1
|
Wang N, Ockerman FP, Zhou LY, Grove ML, Alkis T, Barnard J, Bowler RP, Clish CB, Chung S, Drzymalla E, Evans AM, Franceschini N, Gerszten RE, Gillman MG, Hutton SR, Kelly RS, Kooperberg C, Larson MG, Lasky-Su J, Meyers DA, Woodruff PG, Reiner AP, Rich SS, Rotter JI, Silverman EK, Ramachandran VS, Weiss ST, Wong KE, Wood AC, Wu L, Yarden R, Blackwell TW, Smith AV, Chen H, Raffield LM, Yu B. Genetic Architecture and Analysis Practices of Circulating Metabolites in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.23.604849. [PMID: 39211135 PMCID: PMC11361093 DOI: 10.1101/2024.07.23.604849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Circulating metabolite levels partly reflect the state of human health and diseases and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single-study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally diverse samples. We provided a set of reasonable strategies for outlier and imputation handling to process metabolite data. Following the practical analysis framework, we further performed a genome-wide association analysis on 1,135 selected metabolites using whole genome sequencing data from 16,359 individuals passing the quality control filters, and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus-metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.
Collapse
|
2
|
Nopsopon T, Chen Y, Chen Q, Wheelock CE, Weiss ST, McGeachie M, Lasky-Su J, Akenroye A. Untargeted metabolomic analysis reveals different metabolites associated with response to mepolizumab and omalizumab in asthma. ERJ Open Res 2024; 10:00931-2023. [PMID: 39104961 PMCID: PMC11298997 DOI: 10.1183/23120541.00931-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/31/2024] [Indexed: 08/07/2024] Open
Abstract
Background There is limited evidence on biomarkers associated with response to the monoclonal antibodies currently approved for asthma treatment. We sought to identify circulatory metabolites associated with response to treatment with mepolizumab or omalizumab. Methods We conducted global metabolomic profiling of pre-treatment plasma samples from 100 patients with moderate-to-severe asthma who initiated mepolizumab (n=31) or omalizumab (n=69). The primary outcome was the change in exacerbations within 12 months of therapy. Negative binomial models were used to assess the association between each metabolite and exacerbations, adjusting for age, sex, body mass index, baseline exacerbations and inhaled corticosteroid use. Chemical similarity enrichment analysis (ChemRICH) was conducted to identify chemical subclasses associated with treatment response. Results The mean age of the mepolizumab group was 58.7 years with on average 2.9 exacerbations over the year prior to initiation of biologic therapy. The mean age in the omalizumab group was 48.8 years with 1.5 exacerbations in the preceding year. Patients with higher levels of two tocopherol metabolites were associated with more exacerbations on mepolizumab (δ-carboxyethyl hydroxychroman (CEHC) (p=2.65E-05, false discovery rate (FDR=0.01) and δ-CEHC glucuronide (p=2.47E-06, FDR=0.003)). Higher levels of six androgenic steroids, three carnitine metabolites and two bile acid metabolites were associated with decreased exacerbations in the omalizumab group. In enrichment analyses, xanthine metabolites (cluster FDR=0.0006) and tocopherol metabolites (cluster FDR=0.02) were associated with worse mepolizumab response, while androgenic steroids (cluster FDR=1.9E-18), pregnenolone steroids (cluster p=3.2E-07, FDR=1.4E-05) and secondary bile acid metabolites (cluster p=0.0003, FDR=0.006) were the top subclasses associated with better omalizumab response. Conclusion This study identifies distinct metabolites associated with response to mepolizumab and omalizumab, with androgenic steroids associated with response to both mepolizumab and omalizumab.
Collapse
Affiliation(s)
- Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Scott. T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| |
Collapse
|
3
|
Tran DT, Chen Y, Zheng Y, Hecker J, Hawcutt DB, Pirmohamed M, Lasky‐Su J, Wu AC, Tantisira KG, McGeachie MJ, Weiss ST, Dahlin A. Urine metabolomics signature reveals novel determinants of adrenal suppression in children taking inhaled corticosteroids to control asthma symptoms. Immun Inflamm Dis 2024; 12:e1315. [PMID: 39031511 PMCID: PMC11259003 DOI: 10.1002/iid3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Asthma is routinely treated with inhaled corticosteroids (ICS). Asthma patients on ICS are at increased risk of adrenal suppression, a potentially serious effect of long-term glucocorticoid exposure; however, this relationship is poorly understood. Therefore, this study aims to identify metabolite biomarkers related to adrenal suppression in asthma patients taking ICS. METHODS A total of 571 urine metabolites from 200 children with asthma on ICS in the Pharmacogenetics of Adrenal Suppression with Inhaled Steroids (PASS) cohort were profiled. Samples were grouped by peak plasma cortisol measurement as adrenal sufficient (>350 nmol/L) or insufficient (≤350 nmol/L) (outcome). Regression and discriminant-based statistical models combined with network analyses were utilized to assess relationships between metabolites and the outcome. Finally, prioritized metabolites were validated using data from an ancillary study of the Childhood Asthma Management (CAMP) cohort with similar characteristics to PASS. RESULTS Ninety metabolites were significantly associated with adrenal suppression, of which 57 also could discriminate adrenal status. While 26 metabolites (primarily steroids) were present at lower levels in the adrenal insufficient patients, 14 were significantly elevated in this group; the top metabolite, mannitol/sorbitol, was previously associated with asthma exacerbations. Network analyses identified unique clusters of metabolites related to steroids, fatty acid oxidation, and nucleoside metabolism, respectively. Four metabolites including urocanic acid, acetylcarnitine, uracil, and sorbitol were validated in CAMP cohort for adrenal suppression. CONCLUSIONS Urinary metabolites differ among asthma patients on ICS, by adrenal status. While steroid metabolites were reduced in patients with poor adrenal function, our findings also implicate previously unreported metabolites involved in amino acid, lipid, and nucleoside metabolism.
Collapse
Affiliation(s)
- Dung T. Tran
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yulu Chen
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yi Zheng
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Julian Hecker
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Jessica Lasky‐Su
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ann C. Wu
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory MedicineUniversity of California San Diego and Rady Children's HospitalSan DiegoCaliforniaUSA
| | - Michael J. McGeachie
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Scott T. Weiss
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Amber Dahlin
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Hong X, Nadeau K, Wang G, Larman B, Smith KN, Pearson C, Ji H, Frischmeyer-Guerrerio P, Liang L, Hu FB, Wang X. Metabolomic profiles during early childhood and risk of food allergies and asthma in multiethnic children from a prospective birth cohort. J Allergy Clin Immunol 2024; 154:168-178. [PMID: 38548091 PMCID: PMC11227411 DOI: 10.1016/j.jaci.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND There are increasing numbers of metabolomic studies in food allergy (FA) and asthma, which, however, are predominantly limited by cross-sectional designs, small sample size, and being conducted in European populations. OBJECTIVE We sought to identify metabolites unique to and shared by children with FA and/or asthma in a racially diverse prospective birth cohort, the Boston Birth Cohort. METHODS Mass spectrometry-based untargeted metabolomic profiling was performed using venous plasma collected in early childhood (n = 811). FA was diagnosed according to clinical symptoms consistent with an acute hypersensitivity reaction at food ingestion and food specific-IgE > 0.35 kU/L. Asthma was defined on the basis of physician diagnosis. Generalized estimating equations were applied to analyze metabolomic associations with FA and asthma, adjusting for potential confounders. RESULTS During a mean ± standard deviation follow-up of 11.8 ± 5.2 years from birth, 78 children developed FA and 171 developed asthma. Androgenic and pregnenolone steroids were significantly associated with a lower risk of FA, especially for egg allergy. N,N,N-trimethyl-5-aminovalerate (odds ratio [OR] = 0.65, 95% confidence interval [CI] = 0.48-0.87), and 1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (OR = 0.77; 95% CI = 0.66-0.90) were inversely associated with FA risk. Orotidine (OR = 4.73; 95% CI = 2.2-10.2) and 4-cholesten-3-one (OR = 0.52; 95% CI = 0.35-0.77) were the top 2 metabolites associated with risk of asthma, although they had no association with FA. In comparison, children with both FA and asthma exhibited an altered metabolomic profile that aligned with that of FA, including altered levels of lipids and steroids. CONCLUSION In this US multiethnic prospective birth cohort, unique and shared alterations in plasma metabolites during early childhood were associated with risk of developing FA and/or asthma. These findings await further validation.
Collapse
Affiliation(s)
- Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md.
| | - Kari Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Ben Larman
- Department of Pathology, Division of Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Mass
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Pamela Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Liming Liang
- Department of Epidemiology and Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Frank B Hu
- Department of Epidemiology and Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, Mass; Department of Nutrition, T. H. Chan School of Public Health, Harvard University, Boston, Mass; Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md; Department of Pediatrics, Division of General Pediatrics & Adolescent Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
5
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
6
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
7
|
Singh D, Oosterholt S, Pavord I, Garcia G, Abhijith Pg, Della Pasqua O. Understanding the Clinical Implications of Individual Patient Characteristics and Treatment Choice on the Risk of Exacerbation in Asthma Patients with Moderate-Severe Symptoms. Adv Ther 2023; 40:4606-4625. [PMID: 37589831 PMCID: PMC10499702 DOI: 10.1007/s12325-023-02590-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/21/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION The assessment of future risk has become an important feature in the management of patients with asthma. However, the contribution of patient-specific characteristics and treatment choices to the risk of exacerbation is poorly understood. Here we evaluated the effect of interindividual baseline differences on the risk of exacerbation and treatment performance in patients receiving regular maintenance doses of inhaled corticosteroids (ICS) or ICS/long-acting beta-agonists (LABA) combination therapy. METHODS Exacerbations and changes to asthma symptoms 5-item Asthma Control Questionnaire (ACQ-5) were simulated over a 12-month period using a time-to-event and a longitudinal model developed from phase III/IV studies in patients with moderate-severe asthma (N = 16,282). Simulations were implemented to explore treatment performance across different scenarios, including randomised designs and real-world settings. Treatment options included regular dosing with ICS monotherapy [fluticasone propionate (FP)] and combination therapy [fluticasone propionate/salmeterol (FP/SAL) or budesonide/formoterol (BUD/FOR)]. Exacerbation rate was analysed using the log-rank test. The cumulative incidence of events was summarised stratified by treatment. RESULTS Being a woman, smoker, having higher baseline ACQ-5 and body mass index (BMI) and lower forced expiratory volume in the first second (FEV1) are associated with increased exacerbation risk (p < 0.01). This risk is bigger in winter because of the seasonal variation effect. Across the different scenarios, the use of FP/SAL resulted in a 10% lower annual incidence of exacerbations relative to FP or regular dosing BUD/FOR, independently of baseline characteristics. Similar differences in the annual incidence of exacerbations were also observed between treatments in obese patients (BMI ≥ 25-35 kg/m2) (p < 0.01) and in patients who do not achieve symptom control on FP monotherapy. CONCLUSIONS Individual baseline characteristics and treatment choices affect future risk. Achieving comparable levels of symptom control whilst on treatment does not imply comparable risk reduction, as shown by the lower exacerbation rates in FP/SAL vs. BUD/FOR-treated patients. These factors should be considered as a basis for personalised clinical management of patients with moderate-severe asthma.
Collapse
Affiliation(s)
- Dave Singh
- University of Manchester, Manchester University NHS Foundations Trust, Manchester, UK
| | - Sean Oosterholt
- Clinical Pharmacology Modelling and Simulation, GSK, GSK House, 980 Great West Rd, London, TW8 9GS, UK
| | - Ian Pavord
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gabriel Garcia
- Respiratory Medicine Service, Rossi Hospital, La Plata, Argentina
| | - Abhijith Pg
- GSK, Global Classic and Established Medicines, Singapore, Singapore
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling and Simulation, GSK, GSK House, 980 Great West Rd, London, TW8 9GS, UK.
- Clinical Pharmacology and Therapeutics Group, University College London, London, UK.
| |
Collapse
|