1
|
Nguyen T, Tjota M, Wang P, Tatjana A. A Case Report of INI1 Loss and SMARCB1 Mutation in Hereditary Succinate Dehydrogenase-Deficient Renal Cell Carcinoma. Int J Surg Pathol 2025:10668969251326254. [PMID: 40094795 DOI: 10.1177/10668969251326254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Secondary loss of INI1 immunohistochemical staining has been observed in various types of renal cell carcinoma (RCC), including TFE3-rearranged, fumarate hydratase-deficient RCC, and collecting duct carcinoma. We report the first tumor of secondary INI1 loss with SMARCB1 gene alteration in hereditary succinate dehydrogenase (SDH)-deficient RCC that presented in a 39-year-old woman with a germline SDHB mutation. The tumor appeared as a tan-brown mass with focal hemorrhage, infiltrating the renal sinus and perinephric adipose tissue. Microscopically, it showed diverse architectural patterns, including solid, tubular, pseudopapillary, and sarcomatoid areas with focal necrosis. The stroma showed sclerotic and hyalinized changes with osseous metaplasia. Immunohistochemistry for SDHB was lost throughout, despite the tumor showing nonclassic cytomorphology for SDH-deficient RCC. INI1 retention was noted in low-grade areas, while it was lost in high-grade regions. Next-generation sequencing identified a pathogenic SDHB variant (p.C191Y, VAF 77%) and an SMARCB1 variant (p.P146Mfs33*, VAF 46%).
Collapse
Affiliation(s)
- Tung Nguyen
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Melissa Tjota
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Antic Tatjana
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Ajmal N, Lallas CD, McCue P, Li L. Succinate Dehydrogenase Deficient Renal Cell Carcinoma With Sarcomatoid and Rhabdoid Features-A Diagnostic Dilemma. Int J Surg Pathol 2024; 32:1508-1513. [PMID: 38311902 DOI: 10.1177/10668969241229333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is a rare epithelial tumor with a biallelic mutation involving any subunit of the SDH complex. Mostly, it has low-grade morphology and a favorable prognosis. We present a case of a 36-year-old woman with weight loss, night sweats, and symptomatic anemia. Her imaging showed a hypo-enhancing heterogeneous right renal mass with invasion of the renal vein and inferior vena cava. Microscopically, the tumor had focal low-grade areas (5%) and extensive areas with high-grade features, including rhabdoid (85%) and sarcomatoid (10%) dedifferentiation. Cytoplasmic inclusions, foci of extracellular mucin, coagulative necrosis, and inflammatory infiltrate were present. The tumor cells, including rhabdoid differentiated, were focally positive for AE1/AE3. Tumor cells showed loss of SDHB immunostaining, consistent with diagnosis. Genetics testing was recommended, but the patient expired due to metastatic carcinoma. Prior studies suggest that sarcomatoid transformation and coagulative necrosis increase the risk of metastasis by up to 70% in SDH-deficient RCC. Follow-up with surveillance for other SDH-deficient neoplasms is recommended in cases of germline mutation. Here, we report the first case of SDH-deficient RCC with concomitant rhabdoid and sarcomatoid features and a detailed review of diagnostic difficulties associated with high-grade tumors.
Collapse
Affiliation(s)
- Namra Ajmal
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Costas D Lallas
- Department of Urology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Li Li
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
3
|
Tsoy UA, Sokolnikova PS, Kravchuk EN, Ryazanov PA, Kozyreva AA, Fomicheva YV, Aramisova LS, Karonova TL, Kostareva AA, Grineva E. A Comprehensive Target Panel Allows to Extend the Genetic Spectrum of Neuroendocrine Tumors. Neuroendocrinology 2024:1-21. [PMID: 39536727 DOI: 10.1159/000542223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Neuroendocrine tumors (NETs) frequently have a genetic basis, and the range of genes implicated in NET development continues to expand. Application of targeted gene panels (TGPs) in next-generation sequencing is a central strategy for elucidating novel variants associated with NET development. METHODS In this study, we conducted comprehensive molecular genetic analyses using TGP on a cohort of 93 patients diagnosed with various NETs subtypes, mainly accompanied by various endocrine syndromes: insulinoma (n = 26), pheochromocytoma and paraganglioma (PPGL) (n = 38), parathyroid adenoma (n = 18, including three with insulinoma), and NETs of other locations (n = 14). The TGP encompassed genes linked to diverse NETs and other hereditary endocrine disorders, with subsequent variant classification according to the American College of Medical Genetics and Genomics guidelines. RESULTS Among the identified variants, 20 were found in genes previously linked to specific tumor types, and 10 were found in genes with a limited likelihood and unclear molecular mecanisms of association with observed NETs. Remarkably, 13 variants were discovered in genes not previously associated with the NETs observed in our patients. These genes, such as ABCC8, KCNJ11, KLF11, HABP2, and APC, were implicated in insulinoma; ZNRF3, GNAS, and KCNJ5 were linked with PPGL; parathyroid adenomas were related to variants in SDHB and TP53; while NETs of other locations displayed variants in APC and ABCC8. CONCLUSION Our study demonstrates that utilizing broad TGP in examining patients with various functioning NETs facilitates the identification of new germinal variants in genes that may contribute to the diseases. The verification of revealed findings requires research in vaster sample.
Collapse
Affiliation(s)
- Uliana A Tsoy
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Polina S Sokolnikova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Ekaterina N Kravchuk
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Pavel A Ryazanov
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Alexandra A Kozyreva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Yulia V Fomicheva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Liana S Aramisova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Tatiana L Karonova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Anna A Kostareva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Elena Grineva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| |
Collapse
|
4
|
Wachtel H, Nathanson KL. Molecular Genetics of Pheochromocytoma/Paraganglioma. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 36:100527. [PMID: 39328362 PMCID: PMC11424047 DOI: 10.1016/j.coemr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are neuroendocrine tumors which secrete catecholamines, causing cardiovascular compromise. While isolated tumors and locoregional disease can be treated surgically, treatment options for metastatic disease are limited, and no targeted therapies exist. Approximately 25% of PPGL are causatively associated with germline pathogenic variants, which are known risk factors for multifocal and metastatic PPGL. Knowledge of somatic driver mutations continues to evolve. Molecular classification of PPGL has identified three genomic subtypes: Cluster 1 (pseudohypoxia), Cluster 2 (kinase signaling) and Cluster 3 (Wnt-altered). This review summaries recent studies characterizing the tumor microenvironment, genomic drivers of tumorigenesis and progression, and current research on molecular targets for novel diagnostic and therapeutic strategies in PPGL.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Hospital of the University of Pennsylvania, Department of Medical Genetics, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
6
|
Taïeb D, Nölting S, Perrier ND, Fassnacht M, Carrasquillo JA, Grossman AB, Clifton-Bligh R, Wanna GB, Schwam ZG, Amar L, Bourdeau I, Casey RT, Crona J, Deal CL, Del Rivero J, Duh QY, Eisenhofer G, Fojo T, Ghayee HK, Gimenez-Roqueplo AP, Gill AJ, Hicks R, Imperiale A, Jha A, Kerstens MN, de Krijger RR, Lacroix A, Lazurova I, Lin FI, Lussey-Lepoutre C, Maher ER, Mete O, Naruse M, Nilubol N, Robledo M, Sebag F, Shah NS, Tanabe A, Thompson GB, Timmers HJLM, Widimsky J, Young WJ, Meuter L, Lenders JWM, Pacak K. Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: an international expert Consensus statement. Nat Rev Endocrinol 2024; 20:168-184. [PMID: 38097671 DOI: 10.1038/s41574-023-00926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, Marseille, France
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nancy D Perrier
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, Royal Free Hospital, London, UK
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital and Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - George B Wanna
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary G Schwam
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurence Amar
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Hypertension Unit, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Ruth T Casey
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cheri L Deal
- Research Center, CHU Sainte-Justine and Dept. of Paediatrics, University of Montreal, Montreal, Québec, Canada
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quan-Yang Duh
- Department of Surgery, UCSF-Mount Zion, San Francisco, CA, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Tito Fojo
- Columbia University Irving Medical Center, New York City, NY, USA
- James J. Peters VA Medical Center, New York City, NY, USA
| | - Hans K Ghayee
- Division of Endocrinology & Metabolism, Department of Medicine, University of Florida, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Department of Oncogenetics and Cancer Genomic Medicine, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - Antony J Gill
- University of Sydney, Sydney NSW Australia, Cancer Diagnosis and Pathology Group Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- NSW Health Pathology Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rodney Hicks
- Department of Medicine, St Vincent's Hospital Medical School, Melbourne, Victoria, Australia
| | - Alessio Imperiale
- Department of Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), IPHC, UMR 7178, CNRS, University of Strasbourg, Strasbourg, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michiel N Kerstens
- Department of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for paediatric oncology, Utrecht, Netherlands
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Ivica Lazurova
- Department of Internal Medicine 1, University Hospital, P.J. Šafárik University, Košice, Slovakia
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte Lussey-Lepoutre
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Sorbonne University, Department of Nuclear Medicine, Pitié-Salpêtrière, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuhide Naruse
- Clinical Research Institute of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center and Endocrine Center, Kyoto, Japan
- Clinical Research Center, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Frédéric Sebag
- Department of Endocrine Surgery, Aix-Marseille University, Conception Hospital, Marseille, France
| | - Nalini S Shah
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Geoffrey B Thompson
- Division of Endocrine Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jiri Widimsky
- Third Department of Medicine, Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - William J Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Leah Meuter
- Stanford University School of Medicine, Department of Physician Assistant Studies, Stanford, CA, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
De Leo A, Ruscelli M, Maloberti T, Coluccelli S, Repaci A, de Biase D, Tallini G. Molecular pathology of endocrine gland tumors: genetic alterations and clinicopathologic relevance. Virchows Arch 2024; 484:289-319. [PMID: 38108848 PMCID: PMC10948534 DOI: 10.1007/s00428-023-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Tumors of the endocrine glands are common. Knowledge of their molecular pathology has greatly advanced in the recent past. This review covers the main molecular alterations of tumors of the anterior pituitary, thyroid and parathyroid glands, adrenal cortex, and adrenal medulla and paraganglia. All endocrine gland tumors enjoy a robust correlation between genotype and phenotype. High-throughput molecular analysis demonstrates that endocrine gland tumors can be grouped into molecular groups that are relevant from both pathologic and clinical point of views. In this review, genetic alterations have been discussed and tabulated with respect to their molecular pathogenetic role and clinicopathologic implications, addressing the use of molecular biomarkers for the purpose of diagnosis and prognosis and predicting response to molecular therapy. Hereditary conditions that play a key role in determining predisposition to many types of endocrine tumors are also discussed.
Collapse
Affiliation(s)
- Antonio De Leo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Martina Ruscelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| | - Thais Maloberti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
| |
Collapse
|
8
|
Rogala J, Zhou M. Hereditary succinate dehydrogenase-deficient renal cell carcinoma. Semin Diagn Pathol 2024; 41:32-41. [PMID: 37981479 DOI: 10.1053/j.semdp.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Succinate dehydrogenase (SDH), formed by four subunits SDHA, SDHB, SDHC, SDHD, and an assembly factor SDHAF2, functions as a key respiratory enzyme. Biallelic inactivation of genes encoding any of the components, almost always in the presence of a germline mutation, causes loss of function of the entire enzyme complex (so-called SDH deficiency) and subsequent development of SDH-deficient neoplasms which include pheochromocytoma/paraganglioma, gastrointestinal stromal tumor, and renal cell carcinoma (RCC). These tumors may occur in the same patient or kindred. SDH-deficient RCC shows distinctive morphological features with vacuolated eosinophilic cytoplasm due to distinctive cytoplasmatic inclusions containing flocculent material. The diagnosis is confirmed by loss of SDHB on immunohistochemistry with positive internal control. The majority of tumors occur in the setting of germline mutations in one of the SDH genes, most commonly SDHB. The prognosis is excellent for low-grade tumors but worse for high-grade tumors with high-grade nuclei, sarcomatoid change, or coagulative necrosis. Awareness of the morphological features and low-threshold for applying SDHB immunohistochemistry help identify patients with SDH-deficient RCC and hereditary SDH-deficient tumor syndromes. In this review we summarize recent development on the clinical and genetic features, diagnostic approach, and pitfalls of SDH-deficient syndrome, focusing on SDH-deficient renal cell carcinomas.
Collapse
Affiliation(s)
- Joanna Rogala
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic; Department of Pathology, Regional Specialist Hospital, Wrocław, Poland; Department of Pathology, Public Specialist Hospital, Nowa Sól, Poland
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA; Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Mamedova EO, Lisina DV, Belaya ZE. [Rare forms of hereditary endocrine neoplasia: co-existence of pituitary adenoma and pheochromocytoma/paraganglioma]. PROBLEMY ENDOKRINOLOGII 2023; 69:24-30. [PMID: 37448268 DOI: 10.14341/probl13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 07/15/2023]
Abstract
Functioning pituitary adenomas and pheochromocytomas/paragangliomas are rare in the general population. Pituitary adenomas occur in the familial setting in approximately 5% of cases, whereas pheochromocytomas/paragangliomas can be hereditary in 30-40% of cases. Hereditary syndromes associated with pituitary adenomas include multiple endocrine neoplasia types 1 and 4, familial isolated pituitary adenomas, and Carney complex. Hereditary syndromes associated with pheochromocytomas/paragangliomas and genes, mutations in which predispose to their development, are more numerous. The first clinical descriptions of the co-occurrence of pituitary adenoma and pheochromocytoma/paraganglioma in one patient date back to the mid 20th century, however delineating such a co-occurrence into a particular syndrome («3PAs» (pituitary adenoma, pheochromocytoma, paraganglioma)) was suggested only in 2015. To date, approximately 100 cases of such a co-occurrence have been described in the literature. Mutations in genes encoding subunits of succinate dehydrogenase complex II (SDHx) are revealed in the majority of cases, much less common are mutations in MAX, MEN1 and some other genes. This review summarizes the current information on the «3PAs» syndrome.
Collapse
|
10
|
Vamvoukaki R, Chrysoulaki M, Betsi G, Xekouki P. Pituitary Tumorigenesis-Implications for Management. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040812. [PMID: 37109772 PMCID: PMC10145673 DOI: 10.3390/medicina59040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Pituitary neuroendocrine tumors (PitNETs), the third most common intracranial tumor, are mostly benign. However, some of them may display a more aggressive behavior, invading into the surrounding structures. While they may rarely metastasize, they may resist different treatment modalities. Several major advances in molecular biology in the past few years led to the discovery of the possible mechanisms involved in pituitary tumorigenesis with a possible therapeutic implication. The mutations in the different proteins involved in the Gsa/protein kinase A/c AMP signaling pathway are well-known and are responsible for many PitNETS, such as somatotropinomas and, in the context of syndromes, as the McCune-Albright syndrome, Carney complex, familiar isolated pituitary adenoma (FIPA), and X-linked acrogigantism (XLAG). The other pathways involved are the MAPK/ERK, PI3K/Akt, Wnt, and the most recently studied HIPPO pathways. Moreover, the mutations in several other tumor suppressor genes, such as menin and CDKN1B, are responsible for the MEN1 and MEN4 syndromes and succinate dehydrogenase (SDHx) in the context of the 3PAs syndrome. Furthermore, the pituitary stem cells and miRNAs hold an essential role in pituitary tumorigenesis and may represent new molecular targets for their diagnosis and treatment. This review aims to summarize the different cell signaling pathways and genes involved in pituitary tumorigenesis in an attempt to clarify their implications for diagnosis and management.
Collapse
Affiliation(s)
- Rodanthi Vamvoukaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Maria Chrysoulaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Grigoria Betsi
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Paraskevi Xekouki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| |
Collapse
|
11
|
Branzoli F, Salgues B, Marjańska M, Laloi-Michelin M, Herman P, Le Collen L, Delemer B, Riancho J, Kuhn E, Jublanc C, Burnichon N, Amar L, Favier J, Gimenez-Roqueplo AP, Buffet A, Lussey-Lepoutre C. SDHx mutation and pituitary adenoma: can in vivo 1H-MR spectroscopy unravel the link? Endocr Relat Cancer 2023; 30:ERC-22-0198. [PMID: 36449569 PMCID: PMC9885742 DOI: 10.1530/erc-22-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequently involved in pheochromocytoma/paraganglioma (PPGL) development and were implicated in patients with the '3PAs' syndrome (associating pituitary adenoma (PA) and PPGL) or isolated PA. However, the causality link between SDHx mutation and PA remains difficult to establish, and in vivo tools for detecting hallmarks of SDH deficiency are scarce. Proton magnetic resonance spectroscopy (1H-MRS) can detect succinate in vivo as a biomarker of SDHx mutations in PGL. The objective of this study was to demonstrate the causality link between PA and SDH deficiency in vivo using 1H-MRS as a novel noninvasive tool for succinate detection in PA. Three SDHx-mutated patients suffering from a PPGL and a macroprolactinoma and one patient with an apparently sporadic non-functioning pituitary macroadenoma underwent MRI examination at 3 T. An optimized 1H-MRS semi-LASER sequence (TR = 2500 ms, TE = 144 ms) was employed for the detection of succinate in vivo. Succinate and choline-containing compounds were identified in the MR spectra as single resonances at 2.44 and 3.2 ppm, respectively. Choline compounds were detected in all the tumors (three PGL and four PAs), while a succinate peak was only observed in the three macroprolactinomas and the three PGL of SDHx-mutated patients, demonstrating SDH deficiency in these tumors. In conclusion, the detection of succinate by 1H-MRS as a hallmark of SDH deficiency in vivo is feasible in PA, laying the groundwork for a better understanding of the biological link between SDHx mutations and the development of these tumors.
Collapse
Affiliation(s)
- Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Center for Neuroimaging Research (CENIR), Paris, France
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, France
| | - Betty Salgues
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marie Laloi-Michelin
- Endocrinology department, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
| | - Philippe Herman
- ENT unit, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris-Cité University, INSERM U1141, Paris, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, University of Lille, Lille, France
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- Department of Genetic, University Hospital Center of Reims, Reims, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- CRESTIC EA 3804, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, Reims, France
| | - Julien Riancho
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
| | - Emmanuelle Kuhn
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Christel Jublanc
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Laurence Amar
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Charlotte Lussey-Lepoutre
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| |
Collapse
|
12
|
Moore EC, Ioannou L, Ruseckaite R, Serpell J, Ahern S. Hereditary Endocrine Tumor Registries. J Endocr Soc 2022; 7:bvac194. [PMID: 36632485 PMCID: PMC9825730 DOI: 10.1210/jendso/bvac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Context Endocrine neoplasia syndromes are phenotypically complex, and there is a misconception that they are universally rare. Genetic alterations are increasingly recognized; however, true prevalence is unknown. The purpose of a clinical registry is to monitor the quality of health care delivered to a specified group of patients through the collection, analysis, and reporting of relevant health-related information. This leads to improved clinical practice, decision-making, patient satisfaction, and outcome. Objective This review aims to identify, compare, and contrast active registries worldwide that capture data relevant to hereditary endocrine tumors (HETs). Methods Clinical registries were identified using a systematic approach from publications (Ovid MEDLINE, EMBASE) peer consultation, clinical trials, and web searches. Inclusion criteria were hereditary endocrine tumors, clinical registries, and English language. Exclusion criteria were institutional audits, absence of clinical data, or inactivity. Details surrounding general characteristics, funding, data fields, collection periods, and entry methods were collated. Results Fifteen registries specific for HET were shortlisted with 136 affiliated peer-reviewed manuscripts. Conclusion There are few clinical registries specific to HET. Most of these are European, and the data collected are highly variable. Further research into their effectiveness is warranted. We note the absence of an Australian registry for all HET, which would provide potential health and economic gains. This review presents a unique opportunity to harmonize registry data for HET locally and further afield.
Collapse
Affiliation(s)
- Edwina C Moore
- Correspondence: Edwina C. Moore, MBBS (HONS), BMedSci, Peninsula Private Hospital, 525 McClelland Dr, Ste 16, Langwarrin, VIC, 3199, Australia.
| | - Liane Ioannou
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia
| | - Rasa Ruseckaite
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonathan Serpell
- Department of Breast, Endocrine and General Surgery, Alfred Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Susannah Ahern
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
13
|
Loughrey PB, Roncaroli F, Healy E, Weir P, Basetti M, Casey RT, Hunter SJ, Korbonits M. Succinate dehydrogenase and MYC-associated factor X mutations in pituitary neuroendocrine tumours. Endocr Relat Cancer 2022; 29:R157-R172. [PMID: 35938916 PMCID: PMC9513646 DOI: 10.1530/erc-22-0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Pituitary neuroendocrine tumours (PitNETs) associated with paragangliomas or phaeochromocytomas are rare. SDHx variants are estimated to be associated with 0.3-1.8% of PitNETs. Only a few case reports have documented the association with MAX variants. Prolactinomas are the most common PitNETs occurring in patients with SDHx variants, followed by somatotrophinomas, clinically non-functioning tumours and corticotrophinomas. One pituitary carcinoma has been described. SDHC, SDHB and SDHA mutations are inherited in an autosomal dominant fashion and tumorigenesis seems to adhere to Knudson's two-hit hypothesis. SDHD and SDHAF2 mutations most commonly have paternal inheritance. Immunohistochemistry for SDHB or MAX and loss of heterozygosity analysis can support the assessment of pathogenicity of the variants. Metabolomics is promising in the diagnosis of SDHx-related disease. Future research should aim to further clarify the role of SDHx and MAX variants or other genes in the molecular pathogenesis of PitNETs, including pseudohypoxic and kinase signalling pathways along with elucidating epigenetic mechanisms to predict tumour behaviour.
Collapse
Affiliation(s)
- Paul Benjamin Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast, UK
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience and Experimental Psychology, School of Medicine, Manchester University, Manchester, UK
| | - Estelle Healy
- Department of Cellular Pathology, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Philip Weir
- Department of Neurosurgery, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Madhu Basetti
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Steven J Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Alzahrani AS, Alswailem M, Murugan AK, Alghamdi B, Al-Hindi H. Papillary thyroid cancer and a TERT promotor mutation-positive paraganglioma in a patient with a germline SDHB mutation. J Endocr Soc 2022; 6:bvac076. [PMID: 35673401 PMCID: PMC9165429 DOI: 10.1210/jendso/bvac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Purpose
About 40% of paragangliomas (PGL) are due to germline mutations in one of several susceptibility genes. These genes rarely predispose to other non-PGL tumors. Here, we describe and functionally characterize a germline SDHB mutation in a patient who developed a BRAFV600E mutation-positive papillary thyroid cancer (PTC) and a TERT promotor mutation-positive PGL.
Experimental design
A 28-year-old asymptomatic man was discovered incidentally to have a large left-sided mid abdominal PGL and PTC. He underwent resection of the PGL and total thyroidectomy and neck dissection followed by I-131 adjuvant therapy for PTC. The histopathology revealed a high-grade PGL and a tall cell variant PTC with lymph node metastases (T1b N1b M0). He soon developed PGL spinal metastases that have been rapidly progressing and is currently being treated with Lu 177-dotatate therapy. Family screening revealed a positive SDHB mutation in the mother, a son and a brother.
Results
In addition to the heterozygous SDHB germline mutation (c.688C>T, p.Arg230Cys), molecular analysis revealed a somatic TERT promotor mutation (C228T) in PGL (negative in PTC), and a somatic BRAFV600E mutation in PTC (negative in PGL). Functional studies showed a higher proliferation rate in the mutant compared to the wild type SDHB.
Conclusion
Germline SDHB mutations rarely occur in patients with PTC and may contribute to the its aggressiveness. Somatic TERT promotor mutations rarely occur in PGL and contribute to its aggressiveness and metastatic potential.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Karuppasamy G, Farooqi AA, Sajid S, Elouzi E. Hereditary Pheochromocytoma With a Mutation in the Succinate Dehydrogenase Subunit A Gene. Cureus 2022; 14:e24584. [PMID: 35664384 PMCID: PMC9148421 DOI: 10.7759/cureus.24584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/06/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors with diverse clinical presentations. Pathogenic variants in the genes encoding different subunits of the succinate dehydrogenase enzyme complex that plays a central role in energy metabolism have been linked to hereditary PPGL syndromes. Here we report a rare case of hereditary pheochromocytoma with a novel mutation in the succinate dehydrogenase subunit A (SDHA) gene. A middle-aged woman presented with left-sided abdominal pain and was incidentally found to have bilateral adrenal lesions on abdominal imaging. Imaging characteristics were suggestive of pheochromocytoma. She denied any symptoms of catecholamine excess but her plasma metanephrines level was elevated. Iodine-131 metaiodobenzylguanidine (131I-MIBG) whole-body scan showed abnormal focal radiotracer uptake at the left adrenal gland, and she then underwent left-sided adrenalectomy. Following surgery, the patient had symptomatic relief and histopathology confirmed the diagnosis of pheochromocytoma. Genetic testing revealed that she was positive for a pathogenic mutation in the SDHA gene consistent with the diagnosis of hereditary PPGL syndrome. The detection of susceptibility genes for hereditary PPGL syndromes has key implications, for surveillance to detect extra-adrenal disease and recurrent tumors, as well as for consideration of genetic testing for family members.
Collapse
|
16
|
Nosé V, Gill A, Teijeiro JMC, Perren A, Erickson L. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 2022; 33:197-227. [PMID: 35285003 DOI: 10.1007/s12022-022-09705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.
Collapse
Affiliation(s)
- Vania Nosé
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | | | - José Manuel Cameselle Teijeiro
- Clinical University Hospital Santiago de Compostela and Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
17
|
De Sousa SMC. Dopamine agonist therapy for prolactinomas: do we need to rethink the place of surgery in prolactinoma management? ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R31-R50. [PMID: 37435462 PMCID: PMC10259306 DOI: 10.1530/eo-21-0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/20/2022] [Indexed: 07/13/2023]
Abstract
The current treatment paradigm for prolactinomas involves dopamine agonist (DA) therapy as the first-line treatment, with surgical resection reserved for cases where there is DA failure due to resistance or intolerance. This review highlights how DA therapy can be optimised to overcome its increasingly recognised pitfalls, whilst also addressing the potential for expanding the use of surgery in the management of prolactinomas. The first part of the review discusses the limitations of DA therapy, namely: DA resistance; common DA side effects; and the rare but serious DA-induced risks of cardiac valvulopathy, impulse control disorders, psychosis, CSF rhinorrhoea and tumour fibrosis. The second part of the review explores the role of surgery in prolactinoma management with reference to its current second-line position and recent calls for surgery to be considered as an alternative first-line treatment alongside DA therapy. Randomised trials comparing medical vs surgical therapy for prolactinomas are currently underway. Pending these results, a low surgical threshold approach is herein proposed, whereby DA therapy remains the default treatment for prolactinomas unless there are specific triggers to consider surgery, including concern regarding DA side effects or risks in vulnerable patients, persistent and bothersome DA side effects, emergence of any serious risks of DA therapy, expected need for long-term DA therapy, as well as the traditional indications for surgery. This approach should optimise the use of DA therapy for those who will most benefit from it, whilst instituting surgery early in others in order to minimise the cumulative burden of prolonged DA therapy.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
Araghi ZJ, Ranjbar S, Paar M, Pirich C, Beheshti M. Accurate detection of intracranial extension of jugulotympanic paraganglioma by [ 18F]FDOPA-PET/CT comparing to MRI. Eur J Nucl Med Mol Imaging 2021; 49:412-414. [PMID: 34378065 PMCID: PMC8712304 DOI: 10.1007/s00259-021-05490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Jamshidi Araghi
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Michael Paar
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| |
Collapse
|
19
|
Snezhkina A, Pavlov V, Dmitriev A, Melnikova N, Kudryavtseva A. Potential Biomarkers of Metastasizing Paragangliomas and Pheochromocytomas. Life (Basel) 2021; 11:1179. [PMID: 34833055 PMCID: PMC8619623 DOI: 10.3390/life11111179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors originating from paraganglionic tissue in many sites of the body. Most PPGLs are characterized by nonaggressive behavior but all of them have the potential to metastasize. PPGLs represent a great diagnostic dilemma as it is difficult to recognize tumors that are likely to be metastasizing; criteria of malignancy can be found both in benign and metastatic forms. This review aims to analyze the current knowledge of the nature of metastasizing PPGLs paying particular attention to head and neck paragangliomas (HNPGLs). Potential predictors of the malignancy risk for PPGLs were summarized and discussed. These data may also help in the development of diagnostic and prognostic strategies, as well as in the identification of novel potential therapeutic targets for patients with PPGLs.
Collapse
Affiliation(s)
- Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.P.); (A.D.); (N.M.)
| | | | | | | | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.P.); (A.D.); (N.M.)
| |
Collapse
|
20
|
Milionis V, Goutas D, Vlachodimitropoulos D, Katsoulas N, Kyriazis ID, Liatsikos EN, Marinakis N, Joanne T, Lazaris AC, Goutas N. SDH-deficient renal cell carcinoma: A case report associated with a novel germline mutation. Clin Case Rep 2021; 9:e04605. [PMID: 34703596 PMCID: PMC8522490 DOI: 10.1002/ccr3.4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
The highly syndromic nature of succinate dehydrogenase-deficient RCCs constitutes their active surveillance and molecular profiling the alpha and omega.
Collapse
Affiliation(s)
| | - Dimitrios Goutas
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | - Dimitrios Vlachodimitropoulos
- Istomedica S.AAthensGreece
- Laboratory of Forensic Medicine and ToxicologyThe National and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Katsoulas
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | | | | | - Nikolaos Marinakis
- Laboratory of Medical GeneticsNational and Kapodistrian University of AthensSt. Sophia Children's HospitalAthensGreece
| | - Traeger‐Synodinos Joanne
- Laboratory of Medical GeneticsNational and Kapodistrian University of AthensSt. Sophia Children's HospitalAthensGreece
| | - Andreas C. Lazaris
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | - Nikolaos Goutas
- Istomedica S.AAthensGreece
- Laboratory of Forensic Medicine and ToxicologyThe National and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
21
|
Karatay H, Ozluk Y, Dogan MA, Erdem S, Kilicaslan I. Immunoexpression of SDHB, FH, and CK20 among eosinophilic renal tumors: A tissue microarray study. Ann Diagn Pathol 2021; 54:151788. [PMID: 34246177 DOI: 10.1016/j.anndiagpath.2021.151788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Differential diagnosis can be a challenge for eosinophilic subtypes of renal cell tumors due to their overlapping histomorphological and immunohistochemical features. We aimed to investigate the frequency of rare variants of renal cell carcinomas (RCCs) such as succinate dehydrogenase-deficient RCC (SDDRCC), hereditary leiomyomatosis and RCC (HLRCC)-associated RCC, and eosinophilic, solid, and cystic RCC (ESCRCC) in our population. MATERIALS AND METHODS Renal tumors which could be considered in the eosinophilic tumor category were included: 91 conventional clear cell RCCs with eosinophilic cytoplasm, 72 papillary RCCs, 74 chromophobe RCCs, 88 oncocytomas, and 37 other rare subtypes. Using the tissue microarray method, succinate dehydrogenase B (SDHB), fumarate hydratase (FH), and cytokeratin 20 (CK20) antibodies were performed by immunohistochemistry. Immunohistochemistry was repeated on whole block sections for selected cases. The utility of these antibodies in the differential diagnosis was also investigated. RESULTS Loss of SDHB expression was detected in three tumors, two of which showed typical morphology for SDDRCC. In additional two tumors, SDHB showed weak cytoplasmic expression without a mitochondrial pattern (possible-SDHB deficient). None of the tumors showed loss of FH expression. Heterogeneous reactions were observed with SDHB and FH antibodies. Only one ESCRCC was detected with diffuse CK20 positivity. CONCLUSION SDDRCCs, HLRCC-associated RCCs, and ESCRCCs are very rare tumors depending on the population. Possible weak staining and focal loss of SDHB and FH expression should be kept in mind and genetic testing must be included for equivocal results.
Collapse
Affiliation(s)
- Huseyin Karatay
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Yasemin Ozluk
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Ali Dogan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selcuk Erdem
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Isin Kilicaslan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of germline and somatic genetics and genomics of pheochromocytomas and paragangliomas (PCC/PGL), describes existing knowledge gaps, and discusses future research directions. RECENT FINDINGS Germline pathogenic variants (PVs) are found in up to 40% of those with PCC/PGL. Tumors with germline PVs are broadly categorized as Cluster 1 (pseudohypoxia), including those with SDH, VHL, FH, and EPAS1 PVs, or Cluster 2 (kinase signaling) including those with NF1, RET, TMEM127, and MAX PVs. Somatic driver mutations exist in some of the same genes (RET, VHL, NF1, EPAS1) as well as in additional genes including HRAS, CSDE1 and genes involved in cell immortalization (ATRX and TERT). Other somatic driver events include recurrent fusion genes involving MAML3. SUMMARY PCC/PGL have the highest association with germline PVs of all human solid tumors. Expanding our understanding of the molecular pathogenesis of PCC/PGL is essential to advancements in diagnosis and surveillance and the development of novel therapies for these unique tumors.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
23
|
Abstract
Detailed analysis of cytodifferentiation and hormone production has classified pituitary neuroendocrine tumors (PitNETs) in a formal system that reflects the lineage differentiation of nontumorous adenohypophysial cells as well as subtypes of tumors that have predictive value. In addition, tumors composed of cells that lack terminal differentiation are well characterized. To comply with the proposal to create an overarching classification of neuroendocrine neoplasia, these tumors are now called PitNETs rather than adenomas. The next important step will be to relinquish the term "pituitary carcinoma" for metastatic PitNETs that remain well differentiated, and to alter the terminology used for tumors that are not terminally differentiated to reflect only their immature lineage. The existence of mixed neuroendocrine and non-neuroendocrine neoplasms (MiNENs) similar to those at other body sites is proven by mixed craniopharyngiomas with PitNETs. As with other NETs, these neoplasms should be reported with synoptic data that guide completeness of reporting. A formal system of grading should be created, but not only based on proliferation, as these tumors have shown the prognostic value of cytodifferentiation. A formal system of staging should also be devised to complement grade in the thorough and accurate diagnosis of tumors that arise from adenohypophysial cells.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
24
|
Asa SL, Ezzat S. An Update on Pituitary Neuroendocrine Tumors Leading to Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10112254. [PMID: 34067494 PMCID: PMC8196981 DOI: 10.3390/jcm10112254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
An excess of growth hormone (GH) results in accelerated growth and in childhood, the clinical manifestation is gigantism. When GH excess has its onset after epiphyseal fusion at puberty, the overgrowth of soft tissue and bone results in acromegaly. Persistent GH excess in gigantism also causes acromegalic features that become evident in the adult years. The causes of GH excess are primarily lesions in the pituitary, which is the main source of GH. In this review, we provide an update on the clinical, radiological and pathologic features of the various types of pituitary neuroendocrine tumors (PitNETs) that produce GH. These tumors are all derived from PIT1-lineage cells. Those composed of somatotrophs may be densely granulated, resembling normal somatotrophs, or sparsely granulated with unusual fibrous bodies. Those composed of mammosomatotrophs also produce prolactin; rare plurihormonal tumors composed of cells that resemble mammosomatotrophs also produce TSH. Some PitNETs are composed of immature PIT1-lineage cells that do not resemble differentiated somatotrophs, mammosomatotrophs, lactotroph or thyrotrophs; these tumors may cause GH excess. An unusual oncocytic PIT1-lineage tumor known as the acidophil stem cell tumor is predominantly a lactotroph tumor but may express GH. Immature PIT1-lineage cells that express variable amounts of hormones alone or in combination can sometimes cause GH excess. Unusual tumors that do not follow normal lineage differentiation may also secrete GH. Exceptional examples of acromegaly/gigantism are caused by sellar tumors composed of hypothalamic GHRH-producing neurons, alone or associated with a sparsely granulated somatotroph tumor. Each of these various tumors has distinct clinical, biochemical and radiological features. Data from careful studies based on morphologic subtyping indicate that morphologic classification has both prognostic and predictive value.
Collapse
Affiliation(s)
- Sylvia L. Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| |
Collapse
|
25
|
Pitsava G, Settas N, Faucz FR, Stratakis CA. Carney Triad, Carney-Stratakis Syndrome, 3PAS and Other Tumors Due to SDH Deficiency. Front Endocrinol (Lausanne) 2021; 12:680609. [PMID: 34012423 PMCID: PMC8126684 DOI: 10.3389/fendo.2021.680609] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Succinate dehydrogenase (SDH) is a key respiratory enzyme that links Krebs cycle and electron transport chain and is comprised of four subunits SDHA, SDHB, SDHC and SDHD. All SDH-deficient tumors are caused by or secondary to loss of SDH activity. As many as half of the familial cases of paragangliomas (PGLs) and pheochromocytomas (PHEOs) are due to mutations of the SDHx subunits. Gastrointestinal stromal tumors (GISTs) associated with SDH deficiency are negative for KIT/PDGFRA mutations and present with distinctive clinical features such as early onset (usually childhood or adolescence) and almost exclusively gastric location. SDH-deficient GISTs may be part of distinct clinical syndromes, Carney-Stratakis syndrome (CSS) or dyad and Carney triad (CT). CSS is also known as the dyad of GIST and PGL; it affects both genders equally and is inherited in an autosomal dominant manner with incomplete penetrance. CT is a very rare disease; PGL, GIST and pulmonary chondromas constitute CT which shows female predilection and may be a mosaic disorder. Even though there is some overlap between CT and CSS, as both are due to SDH deficiency, CSS is caused by inactivating germline mutations in genes encoding for the SDH subunits, while CT is mostly caused by a specific pattern of methylation of the SDHC gene and may be due to germline mosaicism of the responsible genetic defect.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Fabio R. Faucz,
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
MacFarlane J, Seong KC, Bisambar C, Madhu B, Allinson K, Marker A, Warren A, Park SM, Giger O, Challis BG, Maher ER, Casey RT. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2020; 93:528-538. [PMID: 32686200 DOI: 10.1111/cen.14289] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
The citric acid cycle, also known as the Krebs cycle, plays an integral role in cellular metabolism and aerobic respiration. Mutations in genes encoding the citric acid cycle enzymes succinate dehydrogenase, fumarate hydratase and malate dehydrogenase all predispose to hereditary tumour syndromes. The succinate dehydrogenase enzyme complex (SDH) couples the oxidation of succinate to fumarate in the citric acid cycle and the reduction of ubiquinone to ubiquinol in the electron transport chain. A loss of function in the succinate dehydrogenase (SDH) enzyme complex is most commonly caused by an inherited mutation in one of the four SDHx genes (SDHA, SDHB, SDHC and SDHD). This mechanism was first implicated in familial phaeochromocytoma and paraganglioma. However, over the past two decades the spectrum of tumours associated with SDH deficiency has been extended to include gastrointestinal stromal tumours (GIST), renal cell carcinoma (RCC) and pituitary adenomas. The aim of this review is to describe the extended tumour spectrum associated with SDHx gene mutations and to consider how functional tests may help to establish the role of SDHx mutations in new or unexpected tumour phenotypes.
Collapse
Affiliation(s)
- James MacFarlane
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Keat Cheah Seong
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Chad Bisambar
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basetti Madhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Alison Marker
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Anne Warren
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Olivier Giger
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Pathology, Cambridge University, Cambridge, UK
| | - Benjamin G Challis
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| |
Collapse
|
27
|
Guerrero-Pérez F, Fajardo C, Torres Vela E, Giménez-Palop O, Lisbona Gil A, Martín T, González N, Díez JJ, Iglesias P, Robledo M, Villabona C. 3P association (3PAs): Pituitary adenoma and pheochromocytoma/paraganglioma. A heterogeneous clinical syndrome associated with different gene mutations. Eur J Intern Med 2019; 69:14-19. [PMID: 31431315 DOI: 10.1016/j.ejim.2019.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pituitary adenomas (PA) associated with pheochromocytomas/paragangliomas (Pheo/PGL), also known as "the three P association" or "3PAs" could be the results of coincidence, but new evidence supports a common pathogenic mechanism in some patients. Our aim is to report the clinical data, surgical outcome, genetic findings of a large case series and review the current knowledge on this topic. METHODS AND RESULTS In a retrospective multicentre study, we compiled 10 patients with PAs (6 new unreported cases). Six patients were female with mean age of 51.6 ± 18.0 years. PA were: 6 acromegaly, 3 prolactinoma and 1 non-functioning PA (NFPA). Among the Pheo/PGL, 7 patients had a single tumour (4 Pheo and 3 PGL) and 3 patients had multiple or bilateral disease (2 PGL and 1 Pheo). Patients with GH-secreting PA and NFPA underwent surgery, while patients with prolactinoma received medical treatment (one patient required surgery). Unilateral adrenalectomy was carried out in all single Pheo and a bilateral procedure was performed in the patient with bilateral tumour. A single tumour was resected in two patients with multiple PGL. We found 3 germline pathogenic mutations: 2 in SDHB (c.166-170delCCTCA and a gross deletion involving exon 1) and 1 SDHD (p.P81L exon 3). Two variants of uncertain significance: 1 in MEN1 (c.1618C > T; p.Pro540Ser) and 1 in RET (c.2556C > G, p.Ile852Met), and finally a RETM918T somatic mutation in a Pheo tissue. CONCLUSION We actively suggest considering the possibility of hereditary disease in all cases with 3PA and performing a complete genetic study.
Collapse
Affiliation(s)
- Fernando Guerrero-Pérez
- Department of Endocrinology, Hospital Universitari de Bellvitge, Carrer de la Feixa Llarga, s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Carmen Fajardo
- Department of Endocrinology, Hospital Universitario de la Ribera, Ctra. Corbera, km 1, 46600 Alcira, Valencia, Spain.
| | - Elena Torres Vela
- Department of Endocrinology, Hospital Universitario San Cecilio, Av. del Conocimiento, s/n, 18016 Granada, Spain
| | - Olga Giménez-Palop
- Department of Endocrinology, Hospital Universitari Parc Taulí, Parc Taulí, 1, 08208 Sabadell, Barcelona, Spain.
| | - Arturo Lisbona Gil
- Department of Endocrinology, Hospital Universitario Central de la Defensa, Glorieta Ejército, 1, 28047 Madrid, Spain.
| | - Tomas Martín
- Department of Endocrinology, Hospital Universitario Virgen Macarena, Calle Dr. Fedriani, 3, 41009 Sevilla, Spain.
| | - Natividad González
- Department of Endocrinology, Hospital Universitario Virgen Macarena, Calle Dr. Fedriani, 3, 41009 Sevilla, Spain
| | - Juan José Díez
- Department of Endocrinology, Hospital Universitario Ramón y Cajal, Ctra. Colmenar Viejo, km. 9, 100, 28034 Madrid, Spain.
| | - Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Ramón y Cajal, Ctra. Colmenar Viejo, km. 9, 100, 28034 Madrid, Spain
| | - Mercedes Robledo
- Spanish National Cancer Research Centre (CNIO) & Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | - Carles Villabona
- Department of Endocrinology, Hospital Universitari de Bellvitge, Carrer de la Feixa Llarga, s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
28
|
Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 2019; 26:R627-R652. [PMID: 31561209 PMCID: PMC7002202 DOI: 10.1530/erc-19-0165] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
In recent years, advancement in genetics has profoundly helped to gain a more comprehensive molecular, pathogenic, and prognostic picture of pheochromocytomas and paragangliomas (PPGLs). Newly discovered molecular targets, particularly those that target cell membranes or signaling pathways have helped move nuclear medicine in the forefront of PPGL precision medicine. This is mainly based on the introduction and increasing experience of various PET radiopharmaceuticals across PPGL genotypes quickly followed by implementation of novel radiotherapies and revised imaging algorithms. Particularly, 68Ga-labeled-SSAs have shown excellent results in the diagnosis and staging of PPGLs and in selecting patients for PRRT as a potential alternative to 123/131I-MIBG theranostics. PRRT using 90Y/177Lu-DOTA-SSAs has shown promise for treatment of PPGLs with improvement of clinical symptoms and/or disease control. However, more well-designed prospective studies are required to confirm these findings, in order to fully exploit PRRT's antitumoral properties to obtain the final FDA approval. Such an approval has recently been obtained for high-specific-activity 131I-MIBG for inoperable/metastatic PPGL. The increasing experience and encouraging preliminary results of these radiotherapeutic approaches in PPGLs now raises an important question of how to further integrate them into PPGL management (e.g. monotherapy or in combination with other systemic therapies), carefully taking into account the PPGLs locations, genotypes, and growth rate. Thus, targeted radionuclide therapy (TRT) should preferably be performed at specialized centers with an experienced interdisciplinary team. Future perspectives include the introduction of dosimetry and biomarkers for therapeutic responses for more individualized treatment plans, α-emitting isotopes, and the combination of TRT with other systemic therapies.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Health Technology Assessment Unit, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
30
|
Aghamir SMK, Heshmat R, Ebrahimi M, Ketabchi SE, Parichehreh Dizaji S, Khatami F. The Impact Of Succinate Dehydrogenase Gene (SDH) Mutations In Renal Cell Carcinoma (RCC): A Systematic Review. Onco Targets Ther 2019; 12:7929-7940. [PMID: 31579262 PMCID: PMC6771773 DOI: 10.2147/ott.s207460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Renal cell cancer (RCC) syndrome is linked to Krebs cycle compartments and their coding genes' alterations like succinate dehydrogenase genes (SDHx). Here we present a systematic review of the SDH genes' mutations and their impact on both RCC diagnosis and prognosis. METHODS This systematic review includes any study in which tissue samples of RCC are considered in correlation with the SDHx mutations, microsatellite instability (MSI), and protein expression. For this purpose, a systematic search of MEDLINE (PubMed), Scopus, Embase, and Web of Science databases was conducted and finally 5384 articles were recruited. All studies' content was checked to find the related ones which were 145 articles, which with data extraction were limited to nineteen. RESULTS The final selected nineteen studies investigating the SDHx role in RCC tumor genesis were included, among which fifteen were mutation analysis, three were just SDHx protein expression, and two were MSI and mutation analysis studies. A total of 432 RCC patients were reported by SDH mutations, and 64 patients with MSI and SDH expression change were reported in 514 surgically resected renal epithelial tumors. The most common mutation was the single nucleotide variant rs772551056 (c.137G>A) of SDHB. For SDHC, c.380A>G presented in 48 RCC patients, and for SDHA a novel germline mutation c.2T>C: p.M1T in an occasional case of gastrointestinal stromal tumor intricate with RCC. CONCLUSION RCC as an aggressive type of kidney cancer needs some biomarkers to be diagnosed exactly. It was shown recently that the succinate dehydrogenase gene variations can provide this diagnostic and prognostic biomarker. For this purpose, SDHB rs772551056 associated with its protein expression alterations can be taken into account. It is possible that a novel mutation of SDHA (c.2T>C: p.M1T) can provide evidence of GIST associated with RCC as well.
Collapse
Affiliation(s)
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Parichehreh Dizaji
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Wolf KI, Jacobs MF, Mehra R, Begani P, Davenport MS, Marentette LJ, Basura GJ, Hughes DT, Else T. A Family With a Carotid Body Paraganglioma and Thyroid Neoplasias With a New SDHAF2 Germline Variant. J Endocr Soc 2019; 3:2151-2157. [PMID: 31687641 PMCID: PMC6821206 DOI: 10.1210/js.2018-00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
At least 30% of all pheochromocytomas (PCCs)/paragangliomas (PGLs) arise in patients with a germline predisposition syndrome. Variants in succinate dehydrogenase subunits A, B, C, and D (SDHA, SDHB, SDHC, and SDHD) are the most common pathogenic germline alterations. Few pathogenic variants have been reported in succinate dehydrogenase assembly factor 2 (SDHAF2). Here, we describe a 30-year-old female patient who presented with a left-sided neck mass, which was later characterized as a carotid body PGL. Genetic testing revealed a likely pathogenic SDHAF2 variant (c.347G>A;p.W116X). Two sisters carried the same pathologic variant, and screening protocols were recommended. Whole-body MRI revealed thyroid nodules; this testing was followed by fine-needle aspiration, which confirmed papillary thyroid carcinoma in one sister and a follicular adenoma in the other. The two sisters then underwent hemithyroidectomy and total thyroidectomy, respectively. Because evidence for pathogenic variants in SDHAF2 causing predisposition to PCC/PGL is limited, we discuss the challenges in mutational variant interpretation and decision making regarding screening for associated tumors.
Collapse
Affiliation(s)
- Katherine I Wolf
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Michigan Medicine, Ann Arbor, Michigan
| | - Michelle F Jacobs
- Department of Internal Medicine, Division of Genetic Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Rohit Mehra
- Department of Pathology, Michigan Center for Translational Pathology, Michigan Medicine, Ann Arbor, Michigan
| | - Priya Begani
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Michigan Medicine, Ann Arbor, Michigan
| | | | - Lawrence J Marentette
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Gregory J Basura
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, Michigan Medicine, Ann Arbor, Michigan
| | - David T Hughes
- Department of Surgery, Division of Endocrine Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
32
|
Gupta S, Swanson AA, Chen YB, Lopez T, Milosevic D, Kipp BR, Leibovich BC, Thompson RH, Herrera-Hernandez L, Cheville JC, Jimenez RE. Incidence of succinate dehydrogenase and fumarate hydratase-deficient renal cell carcinoma based on immunohistochemical screening with SDHA/SDHB and FH/2SC. Hum Pathol 2019; 91:114-122. [PMID: 31299266 PMCID: PMC7528421 DOI: 10.1016/j.humpath.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 01/13/2023]
Abstract
Mutations of the succinate dehydrogenase (SDHX) enzyme subunits commonly lead to a loss of function of the holoenzyme complex, and germline SDHX mutations lead to a genetic predisposition to SDH-deficient neoplasms, including renal cell carcinomas (RCC). Similarly, loss-of-function alterations of fumarate hydratase (FH) leads to a genetic predisposition to hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated RCC. Loss of FH leads to an accumulation of fumarate and aberrantly high levels of S-(2-succino)-cysteine (2SC). Subtype-specific consecutively diagnosed renal cell neoplasms were selected for the study and cases were not otherwise selected based on clinicopathologic features. Tissue microarrays were constructed from 1009 renal cell neoplasms (papillary: 400, clear cell: 203, chromophobe: 87, oncocytomas [original diagnosis]: 273, unclassified: 46) and these cases were immunostained for SDHA/SDHB to screen for SDH loss. A smaller subset (n = 730; oncocytomas, papillary and unclassified RCCs) were screened for FH-deficiency using immunohistochemistry for FH/2SC. Loss of SDHA/SDHB was seen in three of 273 tumors originally diagnosed as oncocytomas (1.1%). Diffuse nuclear and cytoplasmic 2SC staining, with retained FH expression was seen in one case (suggestive of dysfunctional FH protein), while absent FH was seen in 3 cases (2/400 papillary RCCs, 0.5% and 2/46 unclassified RCCs, 4.35%). No aberrant FH/2SC expression was noted in 273 cases originally diagnosed as oncocytomas. SDH-deficient RCCs were identified only in the cases originally diagnosed as oncocytomas (1.1%), while FH-deficient RCCs were identified in the papillary (0.5%) and unclassified RCC cohorts (4.35%). These results can help guide immunohistochemistry-based screening strategies for these tumors.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905.
| | - Amy A Swanson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905.
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065.
| | - Tilcia Lopez
- Hospital Calderón Guardia, San José, Costa Rica.
| | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905.
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905.
| | | | | | | | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905.
| | - Rafael E Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905.
| |
Collapse
|
33
|
Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, Timmers HJ, Scott AT, Elojeimy S, Rubello D, Virgolini IJ, Fanti S, Balogova S, Pandit-Taskar N, Pacak K. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019; 46:2112-2137. [PMID: 31254038 PMCID: PMC7446938 DOI: 10.1007/s00259-019-04398-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Diverse radionuclide imaging techniques are available for the diagnosis, staging, and follow-up of phaeochromocytoma and paraganglioma (PPGL). Beyond their ability to detect and localise the disease, these imaging approaches variably characterise these tumours at the cellular and molecular levels and can guide therapy. Here we present updated guidelines jointly approved by the EANM and SNMMI for assisting nuclear medicine practitioners in not only the selection and performance of currently available single-photon emission computed tomography and positron emission tomography procedures, but also the interpretation and reporting of the results. METHODS Guidelines from related fields and relevant literature have been considered in consultation with leading experts involved in the management of PPGL. The provided information should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals. CONCLUSION Since the European Association of Nuclear Medicine 2012 guidelines, the excellent results obtained with gallium-68 (68Ga)-labelled somatostatin analogues (SSAs) in recent years have simplified the imaging approach for PPGL patients that can also be used for selecting patients for peptide receptor radionuclide therapy as a potential alternative or complement to the traditional theranostic approach with iodine-123 (123I)/iodine-131 (131I)-labelled meta-iodobenzylguanidine. Genomic characterisation of subgroups with differing risk of lesion development and subsequent metastatic spread is refining the use of molecular imaging in the personalised approach to hereditary PPGL patients for detection, staging, and follow-up surveillance.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 264 rue Saint-Pierre, 13005, Marseille Cedex 05, France.
| | - Rodney J Hicks
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elif Hindié
- Department of Nuclear Medicine, Hôpital Haut-Lévêque, Bordeaux University Hospitals, Pessac, France
| | - Benjamin A Guillet
- Department of Radiopharmacy, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Anca Avram
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Pietro Ghedini
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Henri J Timmers
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Saeed Elojeimy
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Transfusional Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Irène J Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefano Fanti
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Sona Balogova
- Department of Nuclear Medicine, Comenius University and St. Elisabeth Oncology Institute, Heydukova 10, 81250, Bratislava, Slovakia
- Department of Nuclear Medicine, Hôpital Tenon Assistance Publique-Hôpitaux de Paris and Sorbonne University, Paris, France
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Magers MJ, Cheng L. Practical Molecular Testing in a Clinical Genitourinary Service. Arch Pathol Lab Med 2019; 144:277-289. [PMID: 31373513 DOI: 10.5858/arpa.2019-0134-ra] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Molecular testing is increasingly playing a key role in the diagnosis, prognosis, and treatment of neoplasms of the genitourinary system. OBJECTIVE.— To provide a general overview of the clinically relevant molecular tests available for neoplasms of the genitourinary tract. DATA SOURCES.— Relevant medical literature indexed on PubMed. CONCLUSIONS.— Understanding of the molecular oncology of genitourinary neoplasms is rapidly advancing, and the pathologist must be aware of the practical implications of molecular testing. While many genomic abnormalities are not yet clinically relevant, there is an increasing library of ancillary tests that may guide diagnosis, prognosis, and/or treatment of many neoplasms. Recurrent genomic abnormalities have been identified in many types of renal cell carcinoma, and some types of renal cell carcinoma are specifically defined by the molecular abnormality. Two major routes of developing urothelial carcinoma have been molecularly described. Recurrent translocations involving ETS family genes are found in approximately half of prostate cancer cases. Testicular germ cell tumors typically harbor i(12p). Penile neoplasms are often high-risk human papillomavirus-driven cancers. Nonetheless, even as genitourinary neoplasms are increasingly better understood at the molecular level, further research with eventual clinical validation is needed for optimal diagnosis, prognosis, and treatment of aggressive malignancies in the genitourinary tract.
Collapse
Affiliation(s)
- Martin J Magers
- From the Departments of Pathology and Laboratory Medicine (Drs Magers and Cheng) and Urology (Dr Cheng), Indiana University School of Medicine, Indianapolis, Indiana
| | - Liang Cheng
- From the Departments of Pathology and Laboratory Medicine (Drs Magers and Cheng) and Urology (Dr Cheng), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
35
|
Xekouki P, Brennand A, Whitelaw B, Pacak K, Stratakis CA. The 3PAs: An Update on the Association of Pheochromocytomas, Paragangliomas, and Pituitary Tumors. Horm Metab Res 2019; 51:419-436. [PMID: 30273935 PMCID: PMC7448524 DOI: 10.1055/a-0661-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pituitary adenomas (PA) and pheochromocytomas/paragangliomas (PHEO/PGL) are rare tumors. Although they may co-exist by coincidence, there is mounting evidence that genes predisposing in PHEO/PGL development, may play a role in pituitary tumorigenesis. In 2012, we described a GH-secreting PA caused by an SDHD mutation in a patient with familial PGLs and found loss of heterozygosity at the SDHD locus in the pituitary tumor, along with increased hypoxia-inducible factor 1α (HIF-1α) levels. Additional patients with PAs and SDHx defects have since been reported. Overall, prevalence of SDHx mutations in PA is very rare (0.3-1.8% in unselected cases) but we and others have identified several cases of PAs with PHEOs/PGLs, like our original report, a condition which we termed the 3 P association (3PAs). Interestingly, when 3PAs is found in the sporadic setting, no SDHx defects were identified, whereas in familial PGLs, SDHx mutations were identified in 62.5-75% of the reported cases. Hence, pituitary surveillance is recommended among patients with SDHx defects. It is possible that the SDHx germline mutation-negative 3PAs cases may be due to another gene, epigenetic changes, mutations in modifier genes, mosaicism, somatic mutations, pituitary hyperplasia due to ectopic hypothalamic hormone secretion or a coincidence. PA in 3PAs are mainly macroadenomas, more aggressive, more resistant to somatostatin analogues, and often require surgery. Using the Sdhb +/- mouse model, we showed that hyperplasia may be the first abnormality in tumorigenesis as initial response to pseudohypoxia. We also propose surveillance and follow-up approach of patients presenting with this association.
Collapse
Affiliation(s)
- Paraskevi Xekouki
- Department of Endocrinology, King’s College Hospital, London, UK
- Division of Diabetes & Nutritional Sciences, King’s College London, London, UK
| | - Ana Brennand
- Division of Diabetes & Nutritional Sciences, King’s College London, London, UK
| | - Ben Whitelaw
- Department of Endocrinology, King’s College Hospital, London, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
36
|
Lemelin A, Lapoirie M, Abeillon J, Lasolle H, Giraud S, Philouze P, Ceruse P, Raverot G, Vighetto A, Borson-Chazot F. Pheochromocytoma, paragangliomas, and pituitary adenoma: An unusual association in a patient with an SDHD mutation. Case report. Medicine (Baltimore) 2019; 98:e16594. [PMID: 31348302 PMCID: PMC6708967 DOI: 10.1097/md.0000000000016594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Pituitary adenomas and paragangliomas are both rare endocrine diseases. Paragangliomas (PGL)/pheochromocytomas (PHEO) are part of an inherited syndrome in about 30% to 40% of cases. Among familial cases, mutations of the succinate dehydrogenase (SDH) subunit genes (succinate dehydrogenase subunit [SDH]B, SDHC, SDHD, succinate dehydrogenase subunit AF2 [SDHAF2] , and SDHA) are the most common cause. PATIENT CONCERNS We here report a 31-year-old patient with a known SDHD mutation whose disease has been revealed by a left PHEO during childhood and who presented at age 29 years a large paraganglioma of the right jugular foramen, a concomitant PHEO of the left adrenal and 2 retroperitoneal paragangliomas. A pituitary incidentaloma was found during investigations on a fluorodeoxyglucose (FDG)-positron emission tomography (PET) (FDG-PET). DIAGNOSIS A pituitary magnetic resonance imaging (MRI) confirmed the presence of a 14 mm pituitary macroadenoma. The pituitary function was normal except for hypogonadotropic hypogonadism. On examination of the fundus, a diagnosis of Pseudo Foster-Kennedy syndrome was made due to a venous compression of the right jugular vein caused by the paraganglioma (PGL). The pituitary adenoma was not compressive to the optic chiasm. INTERVENTIONS A treatment with acetazolamide was started in order to improve intracranial hypertension. The patient couldn't benefit of a surgical approach for the paraganglioma of the right jugular foramen; the patient has been treated with stereotactic radiosurgery (Gamma Knife). OUTCOMES The most recent MRI revealed that the right jugular foramen PGL is stable and the latest visual assessment demonstrated stability despite a recent reduction in acetazolamide dosage. A surveillance by MRI of the pituitary adenoma has been planned. LESSONS The association of a pituitary adenoma to paragangliomas within a same patient is very uncommon and raises the question of related physiopathological mechanisms.
Collapse
Affiliation(s)
| | - Marion Lapoirie
- Department of Endocrinology, Hospices Civils de Lyon, Fédération d’Endocrinologie
| | | | - Hélène Lasolle
- Department of Endocrinology, Hospices Civils de Lyon, Fédération d’Endocrinologie
| | | | | | | | - Gérald Raverot
- Department of Endocrinology, Hospices Civils de Lyon, Fédération d’Endocrinologie
| | - Alain Vighetto
- Department of Neurology, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | | |
Collapse
|
37
|
Eijkelenkamp K, Osinga TE, Links TP, van der Horst-Schrivers ANA. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin Genet 2019; 97:39-53. [PMID: 30977114 PMCID: PMC6972524 DOI: 10.1111/cge.13553] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Succinate dehydrogenase (SDH) mutations lead to the accumulation of succinate, which acts as an oncometabolite. Germline SDHx mutations predispose to paraganglioma (PGL) and pheochromocytoma (PCC), as well as to renal cell carcinoma and gastro‐intestinal stromal tumors. The SDHx genes were the first tumor suppressor genes discovered which encode for a mitochondrial enzyme, thereby supporting Otto Warburg's hypothesis in 1926 that a direct link existed between mitochondrial dysfunction and cancer. Accumulation of succinate is the hallmark of tumorigenesis in PGL and PCC. Succinate accumulation inhibits several α‐ketoglutarate dioxygenases, thereby inducing the pseudohypoxia pathway and causing epigenetic changes. Moreover, SDH loss as a consequence of SDHx mutations can lead to reprogramming of cell metabolism. Metabolomics can be used as a diagnostic tool, as succinate and other metabolites can be measured in tumor tissue, plasma and urine with different techniques. Furthermore, these pathophysiological characteristics provide insight into therapeutic targets for metastatic disease. This review provides an overview of the pathophysiology and clinical implications of oncometabolite succinate in SDHx mutations.
Collapse
Affiliation(s)
- Karin Eijkelenkamp
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thamara E Osinga
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thera P Links
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk N A van der Horst-Schrivers
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
38
|
The loss of succinate dehydrogenase B expression is frequently identified in hemangioblastoma of the central nervous system. Sci Rep 2019; 9:5873. [PMID: 30971719 PMCID: PMC6458311 DOI: 10.1038/s41598-019-42338-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/27/2019] [Indexed: 12/23/2022] Open
Abstract
Succinate dehydrogenase (SDH) is a mitochondrial enzyme that plays an important role in both the Krebs cycle and the electron transport chain. SDH inactivation is associated with tumorigenesis in certain types of tumor. SDH consists of subunits A, B, C and D (SDHA, SDHB, SDHC, and SDHD, respectively). Immunohistochemistry for SDHB is a reliable method for detecting the inactivation of SDH by mutations in SDHA, SDHB, SDHC, SDHD and SDH complex assembly factor 2 (SDHAF2) genes with high sensitivity and specificity. SDHB immunohistochemistry has been used to examine the inactivation of SDH in various types of tumors. However, data on central nervous system (CNS) tumors are very limited. In the present study, we investigated the loss of SDHB immunoexpression in 90 cases of CNS tumors. Among the 90 cases of CNS tumors, only three cases of hemangioblastoma showed loss of SDHB immunoexpression. We further investigated SDHB immunoexpression in 35 cases of hemangioblastoma and found that 28 (80%) showed either negative or weak-diffuse pattern of SDHB immunoexpression, which suggests the inactivation of SDH. Our results suggest that SDH inactivation may represent an alternative pathway in the tumorigenesis of hemangioblastoma.
Collapse
|
39
|
Lin B, Yang HY, Yang HJ, Shen SY. Concomitant paraganglioma and thyroid carcinoma: A case report. World J Clin Cases 2019; 7:656-662. [PMID: 30863766 PMCID: PMC6406204 DOI: 10.12998/wjcc.v7.i5.656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Paraganglioma/pheochromocytoma and medullary thyroid carcinoma can coexist and are often found in multiple endocrine neoplasia (MEN). However, very few cases highlight papillary thyroid carcinoma. We present herein a rare case of head and neck paraganglioma associated with papillary thyroid carcinoma.
CASE SUMMARY A 51-year-old man presented to our department with right-sided neck swelling and hypertension. Physical examination showed neck masses with obvious pulsation. Concentrations of serum calcium, phosphorus, parathormone, thyroid stimulating hormone, free thyroxine, and calcitonin were within normal limits. Enhanced computed tomography revealed an irregular solid nodule, located in the carotid artery bifurcation. A low-density nodule of the thyroid isthmus with a spot-like dense shadow was also detected. The diagnosis of carotid body tumor was raised and an ultrasound-guided fine needle aspiration biopsy of the thyroid nodule revealed papillary thyroid carcinoma. The patient underwent surgery for lesion excision, total thyroidectomy, and neck dissection, and the pathology was reported as paraganglioma and papillary carcinoma. Genetic studies showed negative results for germline mutation of succinate dehydrogenase subunit D on 11q23. He was treated with 131I after surgery and remained disease-free so far.
CONCLUSION The presence of concomitant paraganglioma and thyroid papillary carcinoma could be either coincidental or a result of an unknown mutation.
Collapse
Affiliation(s)
- Bo Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hong-Yu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hui-Jun Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Shi-Yue Shen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
40
|
Oudijk L, Gaal J, de Krijger RR. The Role of Immunohistochemistry and Molecular Analysis of Succinate Dehydrogenase in the Diagnosis of Endocrine and Non-Endocrine Tumors and Related Syndromes. Endocr Pathol 2019; 30:64-73. [PMID: 30421319 DOI: 10.1007/s12022-018-9555-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Succinate dehydrogenase (SDH) is an enzyme complex, composed of four protein subunits, that plays a role in both the citric acid cycle and the electron transport chain. The genes for SDHA, SDHB, SDHC, and SDHD are located in the nuclear DNA, and mutations in these genes have initially been described in paragangliomas (PGL) and pheochromocytomas (PCC), which are relatively rare tumors derived from the autonomic nervous system and the adrenal medulla, respectively. Patients with SDH mutations, that are almost exclusively in the germline, are frequently affected by multiple PGL and/or PCC. In addition, other tumors have been associated with SDH mutations as well, including gastrointestinal stromal tumors, SDH-deficient renal cell carcinoma, and pituitary adenomas. Immunohistochemistry for SDHB and SDHA has been shown to be a valuable additional tool in the histopathological analysis of these tumors, and can be considered as a surrogate marker for molecular analysis. In addition, SDHB immunohistochemistry is relevant in the decision-making whether a genetic sequence variant represents a pathogenic mutation or not. In this review, we highlight the current knowledge of the physiologic and pathologic role of the SDH enzyme complex and its involvement in endocrine and non-endocrine tumors, with an emphasis on the applicability of immunohistochemistry.
Collapse
Affiliation(s)
- Lindsey Oudijk
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - José Gaal
- Department of Pathology, Isala Clinics, Zwolle, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center/Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
41
|
Tufton N, Shapiro L, Sahdev A, Kumar AV, Martin L, Drake WM, Akker SA, Storr HL. An analysis of surveillance screening for SDHB-related disease in childhood and adolescence. Endocr Connect 2019; 8:162-172. [PMID: 30694796 PMCID: PMC6391899 DOI: 10.1530/ec-18-0522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/26/2022]
Abstract
Objective Phaeochromocytomas (PCC) and paragangliomas (PGL) are rare in children. A large proportion of these are now understood to be due to underlying germline mutations. Here we focus on succinate dehydrogenase subunit B (SDHB) gene mutation carriers as these tumours carry a high risk of malignant transformation. There remains no current consensus with respect to optimal surveillance for asymptomatic carriers and those in whom the presenting tumour has been resected. Method We undertook a retrospective analysis of longitudinal clinical data of all children and adolescents with SDHB mutations followed up in a single UK tertiary referral centre. This included index cases that pre-dated the introduction of surveillance screening and asymptomatic carriers identified through cascade genetic testing. We also conducted a literature review to inform a suggested surveillance protocol for children and adolescents harbouring SDHB mutations. Results Clinical outcomes of a total of 38 children are presented: 8 index cases and 30 mutation-positive asymptomatic carriers with 175 patient years of follow-up data. Three of the eight index cases developed metachronous disease and two developed metastatic disease. Of the 30 asymptomatic carriers, 3 were found to have PGLs on surveillance screening. Conclusions Surveillance screening was well tolerated in our paediatric cohort and asymptomatic paediatric subjects. Screening can identify tumours before they become secretory and/or symptomatic, thereby facilitating surgical resection and reducing the chance of distant spread. We propose a regular screening protocol commencing at age 5 years in this at-risk cohort of patients.
Collapse
Affiliation(s)
- Nicola Tufton
- Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lucy Shapiro
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Anju Sahdev
- Department of Radiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
| | - Ajith V Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Lee Martin
- Department of Paediatric Endocrinology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - William M Drake
- Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Scott A Akker
- Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Royal London Hospital, Barts Health NHS Trust, London, UK
- Correspondence should be addressed to H L Storr:
| |
Collapse
|
42
|
Jha A, de Luna K, Balili CA, Millo C, Paraiso CA, Ling A, Gonzales MK, Viana B, Alrezk R, Adams KT, Tena I, Chen A, Neuzil J, Raygada M, Kebebew E, Taieb D, O'Dorisio MS, O'Dorisio T, Civelek AC, Stratakis CA, Mercado-Asis L, Pacak K. Clinical, Diagnostic, and Treatment Characteristics of SDHA-Related Metastatic Pheochromocytoma and Paraganglioma. Front Oncol 2019; 9:53. [PMID: 30854332 PMCID: PMC6395427 DOI: 10.3389/fonc.2019.00053] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Pheochromocytoma and paraganglioma (PHEO/PGL) are rare neuroendocrine tumors which may cause potentially life-threatening complications, with about a third of cases found to harbor specific gene mutations. Thus, early diagnosis, treatment, and meticulous monitoring are of utmost importance. Because of low incidence of succinate dehydrogenase complex subunit A (SDHA)-related metastatic PHEO/PGL, currently there exists insufficient clinical information, especially with regards to its diagnostic and treatment characteristics. Methods: Ten patients with SDHA-related metastatic PHEO/PGL were followed-up prospectively and/or retrospectively between January 2010–July 2018. They underwent biochemical tests (n = 10), 123I-MIBG (n = 9) scintigraphy, and multiple whole-body positron emission tomography/computed tomography (PET/CT) scans with 68Ga-DOTATATE (n = 10), 18F-FDG (n = 10), and 18F-FDOPA (n = 6). Results: Our findings suggest that these tumors can occur early and at extra-adrenal locations, behave aggressively, and have a tendency to develop metastatic disease within a short period of time. None of our patients had a family history of PHEO/PGL, making them appear sporadic. Nine out of 10 patients showed abnormal PHEO/PGL-specific biochemical markers with predominantly noradrenergic and/or dopaminergic phenotype, suggesting their utility in diagnosing and monitoring the disease. Per patient detection rates of 68Ga-DOTATATE (n = 10/10), 18F-FDG (n = 10/10), 18F-FDOPA (n = 5/6) PET/CT, and 123I-MIBG (n = 7/9) scintigraphy were 100, 100, 83.33, and 77.77%, respectively. Five out of 7 123I-MIBG positive patients had minimal 123I-MIBG avidity or detected very few lesions compared to widespread metastatic disease on 18F-FDG PET/CT, implying that diagnosis and treatment with 123/131I-MIBG is not a good option. 68Ga-DOTATATE PET/CT was found to be superior or equal to 18F-FDG PET/CT in 7 out of 10 patients and hence, is recommended for evaluation and follow-up of these patients. All 7 out of 7 patients who received conventional therapies (chemotherapy, somatostatin analog therapy, radiation therapy, 131I-MIBG, peptide receptor radionuclide therapy) in addition to surgery showed disease progression. Conclusion: In our cohort of patients, SDHA-related metastatic PHEO/PGL followed a disease-course similar to that of SDHB-related metastatic PHEO/PGL, showing highly aggressive behavior, similar imaging and biochemical phenotypes, and suboptimal response to conventional therapies. Therefore, we recommend careful surveillance of the affected patients and a search for effective therapies.
Collapse
Affiliation(s)
- Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kristine de Luna
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Charlene Ann Balili
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cecilia Angela Paraiso
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Alexander Ling
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Melissa K Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Bruna Viana
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rami Alrezk
- Clinical Endocrine Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Karen T Adams
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alice Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Margarita Raygada
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Electron Kebebew
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - M Sue O'Dorisio
- Department of Pediatrics, RJ and LA Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas O'Dorisio
- Neuroendocrine Tumor Program, Division of Endocrinology and Metabolism, Department of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Ali Cahid Civelek
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Nuclear Medicine, Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Leilani Mercado-Asis
- Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol 2019; 240:R21-R45. [PMID: 30530903 DOI: 10.1530/joe-18-0446] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15-30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune-Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune-Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.
Collapse
Affiliation(s)
- Sara Pepe
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
44
|
Tufton N, Sahdev A, Drake WM, Akker SA. Can subunit-specific phenotypes guide surveillance imaging decisions in asymptomatic SDH mutation carriers? Clin Endocrinol (Oxf) 2019; 90:31-46. [PMID: 30303539 DOI: 10.1111/cen.13877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE With the discovery that familial phaeochromocytoma and paraganglioma syndrome can be caused by mutations in each subunit of the succinate dehydrogenase enzyme (SDH), has come the recognition that mutations in the individual subunits have their own distinct natural histories. Increased genetic screening is leading to the identification of increasing numbers of, mostly asymptomatic, gene mutation carriers and the implementation of screening strategies for these individuals. Yet there is, to date, no international consensus regarding screening strategies for asymptomatic carriers. DESIGN A comprehensive PubMed search from 1/1/2000 to 28/2/2018 was undertaken using multiple search terms and subsequently a manual review of references in identified papers to identify all clinically relevant cases and cohorts. In this review, the accumulated, published experience of phenotype and malignancy risks of individual SDH subunits is analysed. Where possible screening results for asymptomatic SDH mutation carriers have been analysed separately to define the penetrance in asymptomatic carriers (asymptomatic penetrance). RESULTS The combined data confirms that "asymptomatic penetrance" is highest for SDHD and when there is penetrance, the most likely site to develop a PGL is head and neck (SDHD) and extra-adrenal abdominal (SDHB). However, the risk in SDHB carriers of developing HNPGL is also high (35.5%) and a PCC is low (15.1%), and in SDHD carriers there is a high risk of developing a PCC (35.8%) or abdominal PGL (9.4%) and a small, but significant risk at other sympathetic sites. The data suggest that the risk of malignant transformation is the same for both PCC and extra-adrenal abdominal PGLs (30%-35%) in SDHB carriers. In SDHD carriers, the risk of malignant transformation was highest in HNPGLs (7.5%) and similar for sympathetic sites (3.8%-5.2%). CONCLUSIONS Using this data, we suggest surveillance screening of asymptomatic carriers can be tailored to the underlying SDH subunit and review possible surveillance programmes.
Collapse
Affiliation(s)
- Nicola Tufton
- Department of Endocrinology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anju Sahdev
- Department of Radiology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - William M Drake
- Department of Endocrinology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Scott A Akker
- Department of Endocrinology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
45
|
Abstract
Succinate dehydrogenase (SDH)-deficient renal cell carcinoma is a recently recognized distinct subtype of renal cell carcinoma in the 2016 World Health Organization classification. It is associated with SDH gene germline mutations, which also cause paraganglioma/pheochromocytoma, gastrointestinal stromal tumor, and pituitary adenoma. The tumor most commonly presents in young adulthood. The tumors are arranged in solid nests or in tubules and frequently show cystic change. The tumors are composed of cuboidal to oval cells with round nuclei, dispersed chromatin, and inconspicuous nucleoli. The cytoplasm is eosinophilic or flocculent but not truly oncocytic. The most distinctive histologic feature is the presence of cytoplasmic vacuoles or inclusions. Loss of SDH subunit B immunostaining is needed for a definite diagnosis. The prognosis is good for low-grade tumors but worse for tumors with high-grade nuclei, sarcomatoid change, or coagulative necrosis. Long-term follow-up is indicated.
Collapse
Affiliation(s)
| | - Wen-Ying Lee
- From the Department of Pathology, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
46
|
Bernardo-Castiñeira C, Sáenz-de-Santa-María I, Valdés N, Astudillo A, Balbín M, Pitiot AS, Jiménez-Fonseca P, Scola B, Tena I, Molina-Garrido MJ, Sevilla MA, Beristein E, Forga L, Villabona C, Oriola J, Halperin I, Suarez C, Chiara MD. Clinical significance and peculiarities of succinate dehydrogenase B and hypoxia inducible factor 1α expression in parasympathetic versus sympathetic paragangliomas. Head Neck 2018; 41:79-91. [PMID: 30549360 DOI: 10.1002/hed.25386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/22/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Succinate dehydrogenase subunit B (SDHB) immunohistochemistry was considered a valuable tool to identify patients with inherited paraganglioma/pheochromocytoma (PGL/PCC). However, previous studies jointly analyzed 2 related but clinically distinct entities, parasympathetic head and neck paragangliomas (HNPGLs) and sympathetic PCCs/PGLs. Additionally, a role for hypoxia inducible factor-1α (HIF-1α) as a biomarker for succinate dehydrogenase (SDHx)-mutated tumors has not been studied. Here, we evaluated the utility of SDHB/HIF-1α proteins in HNPGLs and PCCs/PGLs as clinically useful biomarkers. METHODS The SDHB/succinate dehydrogenase subunit A (SDHA)/HIF-1α immunohistochemistry analysis was performed in 158 genetically defined patients. RESULTS Similarly to PCCs/PGLs, SDHB immune-negativity correlated with SDHx-mutations in HNPGLs (P < .0001). The HIF-1α stabilization was associated with SDHx-mutations in HNPGLs (P = .020), not in PCCs/PGLs (P = .319). However, 25% of SDHx-HNPGLs lacked HIF-1α positive cells. CONCLUSION As in PCCs/PGLs, SDHB immunohistochemistry in HNPGLs is a valuable method for identification of candidates for SDHx-genetic testing. On the contrary, although SDHx mutations may favor HIF-1α stabilization in HNPGLs, this is not a clinically useful biomarker.
Collapse
Affiliation(s)
- Cristóbal Bernardo-Castiñeira
- Institute of Sanitary Research of Asturias, Institute of Oncology of Asturias (IUOPA), CIBERONC, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Inés Sáenz-de-Santa-María
- Institute of Sanitary Research of Asturias, Institute of Oncology of Asturias (IUOPA), CIBERONC, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Nuria Valdés
- Service of Endocrinology and Nutrition, Hospital Central de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Service of Pathology, Hospital Central de Asturias, Oviedo, Spain
| | - Milagros Balbín
- Service of Molecular Oncology, Hospital Central de Asturias, Oviedo, Spain
| | - Ana S Pitiot
- Service of Molecular Oncology, Hospital Central de Asturias, Oviedo, Spain
| | | | - Bartolomé Scola
- Service of Otorhinolaryngology, Hospital Gregorio Marañón, Madrid, Spain
| | - Isabel Tena
- Service of Medical Oncology, Hospital Provincial de Castellón, Castellón, Spain
| | | | | | - Elena Beristein
- Laboratory of Molecular Genetic, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Lluís Forga
- Service of Endocrinology and Nutrition, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carles Villabona
- Service of Endocrinology and Nutrition, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Josep Oriola
- Laboratory of Biochemistry and Molecular Genetics and Endocrinology and Nutrition Service, Hospital Clinic, Barcelona, Spain
| | - Irene Halperin
- Laboratory of Biochemistry and Molecular Genetics and Endocrinology and Nutrition Service, Hospital Clinic, Barcelona, Spain
| | - Carlos Suarez
- Service of Otorhinolaryngology, Hospital Central de Asturias, Oviedo, Spain
| | - María-Dolores Chiara
- Institute of Sanitary Research of Asturias, Institute of Oncology of Asturias (IUOPA), CIBERONC, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
47
|
Vermalle M, Tabarin A, Castinetti F. [Hereditary pheochromocytoma and paraganglioma: screening and follow-up strategies in asymptomatic mutation carriers]. ANNALES D'ENDOCRINOLOGIE 2018; 79 Suppl 1:S10-S21. [PMID: 30213301 DOI: 10.1016/s0003-4266(18)31234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The management of pheochromocytoma and paraganglioma has deeply evolved over the last years due to the discovery of novel genes of susceptibility, especially SDHx, MAX and TMEM127. While the modalities of diagnosis and management of patients presenting with hereditary pheochromocytoma and paraganglioma are now well defined, screening and follow-up strategies for asymptomatic mutation carriers remain a matter of debate. This raises major questions as these asymptomatic patients will require a lifelong follow-up. The aim of this review is an attempt to give insights on the optimal screening and follow-up strategies of asymptomatic carriers of SDHx, MAX and TMEM127 mutations, with additional thoughts on the forensic and psychological aspects of the management of such patients with rare diseases.
Collapse
Affiliation(s)
- Marie Vermalle
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| | - Antoine Tabarin
- Service d'endocrinologie, diabète et nutrition, USN Haut-Leveque, 33000 CHU Bordeaux, université Bordeaux, France
| | - Frederic Castinetti
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| |
Collapse
|
48
|
Ogle S, Merz A, Parina R, Alsayed M, Milas M. Ultrasound and the Evaluation of Pediatric Thyroid Malignancy: Current Recommendations for Diagnosis and Follow-up. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2311-2324. [PMID: 29575028 DOI: 10.1002/jum.14593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Ultrasound (US) plays a critical role in the evaluation, treatment, screening, and surveillance of thyroid malignancy in pediatric patients. This review aims to summarize recent advances in this topic. Improvements in imaging technology have amplified the advantage of US and US-guided fine-needle aspiration biopsy for thyroid nodule evaluation, cancer diagnosis, and surgical planning. Ultrasound has a definitive screening role for early cancer detection in high-risk patients, including those with a history of radiation exposure from childhood treatments, environmental radiation disasters, or hereditary/familial cancer syndromes. Finally, US is a key component of lifelong surveillance for recurrence among pediatric thyroid cancer survivors.
Collapse
Affiliation(s)
- Sarah Ogle
- Endocrine Surgery Center, Diabetes and Endocrinology Institute, Department of Surgery, University of Arizona, Phoenix School of Medicine, Banner University Medical Center, Phoenix, Arizona, USA
| | - Alexa Merz
- Endocrine Surgery Center, Diabetes and Endocrinology Institute, Department of Surgery, University of Arizona, Phoenix School of Medicine, Banner University Medical Center, Phoenix, Arizona, USA
| | - Ralitza Parina
- Endocrine Surgery Center, Diabetes and Endocrinology Institute, Department of Surgery, University of Arizona, Phoenix School of Medicine, Banner University Medical Center, Phoenix, Arizona, USA
| | - Mahmoud Alsayed
- Department of Endocrinology, Banner University Medical Center, Phoenix, Arizona, USA
| | - Mira Milas
- Endocrine Surgery Center, Diabetes and Endocrinology Institute, Department of Surgery, University of Arizona, Phoenix School of Medicine, Banner University Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
49
|
Abstract
The knowledge on the molecular and genetic causes of Cushing's syndrome (CS) has greatly increased in the recent years. Somatic mutations leading to overactive 3',5'-cyclic adenosine monophosphate/protein kinase A and wingless-type MMTV integration site family/beta-catenin pathways are the main molecular mechanisms underlying adrenocortical tumorigenesis. Corticotropinomas are characterized by resistance to glucocorticoid negative feedback, impaired cell cycle control and overexpression of pathways sustaining ACTH secretion. Recognizing the genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for tailoring the clinical management of CS patients and for designing strategies for genetic counseling and clinical screening to be applied in routine medical practice.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
50
|
Taïeb D, Pacak K. Molecular imaging and theranostic approaches in pheochromocytoma and paraganglioma. Cell Tissue Res 2018; 372:393-401. [PMID: 29450723 PMCID: PMC7442158 DOI: 10.1007/s00441-018-2791-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Pheochromocytomas and their extra-adrenal counterpart paragangliomas (PGLs; together called PPGLs), belong to the family of neural crest-derived tumors. Given the overexpression of a wide variety of specific targets in PPGLs, it seems that these tumors are optimally suited to be imaged by specific radiopharmaceuticals. Thus, theranostics approaches with somatostatin agonists and antagonists are rapidly evolving in the setting of these tumors and may be considered as the next step in the therapeutic arsenal of metastatic PPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 264, rue Saint-Pierre, 13385, Marseille, France.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|