1
|
Wu Y, Zhang Z. Editorial: Advances in targeted therapy and biomarker research for endocrine-related cancers. Front Endocrinol (Lausanne) 2024; 15:1533623. [PMID: 39722807 PMCID: PMC11668659 DOI: 10.3389/fendo.2024.1533623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Yang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zili Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Li J, Yin Y, Huang H, Li M, Li H, Zhang M, Jiang C, Yang R. RUNX1 methylation as a cancer biomarker in differentiating papillary thyroid cancer from benign thyroid nodules. Epigenomics 2023; 15:1257-1272. [PMID: 38126720 DOI: 10.2217/epi-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: It remains a challenge to accurately identify malignancy of thyroid nodules when biopsy is indeterminate. The authors aimed to investigate the abnormal DNA methylation signatures in papillary thyroid cancer (PTC) compared with benign thyroid nodules (BTNs). Methods: The authors performed genome profiling by 850K array and RNA sequencing in early-stage PTC and BTN tissue samples. The identified gene was validated in two independent case-control studies using mass spectrometry. Results: Hypomethylation of RUNX1 in PTC was identified and verified (all odds ratios: ≥1.50). RUNX1 methylation achieved good accuracy in differentiating early-stage PTC from BTNs, especially for younger women. Conclusion: The authors disclosed a significant association between RUNX1 hypomethylation and PTC, suggesting RUNX1 methylation as a potential biomarker for companion diagnosis of malignant thyroid nodules.
Collapse
Affiliation(s)
- Junjie Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Yifei Yin
- Department of Thyroid & Breast Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Haixia Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Hong Li
- Department of Pathology, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Minmin Zhang
- Department of Thyroid & Breast Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Chenxia Jiang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
3
|
Martin-García D, Téllez T, Redondo M, García-Aranda M. Calcium Homeostasis in the Development of Resistant Breast Tumors. Cancers (Basel) 2023; 15:2872. [PMID: 37296835 PMCID: PMC10251880 DOI: 10.3390/cancers15112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is one of the main health problems worldwide. Only in 2020, this disease caused more than 19 million new cases and almost 10 million deaths, with breast cancer being the most diagnosed worldwide. Today, despite recent advances in breast cancer treatment, a significant percentage of patients will either not respond to therapy or will eventually experience lethal progressive disease. Recent studies highlighted the involvement of calcium in the proliferation or evasion of apoptosis in breast carcinoma cells. In this review, we provide an overview of intracellular calcium signaling and breast cancer biology. We also discuss the existing knowledge on how altered calcium homeostasis is implicated in breast cancer development, highlighting the potential utility of Ca2+ as a predictive and prognostic biomarker, as well as its potential for the development of new pharmacological treatments to treat the disease.
Collapse
Affiliation(s)
- Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| |
Collapse
|
4
|
Histone Modification on Parathyroid Tumors: A Review of Epigenetics. Int J Mol Sci 2022; 23:ijms23105378. [PMID: 35628190 PMCID: PMC9140881 DOI: 10.3390/ijms23105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
Parathyroid tumors are very prevalent conditions among endocrine tumors, being the second most common behind thyroid tumors. Secondary hyperplasia can occur beyond benign and malignant neoplasia in parathyroid glands. Adenomas are the leading cause of hyperparathyroidism, while carcinomas represent less than 1% of the cases. Tumor suppressor gene mutations such as MEN1 and CDC73 were demonstrated to be involved in tumor development in both familiar and sporadic types; however, the epigenetic features of the parathyroid tumors are still a little-explored subject. We present a review of epigenetic mechanisms related to parathyroid tumors, emphasizing advances in histone modification and its perspective of becoming a promising area in parathyroid tumor research.
Collapse
|
5
|
Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers (Basel) 2022; 14:cancers14071610. [PMID: 35406382 PMCID: PMC8996999 DOI: 10.3390/cancers14071610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
There is evidence that posttranslational modifications, including phosphorylation, acetylation, methylation, ubiquitination, sumoylation, glycosylation, and succinylation, may be involved in thyroid cancer. We review recent reports supporting a role of posttranslational modifications in the tumorigenesis of thyroid cancer, sensitivity to radioiodine and other types of treatment, the identification of molecular treatment targets, and the development of molecular markers that may become useful as diagnostic tools. An increased understanding of posttranslational modifications may be an important supplement to the determination of alterations in gene expression that has gained increasing prominence in recent years.
Collapse
|
6
|
Morotti A, Cetani F, Passoni G, Borsari S, Pardi E, Guarnieri V, Verdelli C, Tavanti GS, Valenti L, Bianco C, Ferrero S, Corbetta S, Vaira V. The Long Non-Coding BC200 Is a Novel Circulating Biomarker of Parathyroid Carcinoma. Front Endocrinol (Lausanne) 2022; 13:869006. [PMID: 35586620 PMCID: PMC9108332 DOI: 10.3389/fendo.2022.869006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an important class of epigenetic regulators involved in both physiological processes and cancer development. Preliminary evidence suggested that lncRNAs could act as accurate prognostic and diagnostic biomarkers. Parathyroid cancer is a rare endocrine neoplasia, whose management represents a clinical challenge due to the lack of accurate molecular biomarkers. Our previous findings showed that human parathyroid tumors are characterized by a different lncRNAs signature, suggesting heterogeneity through the different histotypes. Particularly, we found that the lncRNA BC200/BCYRN1 could represent a candidate biomarker for parathyroid carcinomas (PCas). Here we aimed to extend our preliminary data evaluating whether BC200 could be an accurate non-invasive biomarker of PCas to support the clinical management of patients affected by parathyroid tumors at diagnosis, prognosis and follow-up. To provide a non-invasive point-of-care for parathyroid carcinoma diagnosis and follow-up, we analyzed BC200 expression in patients' serum through digital PCR. Our results show that BC200 counts are higher in serum from patients harboring PCa (n=4) compared to patients with parathyroid adenoma (PAd; n=27). Further, in PAd patients circulating BC200 levels are positively correlated with serum total calcium. Then, we found that BC200 is overexpressed in metastatic PCas (n=4) compared to non-metastatic ones (n=9). Finally, the lncRNA expression in PCa patients' serum drops are reduced after parathyroidectomy, suggesting its possible use in the post-operative setting for patients follow-up. Overall, these findings extend the knowledge on BC200 in parathyroid tumors, supporting its role as a useful biomarker for management of PCa.
Collapse
Affiliation(s)
- Annamaria Morotti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Giulia Passoni
- Division of Pathology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vito Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giulia Stefania Tavanti
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine – Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Bianco
- Precision Medicine – Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- *Correspondence: Valentina Vaira, ; Sabrina Corbetta,
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Valentina Vaira, ; Sabrina Corbetta,
| |
Collapse
|
7
|
Morotti A, Forno I, Verdelli C, Guarnieri V, Cetani F, Terrasi A, Silipigni R, Guerneri S, Andrè V, Scillitani A, Vicentini L, Ferrero S, Corbetta S, Vaira V. The Oncosuppressors MEN1 and CDC73 Are Involved in lncRNA Deregulation in Human Parathyroid Tumors. J Bone Miner Res 2020; 35:2423-2431. [PMID: 32780442 DOI: 10.1002/jbmr.4154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/17/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Abstract
A role for long non-coding RNAs (lncRNAs) in endocrine cancer pathogenesis is emerging. However, knowledge regarding their expression pattern, correlation with known genetic defects, and clinical implications in parathyroid tumors is still unclear. Here, we profiled 90 known lncRNAs in a first series of normal (PaN = 2), adenomatous (PAd = 12), and carcinomatous (PCa = 4) parathyroid glands and we confirmed deregulation of 11 lncRNAs using an independent cohort of patients (PaN = 4; PAd = 26; PCa = 9). Expression of lncRNAs was correlated with cytogenetic aberrations, status of genes multiple endocrine neoplasia 1 (MEN1) and cell division cycle 73 (CDC73), or clinical features. Globally, lncRNAs discriminate according to tissue histology. BC200 consistently identifies parathyroid cancers from adenomas and atypical adenomas. Loss-of-heterozygosity (LOH) at chromosomes 1, 11, 15, 21, and 22 significantly impacts expression of lncRNAs in PAds. Silencing of the key parathyroid gene MEN1 modulates the expression of six lncRNAs in primary PAds-derived cultures. Analogous levels of lncRNAs are measured in PAds with the mutation in the MEN1 gene compared with PAds with wild-type MEN1. Similarly, carcinomas with mutated CDC73 differ from PCas with wild-type protein in terms of expression of lncRNAs. PCas harboring CDC73 mutations overexpress BC200 compared to wild-type carcinomas. Overall, these findings shed light on deregulation of lncRNAs in human parathyroid tumors and propose that circuits between lncRNAs and the oncosuppressors MEN1 or CDC73 may have a role in parathyroid tumorigenesis as epigenetic modulators. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Annamaria Morotti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Forno
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Milan, Italy
| | - Vito Guarnieri
- Genetic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, Foggia, Italy
| | | | - Andrea Terrasi
- Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosamaria Silipigni
- Medical Genetics Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Guerneri
- Medical Genetics Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Andrè
- Laboratory of Experimental Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alfredo Scillitani
- Endocrinology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, Foggia, Italy
| | - Leonardo Vicentini
- Endocrine Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Sabrina Corbetta
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy.,Endocrinology and Diabetology Service, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Taurin S, Alkhalifa H. Breast cancers, mammary stem cells, and cancer stem cells, characteristics, and hypotheses. Neoplasia 2020; 22:663-678. [PMID: 33142233 PMCID: PMC7586061 DOI: 10.1016/j.neo.2020.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
The cellular heterogeneity of breast cancers still represents a major therapeutic challenge. The latest genomic studies have classified breast cancers in distinct clusters to inform the therapeutic approaches and predict clinical outcomes. The mammary epithelium is composed of luminal and basal cells, and this seemingly hierarchical organization is dependent on various stem cells and progenitors populating the mammary gland. Some cancer cells are conceptually similar to the stem cells as they can self-renew and generate bulk populations of nontumorigenic cells. Two models have been proposed to explain the cell of origin of breast cancer and involve either the reprogramming of differentiated mammary cells or the dysregulation of mammary stem cells or progenitors. Both hypotheses are not exclusive and imply the accumulation of independent mutational events. Cancer stem cells have been isolated from breast tumors and implicated in the development, metastasis, and recurrence of breast cancers. Recent advances in single-cell sequencing help deciphering the clonal evolution within each breast tumor. Still, few clinical trials have been focused on these specific cancer cell populations.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Haifa Alkhalifa
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Singh P, Bhadada SK, Dahiya D, Arya AK, Saikia UN, Sachdeva N, Kaur J, Brandi ML, Rao SD. Reduced Calcium Sensing Receptor (CaSR) Expression Is Epigenetically Deregulated in Parathyroid Adenomas. J Clin Endocrinol Metab 2020; 105:3015-3024. [PMID: 32609827 PMCID: PMC7500582 DOI: 10.1210/clinem/dgaa419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
AIM Reduced calcium sensing receptor (CaSR) expression has been implicated in parathyroid tumorigenesis, but the underlying mechanism remains elusive. Accordingly, we aimed to explore the epigenetic changes (DNA methylation and histone modifications) involved in CaSR regulation in sporadic parathyroid adenomas and correlate epigenetic state with disease indices. EXPERIMENTAL DESIGN Forty sporadic parathyroid adenomas and 10 control parathyroid tissues were studied. Real-time quantitative PCR (qPCR) for mRNA and immunohistochemistry for protein expression of CaSR were performed. The methylation status of the CaSR promoter 2 was determined by bisulphite sequencing analysis of sodium bisulphite-converted DNA. To determine the role of histone modifications in the CaSR regulation, chromatin immunoprecipitation-qPCR assay was performed. RESULTS Real-time qPCR revealed reduced CaSR mRNA expression with a fold reduction of 0.12 (P < 0.0001) in parathyroid adenomas. Immunohistochemistry revealed reduced protein expression of CaSR in 90% (36/40) of adenomas. The promoter 2 region of CaSR displayed significant hypermethylation in 45% (18/40) of the adenomas compared with the controls (6.7%; 1 of 10) (P < 0.002). Bisulphite sequencing analysis revealed maximum methylated CpG at glial cell missing 2 binding site on the CaSR promoter 2 compared to other CpG sites. The methylation status of CaSR correlated directly with plasma intact parathyroid hormone levels in patients with parathyroid adenoma. With chromatin immunoprecipitation-qPCR analysis, H3K9me3 levels showed increased enrichment by 10-fold in adenomas and correlated with CaSR-mRNA expression (r = 0.61; P < 0.003). Treatment with 5-aza-2'deoxycytidine restored the expression of CaSR in a parathyroid cell line. CONCLUSION Our data suggest that hypermethylation and increased H3K9me3 of the CaSR promoter 2 are involved in silencing CaSR expression in sporadic parathyroid adenoma.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | | |
Collapse
|
10
|
Ettaieb M, Kerkhofs T, van Engeland M, Haak H. Past, Present and Future of Epigenetics in Adrenocortical Carcinoma. Cancers (Basel) 2020; 12:cancers12051218. [PMID: 32414074 PMCID: PMC7281315 DOI: 10.3390/cancers12051218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA methylation profiling has been suggested a reliable technique to distinguish between benign and malignant adrenocortical tumors, a process which with current diagnostic methods remains challenging and lacks diagnostic accuracy of borderline tumors. Accurate distinction between benign and malignant adrenal tumors is of the essence, since ACC is a rare but aggressive endocrine disease with an annual incidence of about 2.0 cases per million people per year. The estimated five-year overall survival rate for ACC patients is <50%. However, available treatment regimens are limited, in which a radical surgical resection is the only curable option. Nevertheless, up to 85% of patients with radical resection show recurrence of the local disease often with concurrent metastases. Adrenolytic therapy with mitotane, administered alone or in combination with cytotoxic agents, is currently the primary (palliative) treatment for patients with advanced ACC and is increasingly used in adjuvant setting to prevent recurrence. Prognostic stratification is important in order to individualize adjuvant therapies. On April 1, 2020, there were 7404 publications on adrenocortical carcinoma (adrenocortical carcinoma) OR adrenocortical carcinoma [MeSH Terms]) OR adrenal cortex cancer[MeSH Terms]) OR adrenal cortical carcinoma [MeSH Terms]) OR adrenal cortex neoplasm [MeSH Terms]) OR adrenocortical cancer [MeSH Terms]), yet the underlying pathophysiology and characteristics of ACC is not fully understood. Knowledge on epigenetic alterations in the process of adrenal tumorigenesis is rapidly increasing and will add to a better understanding of the pathogenesis of ACC. DNA methylation profiling has been heralded as a promising method in the prognostication of ACC. This review summarizes recent findings on epigenetics of ACC and its role in diagnosis, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Madeleine Ettaieb
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Correspondence:
| | - Thomas Kerkhofs
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Harm Haak
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
- Department of Health Services Research and CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
| |
Collapse
|
11
|
Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin Epigenetics 2018; 10:144. [PMID: 30454026 PMCID: PMC6245861 DOI: 10.1186/s13148-018-0579-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background DNA methylation in miRNA genes has been reported as a mechanism that may cause dysregulation of mature miRNAs and consequently impact the gene expression. This mechanism is largely unstudied in papillary thyroid carcinomas (PTC). Methods To identify differentially methylated miRNA-encoding genes, we performed global methylation analysis (Illumina 450 K), integrative analysis (TCGA database), data confirmation (pyrosequencing and RT-qPCR), and functional assays. Results Methylation analysis revealed 27 differentially methylated miRNA genes. The integrative analyses pointed out miR-21 and miR-146b as potentially regulated by methylation (hypomethylation and increased expression). DNA methylation and expression patterns of miR-21 and miR-146b were confirmed as altered, as well as seven of 452 mRNAs targets were down-expressed. The combined methylation and expression levels of miR-21 and miR-146b showed potential to discriminate malignant from benign lesions (91–96% sensitivity and 96–97% specificity). An increased expression of miR-146b due to methylation loss was detected in the TPC1 cell line. The miRNA mimic transfection highlighted putative target mRNAs. Conclusions The increased expression of miR-21 and miR-146b due to loss of DNA methylation in PTC resulted in the disruption of the transcription machinery and biological pathways. These miRNAs are potential diagnostic biomarkers, and these findings provide support for future development of targeted therapies. Electronic supplementary material The online version of this article (10.1186/s13148-018-0579-8) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol 2018; 469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Well-differentiated thyroid cancer accounts for the majority of endocrine malignancies and, in general, has an excellent prognosis. In contrast, the less common poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are two of the most aggressive human malignancies. Recently, there has been an increased focus on the epigenetic alterations underlying thyroid carcinogenesis, including those that drive PDTC and ATC. Dysregulated epigenetic candidates identified include the Aurora group, KMT2D, PTEN, RASSF1A, multiple non-coding RNAs (ncRNA), and the SWI/SNF chromatin-remodeling complex. A deeper understanding of the signaling pathways affected by epigenetic dysregulation may improve prognostic testing and support the advancement of thyroid-specific epigenetic therapies. This review outlines the current understanding of epigenetic alterations observed in PDTC and ATC and explores the potential for exploiting this understanding in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Silva-Figueroa AM, Perrier ND. Epigenetic processes in sporadic parathyroid neoplasms. Mol Cell Endocrinol 2018; 469:54-59. [PMID: 28400272 DOI: 10.1016/j.mce.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 01/18/2023]
Abstract
Parathyroid tumors (PTs) are highly variable in their genetic background. Increasing evidence demonstrates that endocrine diseases can be caused by epigenetic alterations. The present review is focused on epigenetic aberrations related to PTs. DNA methylation, posttranslational histone modification, and noncoding RNAs are epigenetic mechanisms involved in parathyroid tumorigenesis. The information in this review has the potential to define epigenetic signatures associated with PTs for future use as diagnostic markers and lead to the development of new epigenetic drugs with therapeutic applications for these tumors. However, several epigenetic aspects regarding the biomarkers involved and their interactions in tumorigenesis on PTs are still unknown. Key to future epigenetic research would be a focus on global epigenetic identification of biomarkers in the different types of PTs, especially in parathyroid carcinoma. Better understanding may be useful for diagnostic and therapeutic uncertainty.
Collapse
Affiliation(s)
- Angelica M Silva-Figueroa
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
14
|
Gene expression profiling of normal thyroid tissue from patients with thyroid carcinoma. Oncotarget 2018; 7:29677-88. [PMID: 27105534 PMCID: PMC5045425 DOI: 10.18632/oncotarget.8820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
Gene expression profiling (GEP) of normal thyroid tissue from 43 patients with thyroid carcinoma, 6 with thyroid adenoma, 42 with multinodular goiter, and 6 with Graves-Basedow disease was carried out with the aim of achieving a better understanding of the genetic mechanisms underlying the role of normal cells surrounding the tumor in the thyroid cancer progression. Unsupervised and supervised analyses were performed to compare samples from neoplastic and non-neoplastic diseases. GEP and subsequent RT-PCR analysis identified 28 differentially expressed genes. Functional assessment revealed that they are involved in tumorigenesis and cancer progression. The distinct GEP is likely to reflect the onset and/or progression of thyroid cancer, its molecular classification, and the identification of new potential prognostic factors, thus allowing to pinpoint selective gene targets with the aim of realizing more precise preoperative diagnostic procedures and novel therapeutic approaches.
Collapse
|
15
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
16
|
De Marchi T, Timmermans MA, Sieuwerts AM, Smid M, Look MP, Grebenchtchikov N, Sweep FCGJ, Smits JG, Magdolen V, van Deurzen CHM, Foekens JA, Umar A, Martens JW. Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer. Sci Rep 2017; 7:2099. [PMID: 28522855 PMCID: PMC5437008 DOI: 10.1038/s41598-017-02296-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
In a previous study, we detected a significant association between phosphoserine aminotransferase 1 (PSAT1) hyper-methylation and mRNA levels to outcome to tamoxifen treatment in recurrent disease. We here aimed to study the association of PSAT1 protein levels to outcome upon tamoxifen treatment and to obtain more insight in its role in tamoxifen resistance. A cohort of ER positive, hormonal therapy naïve primary breast carcinomas was immunohistochemically (IHC) stained for PSAT1. Staining was analyzed for association with patient's time to progression (TTP) and overall response on first-line tamoxifen for recurrent disease. PSAT1 mRNA levels were also assessed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR; n = 161) and Affymetrix GeneChip (n = 155). Association of PSAT1 to biological pathways on tamoxifen outcome were assessed by global test. PSAT1 protein and mRNA levels were significantly associated to poor outcome to tamoxifen treatment. When comparing PSAT1 protein and mRNA levels, IHC and RT-qPCR data showed a significant association. Global test results showed that cytokine and JAK-STAT signaling were associated to PSAT1 expression. We hereby report that PSAT1 protein and mRNA levels measured in ER positive primary tumors are associated with poor clinical outcome to tamoxifen.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Mieke A Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maxime P Look
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicolai Grebenchtchikov
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan G Smits
- Department of Pathology, Admiraal de Ruyter Hospital, Goes, The Netherlands
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | | | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Cancer Genomics Center Netherlands, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Golden S, Yu XM, Odorico S, Jain V, Marin A, Ma S, Kenney S, Chen H. The Epstein-Barr virus EBNA2 protein induces a subset of NOTCH target genes in thyroid cancer cell lines but fails to suppress proliferation. Surgery 2016; 161:195-201. [PMID: 27847111 DOI: 10.1016/j.surg.2016.06.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epstein-Barr virus is associated with lymphoid and epithelial malignancies and has been reported to infect thyroid cells. The Epstein-Barr virus protein, EBNA2, regulates viral and cellular promoters by binding to RBP-jκ. Similarly, NOTCH1, a tumor suppressor protein in thyroid epithelial cells, competes with EBNA2 for binding to overlapping sites on RBP-jκ. EBNA2 activates a subset of NOTCH-responsive genes in lymphocytes and myocytes; however, the effect of EBNA2 expression on NOTCH targets in epithelial cells is unknown. Here we have explored whether EBNA2 activates NOTCH1 targets in thyroid cancer lines and examined its effect on cellular proliferation. METHODS Two human thyroid cancer lines, follicular FTC-236 and anaplastic HTh7, were transfected with EBNA2, NOTCH1, or control vectors. Notch targets were measured using quantitative reverse transcriptase polymerase chain reaction. Cellular proliferation was measured by MTT analysis. RESULTS EBNA2 activated only a subset of NOTCH1 targets. Expression of HES1 and HEY1 were increased 10-fold in FTC-236 and HTh7 cells, respectively, but the majority of NOTCH1 targets examined were not affected. In contrast to NOTCH1, EBNA2 did not suppress proliferation. CONCLUSION EBNA2 does not activate most Notch1-responsive genes or suppress proliferation in human thyroid cancer cells. Instead, EBNA2 may compete with NOTCH1 for limiting amounts of RBP-jκ in epithelial cells and inhibit certain aspects of NOTCH1 signaling.
Collapse
Affiliation(s)
- Sean Golden
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xiao-Min Yu
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Scott Odorico
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Vansh Jain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ana Marin
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Shidong Ma
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Shannon Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
18
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Bosutti A, Zanconati F, Grassi G, Dapas B, Passamonti S, Scaggiante B. Epigenetic and miRNAs Dysregulation in Prostate Cancer: The role of Nutraceuticals. Anticancer Agents Med Chem 2016; 16:1385-1402. [PMID: 27109021 PMCID: PMC5068501 DOI: 10.2174/1871520616666160425105257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
The control of cancer onset and progression is recognized to benefit from specific molecular targeting. MiRNAs are increasingly being implicated in prostate cancer, and the evidence suggests they are possible targets for molecular therapy and diagnosis. In cancer cells, growing attention has been dedicated to novel molecular mechanisms linking the epigenetic scenario to miRNA dysregulation. Currently, the rising evidence shows that nutritional and natural agents, the so-called nutraceuticals, could modulate miRNAs expression, and, as a consequence, might influence cellular responses in health or diseases conditions, including cancer. Among dietary components, plant-derived polyphenols are receiving wide interest, either for their anti-aging and anti-oxidant properties, or for their more general "cell-protective" effects. Above all, their role in preventing the occurrence/recurrence of cancer and, in particular, their potentiality in nutritional intervention for modulating the functions of miRNAs and the epigenetic mechanisms, is still under active debate. This review is focused on the more recent highlights of the impact of miRNAs dysregulation on the onset and progression of prostate cancer, their interplay with epigenetic control and their modulation by natural agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruna Scaggiante
- Address correspondence to this author at the Dept. of Life Sciences, Via Giorgeri, 1, University of Trieste, 34127 Trieste, Italy; Tel: ++39 040 558 3686; Fax: ++39 040 558 3691; E-mail:
| |
Collapse
|
20
|
How-Kit A, Dejeux E, Dousset B, Renault V, Baudry M, Terris B, Tost J. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics 2015; 7:1245-58. [PMID: 26360914 DOI: 10.2217/epi.15.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. MATERIALS & METHODS The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. RESULTS DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. CONCLUSION The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Collapse
Affiliation(s)
- Alexandre How-Kit
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France.,Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Emelyne Dejeux
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Bertrand Dousset
- Service de chirurgie digestive, hépatobiliaire et endocrinienne, Hôpital Cochin, AP-HP, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, Paris, France
| | - Marion Baudry
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France.,Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Benoit Terris
- Service d'Anatomie et de Cytologie Pathologique, Hôpital Cochin, AP-HP, Paris, France.,Institut Cochin de Génétique Moléculaire, Université Paris V René Descartes, CNRS (UMR8104), France.,Institut National de la Santé et de la Recherche Médicale U567, Paris, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
21
|
Verdelli C, Forno I, Vaira V, Corbetta S. Epigenetic alterations in human parathyroid tumors. Endocrine 2015; 49:324-32. [PMID: 25722013 DOI: 10.1007/s12020-015-0555-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics alterations are involved in tumorigenesis and have been identified in endocrine neoplasia. In particular, DNA methylation, microRNAs deregulations and histone methylation impairment are detected in tumors of the parathyroid glands. Parathyroid tumors are the second most common endocrine neoplasia following thyroid cancer in women, and it is associated with primary hyperparathyroidism, a disease sustained by PTH hypersecretion. Despite the hallmark of global promoter hypomethylations was not detectable in parathyroid tumors, increase of hypermethylation in specific CpG islands was detected in the progression from benign to malignant parathyroid tumors. Furthermore, deregulation of a panel of embryonic-related microRNAs (miRNAs) was documented in parathyroid tumors compared with normal glands. Impaired expression of the histone methyltransferases EZH2, BMI1, and RIZ1 have been described in parathyroid tumors. Moreover, histone methyltransferases have been shown to be modulated by the oncosuppressors HIC1, MEN1, and HRPT2/CDC73 gene products that characterize tumorigenesis of parathyroid adenomas and carcinomas, respectively. The epigenetic scenario in parathyroid tumors have just began to be decoded but emerging data highlight the involvement of an embryonic gene signature in parathyroid tumor development.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | | | | | | |
Collapse
|
22
|
Coppedè F, Lopomo A, Migliore L. Epigenetic Biomarkers in Personalized Medicine. PERSONALIZED EPIGENETICS 2015:183-220. [DOI: 10.1016/b978-0-12-420135-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|