calcium-sensing receptor) or up-regulated (e.g., proliferation activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared to benign parathyroid disease. Aberrant immunophenotype is not the final proof of malignancy but should prompt the search for the definitive criteria for carcinoma. Histogenetic studies can be necessary for differential diagnosis between thyroid vs. parathyroid origin of cervical or intrathyroidal mass; detection of parathyroid hormone (PTH), chromogranin A, TTF-1, calcitonin or CD56 can be helpful. Finally, immunohistochemistry is useful in pathogenetic studies due to its ability to highlight both the presence and the tissue location of certain proteins. The main markers and challenges (technological variations, heterogeneity) are discussed here in the light of the current WHO classification (2022) of parathyroid tumours.
Collapse
Affiliation(s)
- Romans Uljanovs
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Stanislavs Sinkarevs
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Boriss Strumfs
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Liga Vidusa
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Kristine Merkurjeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
- Correspondence:
| |
Collapse
|
7
|
Davies MP, John Evans TW, Tahir F, Balasubramanian SP. Parathyroid cancer: A systematic review of diagnostic biomarkers. Surgeon 2021; 19:e536-e548. [PMID: 33642204 DOI: 10.1016/j.surge.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Parathyroid cancers are rare and difficult to distinguish from benign parathyroid tumours. Prediction of malignancy often relies on intraoperative assessment of invasion. Standard histology is also inadequate; especially in the absence of local invasion, lymph nodal disease and metastasis. The aim of this project was to systematically review published literature on potential bio-markers used for the diagnosis of parathyroid cancer. METHODS Pubmed, Web of Science and Medline databases were searched. Inclusion criteria included English language papers published after 1985 and reporting on biomarkers in human studies of parathyroid cancer and benign disease. RESULTS 118 relevant papers were appraised; all were observational studies. At least 2 papers studied 8 serum, 4 urine and 27 tissue biomarkers on the diagnosis of parathyroid cancer. Of these, 5 serum and 13 tissue markers have been demonstrated in at least one study to be statistically different in benign and malignant disease. We present a synthesis of data for each biomarker and measures of diagnostic accuracy where possible. CONCLUSIONS Consideration should be given to the use of a panel of biomarkers to review patients with suspected parathyroid cancer. A profile including serum calcium and PTH levels and tissue expression of APC, Parafibromin, PGP9.5, Galectin 3 and Ki67 is proposed. Systematic Review Registration Number - CRD42019127833.
Collapse
Affiliation(s)
- Matthew Philip Davies
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, United Kingdom.
| | | | - Fawzia Tahir
- Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| | - Saba P Balasubramanian
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, United Kingdom; Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
8
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Clinical Presentation, Treatment, and Outcome of Parathyroid Carcinoma: Results of the NEKAR Retrospective International Multicenter Study. Ann Surg 2020; 275:e479-e487. [PMID: 32649472 DOI: 10.1097/sla.0000000000004144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In this retrospective cohort study, we describe the clinical presentation and workup of parathyroid carcinoma (PC) and determine its clinical prognostic parameters. Primary outcome was recurrence free survival. SUMMARY BACKGROUND DATA PC is an orphan malignancy for which diagnostic workup and treatment is not established. METHODS Eighty-three patients were diagnosed with PC between 1986 and 2018. Disease-specific and recurrence-free survivals were estimated with the Kaplan-Meier method. Risk factors for recurrence were identified by binary logistic regression with adjustment for age and sex. Thirty-nine tumors underwent central histopathological review. RESULTS Renal (39.8%), gastrointestinal (24.1%), bone (22.9%), and psychiatric (19.3%) symptoms were the most common symptoms. Surgical treatment was heterogeneous [parathyroidectomy [PTx)] alone: 22.9%; PTx and hemithyroidectomy: 24.1%; en bloc resection 15.7%; others 37.3%] and complications of surgery were frequent (recurrent laryngeal nerve palsy 25.3%; hypoparathyroidism 6%). Recurrence of PC was observed in 32 of 83 cases. In univariate analysis, rate of recurrence was reduced when extended initial surgery had been performed (P = 0.04). In multivariate analysis low T status [odds ratio (OR) = 2.65, 95% confidence interval (CI) 1.02-6.88, P = 0.045], N0 stage at initial diagnosis (OR = 6.32, 95% CI 1.33-30.01, P = 0.02), Ki-67 <10% (OR = 14.07, 95% CI 2.09-94.9, P = 0.007), and postoperative biochemical remission (OR = 0.023, 95% CI 0.001-0.52, P = 0.018) were beneficial prognostic parameters for recurrence-free survival. CONCLUSION Despite a favorable overall prognosis, PC shows high rates of recurrence leading to repeated surgery and postoperative recurrent laryngeal nerve palsy and hypoparathyroidism. In view of the reduced recurrence rate in cases of extended surgery, ipsilateral completion surgery may be considered when PC is confirmed.
Collapse
|
10
|
Navas T, Kinders RJ, Lawrence SM, Ferry-Galow KV, Borgel S, Hollingshead MG, Srivastava AK, Alcoser SY, Makhlouf HR, Chuaqui R, Wilsker DF, Konaté MM, Miller SB, Voth AR, Chen L, Vilimas T, Subramanian J, Rubinstein L, Kummar S, Chen AP, Bottaro DP, Doroshow JH, Parchment RE. Clinical Evolution of Epithelial-Mesenchymal Transition in Human Carcinomas. Cancer Res 2020; 80:304-318. [PMID: 31732654 PMCID: PMC8170833 DOI: 10.1158/0008-5472.can-18-3539] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates β-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of β-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.
Collapse
Affiliation(s)
- Tony Navas
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Scott M Lawrence
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Katherine V Ferry-Galow
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Suzanne Borgel
- In Vivo Evaluation Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Apurva K Srivastava
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sergio Y Alcoser
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Rodrigo Chuaqui
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Deborah F Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Andrea Regier Voth
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Li Chen
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tomas Vilimas
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jyothi Subramanian
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | | | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
11
|
York JR, McCauley DW. The origin and evolution of vertebrate neural crest cells. Open Biol 2020; 10:190285. [PMID: 31992146 PMCID: PMC7014683 DOI: 10.1098/rsob.190285] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
The neural crest is a vertebrate-specific migratory stem cell population that generates a remarkably diverse set of cell types and structures. Because many of the morphological, physiological and behavioural novelties of vertebrates are derived from neural crest cells, it is thought that the origin of this cell population was an important milestone in early vertebrate history. An outstanding question in the field of vertebrate evolutionary-developmental biology (evo-devo) is how this cell type evolved in ancestral vertebrates. In this review, we briefly summarize neural crest developmental genetics in vertebrates, focusing in particular on the gene regulatory interactions instructing their early formation within and migration from the dorsal neural tube. We then discuss how studies searching for homologues of neural crest cells in invertebrate chordates led to the discovery of neural crest-like cells in tunicates and the potential implications this has for tracing the pre-vertebrate origins of the neural crest population. Finally, we synthesize this information to propose a model to explain the origin of neural crest cells. We suggest that at least some of the regulatory components of early stages of neural crest development long pre-date vertebrate origins, perhaps dating back to the last common bilaterian ancestor. These components, originally directing neuroectodermal patterning and cell migration, served as a gene regulatory 'scaffold' upon which neural crest-like cells with limited migration and potency evolved in the last common ancestor of tunicates and vertebrates. Finally, the acquisition of regulatory programmes controlling multipotency and long-range, directed migration led to the transition from neural crest-like cells in invertebrate chordates to multipotent migratory neural crest in the first vertebrates.
Collapse
Affiliation(s)
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
12
|
Silva-Figueroa AM, Bassett R, Christakis I, Moreno P, Clarke CN, Busaidy NL, Grubbs EG, Lee JE, Perrier ND, Williams MD. Using a Novel Diagnostic Nomogram to Differentiate Malignant from Benign Parathyroid Neoplasms. Endocr Pathol 2019; 30:285-296. [PMID: 31734935 DOI: 10.1007/s12022-019-09592-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We sought to develop an immunohistochemical (IHC) tool to support the diagnosis of parathyroid carcinoma (PC) and help differentiate it from atypical parathyroid neoplasms (atypical) and benign adenomas. Distinguishing PC from benign parathyroid neoplasms can be challenging. Many cases of PC are histopathologically borderline for definitive malignancy. Recently, individual IHC biomarkers have been evaluated to aid in discrimination between parathyroid neoplasms. PC, atypical parathyroid neoplasms, and parathyroid adenomas treated at our institution from 1997 to 2014 were studied retrospectively. IHC analysis was performed to evaluate parafibromin, retinoblastoma (RB), protein gene product 9.5 (PGP9.5), Ki67, galectin-3, and E-cadherin expression. Receiver operating characteristic (ROC) analysis and multivariable logistic regression model for combinations of biomarkers were evaluated to classify patients as PC or atypical/adenoma. A diagnostic nomogram using 5 biomarkers was created for PC. Sixty-three patients were evaluated. The percent staining of parafibromin (p < 0.0001), RB (p = 0.04), Ki67 (p = 0.02), PGP9.5 (p = 0.04), and Galectin-3 (p = 0.01) differed significantly in the three diagnostic groups. ROC analysis demonstrated that parafibromin had the best performance in discriminating PC from atypical/adenoma; area under the curve (AUC) was 81% (cutoff, 92.5%; sensitivity rate, 64%; specificity rate, 87%). We created a diagnostic nomogram using a combination of biomarkers; AUC was 84.9% (95% confidence interval, 73.4-96.4%). The optimism-adjusted AUC for this model was 80.5% (mean absolute error, 0.043). A diagnostic nomogram utilizing an immunoexpression, a combination of immunohistochemical biomarkers, can be used to help differentiate PC from other parathyroid neoplasms, thus potentially improving diagnostic classification.
Collapse
Affiliation(s)
- Angelica M Silva-Figueroa
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
- Division of Surgery, Universidad Finis Terrae, Santiago, Chile
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioannis Christakis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Pablo Moreno
- Division of Endocrine Surgery, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Callisia N Clarke
- Division of Surgical Oncology, Medical College Wisconsin, Milwaukee, WI, USA
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Wächter S, Holzer K, Manoharan J, Brehm C, Mintziras I, Bartsch DK, Maurer E. [Surgical treatment of parathyroid carcinoma : Does the initial en bloc resection improve the prognosis?]. Chirurg 2019; 90:905-912. [PMID: 31359113 DOI: 10.1007/s00104-019-1007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radical en bloc resection of the tumor with ipsilateral hemithyroidectomy and central lymphadenectomy (PTX+HTX) is currently the generally recommended treatment strategy for parathyroid carcinoma (PC) in Germany; however, it remains unclear whether the en bloc resection leads to a prognostic benefit compared to parathyroidectomy (PTX) alone, especially considering disease-free and overall survival. OBJECTIVE This study analyzed the survival of patients with PC after PTX+HTX compared to patients with PTX. METHODS Patients with PC were identified from a prospective database and retrospectively analyzed regarding clinicopathological features, surgical treatment, disease-free interval and overall survival. RESULTS Out of 1705 patients who were operated on because of primary hyperparathyroidism (pHPT), 18 (1.1%) had histologically confirmed PC. In nine patients PTX+HTX was initially performed and the other nine patients received only PTX. After PTX, all of the nine patients developed a recurrence after a median of 18 months (range 7-84 months), while only one patient had a recurrence after PTX+HTX. After PTX a median three (range 2-18) reoperations were indicated for relapse but after PTX+HTX only one patient had to undergo two relapse surgeries (p < 0.001). The recurrence-free survival after PTX+HTX was significantly longer than after PTX (143 vs. 18 months, p = 0.01), while the overall survival of both groups after a median follow-up of 107.5 months did not significantly differ. DISCUSSION If there is any clinical suspicion of PC, an en bloc resection should be performed to prolong recurrence-free survival and avoid reoperations.
Collapse
Affiliation(s)
- S Wächter
- Klinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland.
| | - K Holzer
- Klinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland
| | - J Manoharan
- Klinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland
| | - C Brehm
- Klinik für Pathologie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland
| | - I Mintziras
- Klinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland
| | - D K Bartsch
- Klinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland
| | - E Maurer
- Klinik für Viszeral‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Gießen/Marburg GmbH, Standort Marburg, Baldingerstraße, 35043, Marburg, Deutschland
| |
Collapse
|
14
|
Burton LJ, Hawsawi O, Loyd Q, Henderson V, Howard S, Harlemon M, Ragin C, Roberts R, Bowen N, Gacii A, Odero-Marah V. Association of Epithelial Mesenchymal Transition with prostate and breast health disparities. PLoS One 2018; 13:e0203855. [PMID: 30199553 PMCID: PMC6130866 DOI: 10.1371/journal.pone.0203855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
African Americans (AA) have higher death rates due to prostate and breast cancer as compared to Caucasian Americans (CA), and few biomarkers have been associated with this disparity. In our study we investigated whether epithelial-mesenchymal transition (EMT) with a focus on Snail and Cathepsin L (Cat L), could potentially be two markers associated with prostate and breast health disparities. We have previously shown that Snail can increase Cat L protein and activity in prostate and breast cancer. Western blot and real-time PCR analyses showed that mesenchymal protein expression (Snail, vimentin, Cat L) and Cat L activity (shown by zymography) was higher in AA prostate cancer cells as compared to CA normal transformed RWPE-1 prostate epithelial cells, and androgen-dependent cells, and comparable to metastatic CA cell lines. With respect to breast cancer, mesenchymal markers were higher in TNBC compared to non-TNBC cells. The higher mesenchymal marker expression was functionally associated with higher proliferative and migratory rates. Immunohistochemistry showed that both nuclear Snail and Cat L expression was significantly higher in cancer compared to normal for CA and Bahamas prostate patient tissue. Interestingly, AA normal tissue stained higher for nuclear Snail and Cat L that was not significantly different to cancer tissue for both prostate and breast tissue, but was significantly higher than CA normal tissue. AA TNBC tissue also displayed significantly higher nuclear Snail expression compared to CA TNBC, while no significant differences were observed with Luminal A cancer tissue. Therefore, increased EMT in AA compared to CA that may contribute to the more aggressive disease.
Collapse
Affiliation(s)
- Liza J. Burton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
| | - Quentin Loyd
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
| | - Veronica Henderson
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
| | - Simone Howard
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
| | - Maxine Harlemon
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
- African Caribbean Cancer Consortium, Philadelphia, PA, United States of America
| | - Camille Ragin
- African Caribbean Cancer Consortium, Philadelphia, PA, United States of America
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States of America
| | - Robin Roberts
- African Caribbean Cancer Consortium, Philadelphia, PA, United States of America
- University of West Indies School of Clinical Medicine and Research, Nassau, The Bahamas
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
| | - Andrew Gacii
- African Caribbean Cancer Consortium, Philadelphia, PA, United States of America
- Department of Lab Medicine, Kenyatta National Hospital, Nairobi, Kenya
| | - Valerie Odero-Marah
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America
- African Caribbean Cancer Consortium, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Xue Y, Jia X, Li L, Dong X, Ling J, Yuan J, Li Q. DDX5 promotes hepatocellular carcinoma tumorigenesis via Akt signaling pathway. Biochem Biophys Res Commun 2018; 503:2885-2891. [PMID: 30119889 DOI: 10.1016/j.bbrc.2018.08.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
The DEAD-box-protein DDX5 is an ATP-dependent RNA helicase and also acts as co-activator that contributes to progression and metastasis of various tumours. However, its expression as well as prognostic roles of DDX5 in hepatocellular carcinoma (HCC) remain elusive. In this study, we investigated clinical significance and biological functions of DDX5 in HCC. Our results suggested that DDX5 showed overexpression at both transcriptional and translational levels in HCC tissues compared with adjacent normal tissues. Moreover, DDX5 expression was demonstrated to be correlated with tumor size (p < 0.001), N stage (p = 0.013), M stage (p = 0.006), tumor differentiation (p < 0.001) and American Joint Committee on Cancer (AJCC) stage (p = 0.001). Simultaneously, high DDX5 expression was found to be significantly correlated to worse outcome including Disease free survival (DFS) (p = 0.016) and overall survival (OS) (p = 0.032) according to Kaplan-Meier survival analysis. In vitro studies, it suggested that knockdown of DDX5 suppressed HCC cells migration, invasion and epithelial -to- mesenchymal transition (EMT) process. Depletion of DDX5 could promote HCC cells growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that PI3K/Akt signaling pathway obtained the highest enrichment. Furthermore, we found that knockdown of DDX5 decreased Akt as well as p-Akt (S473) expressions. Collectively, these findings suggested that DDX5 facilitated HCC cells growth via Akt signaling pathway. DDX5 played a crucial role in HCC proliferation and tumorigenesis and may be a novel prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ying Xue
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou, Shanghai, 200080, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou, Shanghai, 200080, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiao Dong
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou, Shanghai, 200080, China
| | - Jing Ling
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou, Shanghai, 200080, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qi Li
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou, Shanghai, 200080, China.
| |
Collapse
|
16
|
Handra-Luca A, Tissier F. Infracentimetric parathyroid cysts in hyperparathyroidemia. Pathol Res Pract 2018; 214:455-458. [PMID: 29496307 DOI: 10.1016/j.prp.2017.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Parathyroid cysts are rare, more frequently functional. Here we report 2 cases of infracentimetric parathyroid cysts identified in parathyroid adenomas resected for hyperparathyroidemia and hypercalcemia. Chronic parathyroiditis was associated. Chromogranin and E-cadherin/uvomorulin were expressed heterogeneously in the cyst lining and in parathyroid cells. In one of the cases, CD10 and CD56 were expressed by the luminal membrane of parathyroid cells. CD31 was expressed in interparathyroid cell monocyte/macrophage membrane as well as CD68, several cells showing also CD10 and/or CD56 expression. Ki67 was expressed in sparse parathyroid cells, some of binucleated cells or with nuclear clumps. In conclusion, heterogeneous E-cadherin expression in parathyroid cells may only indirectly related to cyst formation while CD56 and CD10 seem not to relate at all. The relevance of nuclear clumps and Azzopardi phenomenon as well as of the presence of disperse monocyte/macrophage-type cells for the parathyroiditis lesions remains to be further investigated.
Collapse
Affiliation(s)
- Adriana Handra-Luca
- Service d'Anatomie pathologique, APHP GHU Avicenne, Universite Paris Nord Sorbonne Cite, 125 rue Stalingrad, 93009 Bobigny, France.
| | - Frederique Tissier
- APHP Hopitaux Universitaires Pitié-Salpetriere Charles Foix, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| |
Collapse
|
17
|
Li X, Cao Y, Li M, Jin F. Upregulation of HES1 Promotes Cell Proliferation and Invasion in Breast Cancer as a Prognosis Marker and Therapy Target via the AKT Pathway and EMT Process. J Cancer 2018; 9:757-766. [PMID: 29556333 PMCID: PMC5858497 DOI: 10.7150/jca.22319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/03/2017] [Indexed: 12/16/2022] Open
Abstract
HES1 is a transcriptional repressor involved in cell differentiation and proliferation as well as in various cancer developments, but its expression pattern and biological roles in breast cancer have not been examined. In this study, we assessed HES1 expression in breast cancer tissues using immunohistochemistry and Western blot analyses and investigated HES1 function using MTT and Matrigel invasion assays. Significant relationships were observed between HES1 upregulation and advanced TNM stage (p=0.011), node metastasis (p=0.043), negative oestrogen receptor expression (p=0.001) and triple-negative status (p=0.001). HES1 overexpression was correlated with poor prognosis in breast cancer patients (p<0.05). The MTT and Matrigel invasion assays showed that silencing HES1 in MDA-MB-231 cells decreased cell proliferation and invasion, whereas overexpression of HES1 in MCF-7 cells enhanced its proliferation and invasion. Further analyses showed that silencing HES1 downregulated p-AKT and impeded epithelial-mesenchymal transition (EMT), whereas overexpression of HES1 upregulated AKT phosphorylation and induced EMT. Our study demonstrated that HES1 upregulation is a predictor of poor prognosis in human breast cancers and might be a critical contributor to the proliferation and invasion of breast cancer cells. Moreover, the proportion of cells with overexpression of HES1 in triple-negative breast cancer (TNBC) samples was significantly higher. Thus, HES1 might be a potential therapeutic target in the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mu Li
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
18
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Wang HC, Chu YL, Hsieh SC, Sheen LY. Diallyl trisulfide inhibits cell migration and invasion of human melanoma a375 cells via inhibiting integrin/facal adhesion kinase pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:2352-2359. [PMID: 28741790 DOI: 10.1002/tox.22445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Melanoma is the leading cause of death from skin disease due to its propensity for metastasis. Studies have shown that integrin-mediated focal adhesion kinase (FAK) signal pathway is implicated in cell proliferation, survival and metastasis of tumor cells. Our previous results indicated that diallyl trisulfide (DATS) provided its antimelanoma activity via inducing cell cycle arrest and apoptosis. The aim of this study was to explore DATS mediated antimetastatic effect and the corresponding mechanism in human melanoma A375 cells. We found that DATS exhibited an inhibitory effect on the abilities of migration and invasion in A375 cells under noncytotoxic concentrations analyzed by wound healing assays and Matrigel invasion chamber system. DATS attenuated invasion of A375 cells with characteristic of decreased activities and protein expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Moreover, DATS exerted an inhibitory effect on cell adhesion of A375 cells, which is in correlation with the change in integrin signaling pathway. Results of Western blotting showed that DATS decreased the levels of several integrin subunits, including α4, α5, αv, β1, β3 and β4. Subsequently, DATS induced a strong decrease in total FAK, phosphorylated FAK Tyr-397,-576, -577, and disorganized F-actin stress fibers, resulting in a nonmigratory phenotype. These results suggest that the antimetastatic potential of DATS for human melanoma cells might be due to the disruption of integrin/FAK signaling pathway.
Collapse
Affiliation(s)
- Hsiao-Chi Wang
- Department of Cosmetics Applications and Management, Cardinal Tien Junior College of Healthcare and Management, No. 112, Minzu Road, Sindian District, New Taipei, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
20
|
Yue Z, Zhou Y, Zhao P, Chen Y, Yuan Y, Jing Y, Wang X. p53 Deletion promotes myeloma cells invasion by upregulating miR19a/CXCR5. Leuk Res 2017; 60:115-122. [PMID: 28783539 DOI: 10.1016/j.leukres.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 01/07/2023]
Abstract
P53 deletion has been identified as one of the few factors that defined high risk and poor prognosis in MM. It has been reported p53 deletion is associated with resistance to chemotherapy and organ infiltrations of MM. However, p53 deletion in the migration and dissemination of MM cells has not been totally elucidated. In this research, first, we investigated whether p53 is associated with migration of MM cells. We found that p53 regulates the migration of NCI-H929 cells with wild-type p53 but not U266 cells with mutated-type p53. Next, we investigated the related mechanism by which p53 regulates the migration. We found that down-regulation of p53 reduced adhesion of NCI-H929 cells to the BM stroma via decreased expression of E-cadherin and increased EMT-regulating proteins. Further study have identified the miR-19a/CXCR5 pathway as a candidate p53-induced migration mechanism. In conclusion, we have demonstrated for the first time the critical value of p53 deletion in MM cell migration and dissemination, as well as the acquisition of an EMT-like phenotype. Our research provides new insights into the function of p53 in migration of MM and suggests p53/miRNA19a/CXCR5 may provide potentially therapeutic targets for the treatment of myeloma with p53 deletion.
Collapse
Affiliation(s)
- Zhijie Yue
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yongxia Zhou
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Pan Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yafang Chen
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Ying Yuan
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yaoyao Jing
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China.
| |
Collapse
|
21
|
Li X, Cao Y, Li M, Jin F. HES1 overexpression promotes cell proliferation and invasion in breast cancer and predicts poor survival. Tumour Biol 2017; 39:101042831771813. [DOI: 10.1177/1010428317718134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
22
|
Ma YR, Siegal GP, Wei S. Reacquisition of E-cadherin expression in metastatic deposits of signet-ring cell carcinoma of the upper gastrointestinal system: a potential anchor for metastatic deposition. J Clin Pathol 2016; 70:528-532. [PMID: 27864451 DOI: 10.1136/jclinpath-2016-203959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
AIMS To examine the expression of E-cadherin in paired primary and metastatic signet-ring cell carcinomas (SRCC) of various organ systems in order to explore the potential role of the molecule in metastatic dissemination of this unique tumour type. METHODS Thirty-seven consecutive cases of SRCC from various organs with paired primary and metastatic tumorous tissue available were retrieved. The intensity of membranous E-cadherin expression was semiquantitatively scored on a scale of 0-3+. RESULTS Reduced E-cadherin expression was a distinct feature of primary SRCC and was observed in 78% of primary tumours. Interestingly, the E-cadherin reduction was less frequently seen in metastatic SRCC when compared with their primary counterparts, and was only found in 57% of tumours in lymph node metastases or at distant sites of relapse. Furthermore, the mean score of E-cadherin expression of primary SRCC was significantly lower than that of their metastatic counterparts (2.3 vs 1.8; p=0.008). When divided by organ systems, the reacquisition of E-cadherin expression in the metastatic deposits was most remarkable in the SRCC of upper gastrointestinal tract origin (2.3 vs 1.4; p=0.003), whereas no significant difference was observed in other organ systems. CONCLUSIONS While the reduction of E-cadherin in primary SRCC supports its pivotal role in epithelial-mesenchymal transition, a process crucial in tumour progression and metastatic dissemination, the re-expression of this molecule in metastatic SRCC cells implies a reversal to their epithelial phenotype (thus mesenchymal-epithelial transition) which, in turn, theoretically helps tumour cells to anchor and form cohesive metastatic deposits.
Collapse
Affiliation(s)
- Yihong R Ma
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shi Wei
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3β pathway in human colon cancer. Oncotarget 2016; 6:38667-80. [PMID: 26452029 PMCID: PMC4770728 DOI: 10.18632/oncotarget.5484] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022] Open
Abstract
Hes1 is a transcription factor that influences cell proliferation and differentiation. However, the effect of Hes1 on invasiveness and the underlying mechanism remain unknown. In the current study, we found that Hes1 suppressed cell apoptosis, promoted cell growth, induced EMT phenotype and cytoskeleton reconstruction, and enhanced the metastatic potential of colon cancer cells in vitro and in vivo. Furthermore, we indicated that Bmi-1 mediated Hes1-induced cell proliferation and migration, downregulated PTEN and activated the Akt/GSK3β pathway, consequently induced EMT and cytoskeleton reconstruction, ultimately leading to enhanced invasiveness of cancer cells. In addition, we also found that both Hes1 and Bmi-1 could directly regulate PTEN by associating at the PTEN locus, and played important roles in regulating PTEN/Akt/GSK3β pathway. Our results provide functional and mechanistic links between Hes1 and Bmi-1/PTEN/Akt/GSK3β signaling in the development and progression of colon cancer.
Collapse
|
24
|
Gallardo M, Calaf GM. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines. Int J Oncol 2016; 49:1019-27. [DOI: 10.3892/ijo.2016.3598] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 11/05/2022] Open
|
25
|
Homeostatic Signaling by Cell-Cell Junctions and Its Dysregulation during Cancer Progression. J Clin Med 2016; 5:jcm5020026. [PMID: 26901232 PMCID: PMC4773782 DOI: 10.3390/jcm5020026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022] Open
Abstract
The transition of sessile epithelial cells to a migratory, mesenchymal phenotype is essential for metazoan development and tissue repair, but this program is exploited by tumor cells in order to escape the confines of the primary organ site, evade immunosurveillance, and resist chemo-radiation. In addition, epithelial-to-mesenchymal transition (EMT) confers stem-like properties that increase efficiency of colonization of distant organs. This review evaluates the role of cell–cell junctions in suppressing EMT and maintaining a quiescent epithelium. We discuss the conflicting data on junctional signaling in cancer and recent developments that resolve some of these conflicts. We focus on evidence from breast cancer, but include other organ sites where appropriate. Current and potential strategies for inhibition of EMT are discussed.
Collapse
|
26
|
Conditioned media from human ovarian cancer endothelial progenitor cells induces ovarian cancer cell migration by activating epithelial-to-mesenchymal transition. Cancer Gene Ther 2015; 22:518-23. [DOI: 10.1038/cgt.2015.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022]
|
27
|
The Relationship Between E-Cadherin and its Transcriptional Repressors in Spontaneously Arising Canine Invasive Micropapillary Mammary Carcinoma. J Comp Pathol 2015; 153:256-65. [PMID: 26385325 DOI: 10.1016/j.jcpa.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
E-cadherin downregulation is related to metastatic behaviour and a poor prognosis in cancer. It might be induced by transcriptional repression mediated by the transcription factors SNAIL, ZEB1, ZEB2 and TWIST. Here, we investigated E-cadherin expression and its relationship to those transcriptional repressors (i.e. SNAIL, ZEB1, ZEB2 and TWIST) in the progression from carcinoma 'in situ' to invasion to lymph node metastasis in spontaneously arising canine invasive micropapillary carcinoma (IMPC). E-cadherin expression decreased from carcinoma in situ to invasive progression and was likely to increase with lymph node metastasis. Expression of SNAIL decreased from carcinoma in situ to invasive areas and from invasive areas to lymph nodes. Metastatic lymph nodes had higher expression of ZEB1 than carcinoma in situ and invasive areas. ZEB2 expression was observed in 52%, 38% and 33% of carcinoma in situ areas, invasive areas and lymph node metastases, respectively. TWIST expression was observed in 52%, 38% and 33% of carcinoma in situ areas, invasive areas and lymph node metastases, respectively. In invasive areas, E-cadherin downregulation correlated significantly with SNAIL and TWIST upregulation. Additionally, in infiltrating components of IMPCs, E-cadherin(-)SNAIL(+) neoplastic epithelial cells were observed by immunofluorescence. Taken together, canine mammary IMPCs had a loss of E-cadherin from carcinoma in situ to invasive areas, which appears to be induced by the transcription factor SNAIL. In lymph node metastasis, ZEB1 appears to not exert E-cadherin transcriptional repression activity.
Collapse
|
28
|
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease accounting for more than 260,000 cancer cases diagnosed and 128,000 deaths worldwide. A large majority of cancer deaths result from cancers that have metastasized beyond the primary tumor. The relationship between genetic changes and clinical outcome can reflect the biological events that promote cancer's aggressive behavior, and these can serve as molecular markers for improved patient management and survival. To this end, epithelial-mesenchymal transition (EMT) is a major process that promotes tumor invasion and metastasis, making EMT-related proteins attractive diagnostic biomarkers and therapeutic targets. In this study, we used immunohistochemistry to study the expression of a panel of transcription factors (TWIST1, SNAI1/2, ZEB1 and ZEB2) and other genes intimately related to EMT (CDH1 and LAMC2) at the invasive tumor front of OSCC tissues. The association between the expression of these proteins and clinico-pathological parameters were examined with Pearson Chi-square and correlation with survival was analyzed using Kaplan Meier analysis. Our results demonstrate that there was a significant differential expression of CDH1, LAMC2, SNAI1/2 and TWIST1 between OSCC and normal oral mucosa (NOM). Specifically, CDH1 loss was significantly associated with Broder's grading, while diffused LAMC2 was similarly associated with non-cohesive pattern of invasion. Notably, co-expression of TWIST1 and ZEB2 in OSCC was significantly associated with poorer overall survival, particularly in patients without detectable lymph node metastasis. This study demonstrates that EMT-related proteins are differentially expressed in OSCC and that the co-expression of TWIST1 and ZEB2 could be of clinical value in identifying patients with poor survival for appropriate patient management.
Collapse
|
29
|
|
30
|
Zielinska HA, Bahl A, Holly JM, Perks CM. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? BREAST CANCER-TARGETS AND THERAPY 2015; 7:9-19. [PMID: 25632238 PMCID: PMC4304531 DOI: 10.2147/bctt.s43932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evidence indicates that for most human cancers the problem is not that gene mutations occur but is more dependent upon how the body deals with damaged cells. It has been estimated that only about 1% of human cancers can be accounted for by unmistakable hereditary cancer syndromes, only up to 5% can be accounted for due to high-penetrance, single-gene mutations, and in total only 5%-15% of all cancers may have a major genetic component. The predominant contribution to the causation of most sporadic cancers is considered to be environmental factors contributing between 58% and 82% toward different cancers. A nutritionally poor lifestyle is associated with increased risk of many cancers, including those of the breast. As nutrition, energy balance, macronutrient composition of the diet, and physical activity levels are major determinants of insulin-like growth factor (IGF-I) bioactivity, it has been proposed that, at least in part, these increases in cancer risk and progression may be mediated by alterations in the IGF axis, related to nutritional lifestyle. Localized breast cancer is a manageable disease, and death from breast cancer predominantly occurs due to the development of metastatic disease as treatment becomes more complicated with poorer outcomes. In recent years, epithelial-to-mesenchymal transition has emerged as an important contributor to breast cancer progression and malignant transformation resulting in tumor cells with increased potential for migration and invasion. Furthermore, accumulating evidence suggests a strong link between components of the IGF pathway, epithelial-to-mesenchymal transition, and breast cancer mortality. Here, we highlight some recent studies highlighting the relationship between IGFs, IGF-binding protein 3, and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Hanna A Zielinska
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| | - Amit Bahl
- Department of Clinical Oncology, Bristol Haematology and Oncology Centre, University Hospitals Bristol, Bristol, UK
| | - Jeff Mp Holly
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| |
Collapse
|
31
|
Segiet OA, Deska M, Michalski M, Gawrychowski J, Wojnicz R. Molecular profiling in primary hyperparathyroidism. Head Neck 2014; 37:299-307. [DOI: 10.1002/hed.23656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliwia Anna Segiet
- Department of Histology and Embryology, Zabrze; Medical University of Silesia; Katowice Poland
| | - Mariusz Deska
- Chair and Clinical Department of General Surgery, Bytom; Medical University of Silesia; Katowice Poland
| | - Marek Michalski
- Department of Histology and Embryology, Zabrze; Medical University of Silesia; Katowice Poland
| | - Jacek Gawrychowski
- Chair and Clinical Department of General Surgery, Bytom; Medical University of Silesia; Katowice Poland
| | - Romuald Wojnicz
- Department of Histology and Embryology, Zabrze; Medical University of Silesia; Katowice Poland
| |
Collapse
|
32
|
Synergistic effects of glycated chitosan with high-intensity focused ultrasound on suppression of metastases in a syngeneic breast tumor model. Cell Death Dis 2014; 5:e1178. [PMID: 24743733 PMCID: PMC4001313 DOI: 10.1038/cddis.2014.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 01/12/2023]
Abstract
Stimulation of the host immune system is crucial in cancer treatment. In particular, nonspecific immunotherapies, when combined with other traditional therapies such as radiation and chemotherapy, may induce immunity against primary and metastatic tumors. In this study, we demonstrate that a novel, non-toxic immunoadjuvant, glycated chitosan (GC), decreases the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Lung metastatic ratios were reduced in 4T1 tumor-bearing mice when intratumoral GC injection was combined with local high-intensity focused ultrasound (HIFU) treatment. We postulate that this treatment modality stimulates the host immune system to combat cancer cells, as macrophage accumulation in tumor lesions was detected after GC-HIFU treatment. In addition, plasma collected from GC-HIFU-treated tumor-bearing mice exhibited tumor-specific cytotoxicity. We also investigated the effect of GC on epithelial–mesenchymal transition-related markers. Our results showed that GC decreased the expression of Twist-1 and Slug, proto-oncogenes commonly implicated in metastasis. Epithelial-cadherin, which is regulated by these genes, was also upregulated. Taken together, our current data suggest that GC alone can reduce cancer cell motility and invasion, whereas GC-HIFU treatment can induce immune responses to suppress tumor metastasis in vivo.
Collapse
|
33
|
Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y, D'Armiento J, Chada K. HMGA2 is a driver of tumor metastasis. Cancer Res 2013; 73:4289-99. [PMID: 23722545 DOI: 10.1158/0008-5472.can-12-3848] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The non-histone chromatin-binding protein HMGA2 is expressed predominantly in the mesenchyme before its differentiation, but it is also expressed in tumors of epithelial origin. Ectopic expression of HMGA2 in epithelial cells induces epithelial-mesenchymal transition (EMT), which has been implicated in the acquisition of metastatic characters in tumor cells. However, little is known about in vivo modulation of HMGA2 and its effector functions in tumor metastasis. Here, we report that HMGA2 loss of function in a mouse model of cancer reduces tumor multiplicity. HMGA2-positive cells were identified at the invasive front of human and mouse tumors. In addition, in a mouse allograft model, HMGA2 overexpression converted nonmetastatic 4TO7 breast cancer cells to metastatic cells that homed specifically to liver. Interestingly, expression of HMGA2 enhanced TGFβ signaling by activating expression of the TGFβ type II receptor, which also localized to the invasive front of tumors. Together our results argued that HMGA2 plays a critical role in EMT by activating the TGFβ signaling pathway, thereby inducing invasion and metastasis of human epithelial cancers.
Collapse
Affiliation(s)
- Asahiro Morishita
- Departments of Medicine and Pathology, Columbia University College of Physicians & Surgeons, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fendrich V, Maschuw K, Rehm J, Buchholz M, Holler JP, Slater EP, Bartsch DK, Waldmann J. Sorafenib inhibits tumor growth and improves survival in a transgenic mouse model of pancreatic islet cell tumors. ScientificWorldJournal 2012; 2012:529151. [PMID: 23346016 PMCID: PMC3543792 DOI: 10.1100/2012/529151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/06/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The purpose of the study was to evaluate Sorafenib (BAY 43-9006) derived receptor tyrosine kinase inhibition on tumor progression in murine islet cell tumors. Sorafenib is considered to be a potent inhibitor of tumor angiogenesis and neovascularization in various solid tumors. Rip1Tag2 mice were treated in two different groups according to the model of tumor progression: the early treatment group received vehicle or Sorafenib from 10 to 14 weeks of age and the late treatment group from week 12 until death. Tumor surface, tumor cell proliferation, and apoptosis were measured in both treatment groups to assess the in vivo effects of Sorafenib. Survival was recorded for the late treatment group. In the early treatment group Sorafenib led to a dramatic decrease in tumor volume compared to the control group. Apoptosis was significantly augmented and cell proliferation was inhibited. As a single therapy Sorafenib significantly improved survival in the late treatment group. Conclusion. Sorafenib may provide a new paradigm for the therapy of islet cell tumors.
Collapse
Affiliation(s)
- Volker Fendrich
- Department of Surgery, University Hospital Giessen and Marburg, Baldinger Strasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
HUANG TAO, CHEN ZHIJUN, FANG LIPING. Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-Snail signaling in breast cancer cells. Oncol Rep 2012; 29:117-24. [DOI: 10.3892/or.2012.2080] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/03/2012] [Indexed: 11/05/2022] Open
|
36
|
Zhang J, Wang P, Wu F, Li M, Sharon D, Ingham RJ, Hitt M, McMullen TP, Lai R. Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal 2012; 24:852-8. [DOI: 10.1016/j.cellsig.2011.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/14/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
37
|
Epithelial-mesenchymal transition is a critical step in tumorgenesis of pancreatic neuroendocrine tumors. Cancers (Basel) 2012; 4:281-94. [PMID: 24213240 PMCID: PMC3712679 DOI: 10.3390/cancers4010281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
The transcription factors Snail, Slug and Twist repress E-cadherin and induce epithelial-mesenchymal transition (EMT), a process exploited by invasive cancer cells. In this study, we evaluated the role of EMT in the tumorgenesis of neuroendocrine tumors of the pancreas (PNETs) in vitro, in vivo and human tumor specimen. Expression of EMT markers was analyzed using immunohistochemistry and real-time PCR. For in vitro studies, BON-1 cells were analyzed regarding expression of EMT markers before and after transfection with siRNA against Slug or Snail, and cell aggregation assays were performed. To asses in vivo effects, Rip1Tag2 mice were treated with vehicle or the snail-inhibitor polythlylenglykol from week 5-10 of age. The resected pancreata were evaluated by weight, tumor cell proliferation and apoptosis. Snail and Twist was expressed in 61 % and 64% of PNETs. This was associated with loss of E-cadherin. RT-PCR revealed conservation of the EMT markers Slug and Snail in BON-1 cells. Transfection with siRNA against Slug was associated with upregulation of E-cadherin, enhanced cell-cell adhesion and inhibition of cell proliferation. Snail-inhibition in vivo by PEG was associated with increased apoptosis, decreased tumor cell proliferation and dramatic reduced tumor volume in Rip1Tag2 mice. The presented data show that EMT plays a key role in tumorgenesis of PNETs. The activation of Snail in a considerable subset of human PNETs and the successful effect of Snail inhibition by PEG in islet cell tumors of transgenic mice provides first evidence of Snail as a drug target in PNETs.
Collapse
|
38
|
Korevaar TIM, Grossman AB. Pheochromocytomas and paragangliomas: assessment of malignant potential. Endocrine 2011; 40:354-65. [PMID: 22038451 DOI: 10.1007/s12020-011-9545-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 12/23/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting tumors which arise from the adrenal glands or sympathetic neuronal tissue. Malignant transformation of these tumors occurs in a significant proportion and may therefore lower overall survival rates. In patients with PPGLs it is impossible to identify malignant disease without the presence of metastatic disease, something which can occur as long as 20 years after initial surgery. Early identification of malignant disease would necessitate a more aggressive treatment approach, something which may result in better disease outcome. We have therefore reviewed possible predictors of malignancy and current developments in order to help clinicians to swiftly assess malignant potential in patients with PPGLs. Currently, there is no absolute marker which can objectively reflect malignant potential. Tumor size is the most reliable predictor and should therefore be used as the baseline characteristic. The combination of various clinical markers (extra-adrenal disease and post-operative hypertension), biochemical markers (high dopamine, high norepinephrine and epinephrine to total catecholamine ratio) and/or histological markers (SNAIL, microRNAs and/or microarray results) can raise or lower the suspicion of malignancy. Furthermore, we discuss how clinical markers may affect biochemical results linked to malignancy, how biochemical results may distinguish hereditary syndromes, the role of imaging in determining malignant potential and tumor detection, and recent results of proposed histological markers.
Collapse
Affiliation(s)
- Tim I M Korevaar
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, Oxford, OX3 7LE, UK
| | | |
Collapse
|
39
|
Liang X. EMT: new signals from the invasive front. Oral Oncol 2011; 47:686-7. [PMID: 21602096 DOI: 10.1016/j.oraloncology.2011.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/16/2022]
|
40
|
Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J, Martin SS. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 2010; 70:8127-37. [PMID: 20924103 DOI: 10.1158/0008-5472.can-09-4613] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with increased breast tumor metastasis; however, the specific mechanisms by which EMT promotes metastasis remain somewhat unclear. Despite the importance of cytoskeletal dynamics during both EMT and metastasis, very few current studies examine the cytoskeleton of detached and circulating tumor cells. Specific posttranslational α-tubulin modifications are critical for adherent cell motility and implicated in numerous pathologies, but also remain understudied in detached cells. We report here that EMT induced through ectopic expression of Twist or Snail promotes α-tubulin detyrosination and the formation of tubulin-based microtentacles in detached HMLEs. Mechanistically, EMT downregulates the tubulin tyrosine ligase enzyme, resulting in an accumulation of detyrosinated α-tubulin (Glu-tubulin), and increases microtentacles that penetrate endothelial layers to facilitate tumor cell reattachment. Confocal microscopy shows that microtentacles are capable of penetrating the junctions between endothelial cells. Suppression of endogenous Twist in metastatic human breast tumor cells is capable of reducing both tubulin detyrosination and microtentacles. Clinical breast tumor samples display high concordance between Glu-tubulin and Twist expression levels, emphasizing the coupling between EMT and tubulin detyrosination in vivo. Coordinated elevation of Twist and Glu-tubulin at invasive tumor fronts, particularly within ductal carcinoma in situ samples, establishes that EMT-induced tubulin detyrosination occurs at the earliest stages of tumor invasion. These data support a novel model where the EMT that occurs during tumor invasion downregulates tubulin tyrosine ligase, increasing α-tubulin detyrosination and promoting microtentacles that could enhance the reattachment of circulating tumor cells to the vascular endothelium during metastasis.
Collapse
Affiliation(s)
- Rebecca A Whipple
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Over the past decade, the reactivation of TWIST embryonic transcription factors has been described as a frequent event and a marker of poor prognosis in an impressive array of human cancers. Growing evidence now supports the premise that these cancers hijack TWIST's embryonic functions, granting oncogenic and metastatic properties. In this review, we report on the history and recent breakthroughs in understanding TWIST protein functions and the emerging role of the associated epithelial-mesenchymal transition (EMT) in tumorigenesis. We then broaden the discussion to address the general contribution of reactivating embryonic programs in cancerogenesis.
Collapse
|