1
|
Lombardi L, Li J, Williams DR. Peptide-Based Biomaterials for Combatting Infections and Improving Drug Delivery. Pharmaceutics 2024; 16:1468. [PMID: 39598591 PMCID: PMC11597775 DOI: 10.3390/pharmaceutics16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of peptide-based biomaterials to enhance biomedical applications through self-assembly, biological responsiveness, and selective targeting. Peptides are presented as versatile agents for antimicrobial activity and drug delivery, with recent approaches incorporating antimicrobial peptides into self-assembling systems to improve effectiveness and reduce resistance. The review also covers peptide-based nanocarriers for cancer drug delivery, highlighting their improved stability, targeted delivery, and reduced side effects. The focus of this work is on the bioactive properties of peptides, particularly in infection control and drug delivery, rather than on their structural design or material characteristics. Additionally, it examines the role of peptidomimetics in broadening biomaterial applications and enhancing resistance to enzymatic degradation. Finally, the review discusses the commercial prospects and challenges of translating peptide biomaterials into clinical applications.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
2
|
Moberg KU. Oxytocin in growth, reproduction, restoration and health. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100268. [PMID: 39435014 PMCID: PMC11492126 DOI: 10.1016/j.cpnec.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
This article summarizes my scientific work and describes some personal experiences during this period. After my basal medical training (MD) (1971), I obtained a PhD in pharmacology (1976) and ended up as a professor of Physiology. My initial studies were within the field of gastroenterology. I showed that the gastrointestinal hormone gastrin, which stimulates HCL secretion in the stomach, was released in response to stimulation of the vagal nerve. Later I showed that the entire endocrine system of the gastrointestinal (GI) tract that promotes digestion and anabolic metabolism and growth was under vagal nerve control. I also showed that activation of the vagal nerve inhibits the function of the inhibitory substance somatostatin. 10 years later, after some big changes in my personal life, my research focus changed. I became interested in female physiology, particularly the role of oxytocin. In addition, I became aware of the situation of female scientists and started to work with questions regarding equality between women and men. I gathered a group of interested female medical students and midwives around me. We demonstrated that breastfeeding and touch (e.g., between mother and baby), via stimulation of sensory nerves in the skin, activated the endocrine system of the GI tract and, thereby, anabolic processes and growth. The effects were exerted via a vagal mechanism and involved activation of parvocellular oxytocinergic neurons from the paraventricular nucleus (PVN). We also showed that the gastrointestinal hormone cholecystokinin stimulated the release of oxytocin in a calorie-dependent way via an afferent vagal mechanism. In summary, there is a bidirectional, vagally mediated connection between the endocrine system of the GI tract and the oxytocin producing neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus.1. Oxytocinergic neurons from the PVN enhances the activity of the endocrine system of the GI tract and thereby growth and regeneration. The effect is exerted via efferent vagal fibers which inhibit the release of somatostatin. 2. Food in the duodenum triggers a release of cholecystokinin (CCK), which via a vagal afferent mechanism stimulates the release and function of oxytocin. This mechanism is not activated in the absence of food intake. Administration of oxytocin induces a multitude of actions, i.e., anxiolytic and sedative effects, increased pain threshold, lowering of cortisol and blood pressure and an increased activity of the endocrine system of the GI tract. Repeated administration of oxytocin may induce long-term effects and "secondary" mechanisms such as an increased activity of alpha-2- adrenoceptors are involved. Oxytocin released by suckling during breastfeeding or by touch during social interaction will induce a similar effect spectrum. Activation of the parvocellular neurons will stimulate some aspects of social behavior, induce calm and well-being, and decrease levels of fear, stress, and pain. In addition, vagal functions and the activity of the endocrine system of the GI tract will be stimulated. Together, these effects are consistent with the oxytocin-mediated calm and connection response and, in a long-term perspective, with the promotion of well-being and health. A second period of professional difficulties occurred in the late 1990s. I moved to the Swedish University of Agriculture, where I started to investigate the role of oxytocin in interactions between humans and pets, as this type of interaction had been shown to promote health. I continued to study the role of oxytocin in female reproduction, in particular, the role of oxytocin during labor and birth and in the peripartum period. In addition, I started to write books about different aspects of oxytocin. I also wanted to establish a role for oxytocin in the treatment of vaginal atrophy. Several clinical studies show that local intravaginal application of oxytocin in women with vaginal atrophy increases the regeneration of vaginal mucosal cells and function.
Collapse
Affiliation(s)
- Kerstin Uvnäs Moberg
- Swedish University of Agriculture, Department of Applied Animal Science and Welfare, Skara, Sweden
| |
Collapse
|
3
|
Li YG, Meng XY, Yang X, Ling SL, Shi P, Tian CL, Yang F. Structural insights into somatostatin receptor 5 bound with cyclic peptides. Acta Pharmacol Sin 2024; 45:2432-2440. [PMID: 38926478 PMCID: PMC11489758 DOI: 10.1038/s41401-024-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Somatostatin receptor 5 (SSTR5) is highly expressed in ACTH-secreting pituitary adenomas and is an important drug target for the treatment of Cushing's disease. Two cyclic SST analog peptides (pasireotide and octreotide) both can activate SSTR5 and SSTR2. Pasireotide is preferential binding to SSTR5 than octreotide, while octreotide is biased to SSTR2 than SSTR5. The lack of selectivity of both pasireotide and octreotide causes side effects, such as hyperglycemia, gastrointestinal disturbance, and abnormal glucose homeostasis. However, little is known about the binding and selectivity mechanisms of pasireotide and octreotide with SSTR5, limiting the development of subtype-selective SST analog drugs specifically targeting SSTR5. Here, we report two cryo-electron microscopy (cryo-EM) structures of SSTR5-Gi complexes activated by pasireotide and octreoitde at resolutions of 3.09 Å and 3.24 Å, respectively. In combination with structural analysis and functional experiments, our results reveal the molecular mechanisms of ligand recognition and receptor activation. We also demonstrate that pasireotide preferentially binds to SSTR5 through the interactions between Tyr(Bzl)/DTrp of pasireotide and SSTR5. Moreover, we find that the Q2.63, N6.55, F7.35 and ECL2 of SSTR2 play a crucial role in octreotide biased binding of SSTR2. Our results will provide structural insights and offer new opportunities for the drug discovery of better selective pharmaceuticals targeting specific SSTR subtypes.
Collapse
Affiliation(s)
- Ying-Ge Li
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Yu Meng
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xiru Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Long Ling
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Pan Shi
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Chang-Lin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Fan Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Sood A, Munir M, Syed O, Mehta V, Kaur R, Kumar A, Sridhar A, Sood A, Gupta R. An update on the safety of lanreotide autogel for the treatment of patients with neuroendocrine tumors. Expert Opin Drug Saf 2024; 23:949-957. [PMID: 38847075 DOI: 10.1080/14740338.2024.2365823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) are a rare group of tumors originating from neuroendocrine cells in various organs. They include neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), which differ in biological behavior and prognosis. NETs are usually well-differentiated and slow-growing, while NECs are poorly differentiated and more aggressive. Management of NETs often involves somatostatin analogs like octreotide and lanreotide to control tumor growth and alleviate symptoms, especially in well-differentiated NETs. Lanreotide is used to control tumor growth, and both lanreotide and octreotide alleviate symptoms. Treatment approaches may vary depending on the specific type and grade of the neuroendocrine neoplasm. AREAS COVERED This review provides an update on the safety of lanreotide autogel in treating patients with NETs, through a comprehensive review of clinical trials, post-marketing surveillance, real-world evidence, and its safety profile. Specific adverse events, side effects, and potential risks associated with lanreotide autogel are discussed, along with risk mitigation strategies and recommendations for patient monitoring. EXPERT OPINION The findings highlight the overall safety of lanreotide autogel in managing NETs, focusing on its efficacy in controlling hormone secretion, tumor progression, and symptom management. New safety concerns and precautions are also addressed to help healthcare providers make informed decisions when prescribing lanreotide autogel.
Collapse
Affiliation(s)
- Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Malak Munir
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Omar Syed
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Vidhi Mehta
- Department of Medicine, Mercy Catholic Medical Center, Darby, PA, USA
| | - Ravleen Kaur
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Arathi Kumar
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Archana Sridhar
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Akshit Sood
- Department of Medicine, Navjivan General and Maternity Hospital, Jalandhar, Punjab, India
| | - Rahul Gupta
- Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| |
Collapse
|
5
|
Bhat SZ, Salvatori R. Current role of pasireotide in the treatment of acromegaly. Best Pract Res Clin Endocrinol Metab 2024; 38:101875. [PMID: 38290866 DOI: 10.1016/j.beem.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
"First-generation" somatostatin receptor agonists (SSTRAs) octreotide and lanreotide are the most commonly used first-line pharmacological therapy for patients with acromegaly. A subset of patients respond only partially or not at all to the first-generation SSTRA, necessitating the use of additional pharmacological agents or other modes of therapy. Pasireotide is a "second-generation" SSTRA that has multi-receptor activity. Prospective studies have shown promise in the use of pasireotide in patients with poor response to first-generation SSTRA. Here we elucidate the molecular pathways of resistance to first-generation SSTRA, the mechanism of action, pre-clinical and clinical evidence of the use of pasireotide in patients having incomplete / lack of response to first-generation SSTRA. We also discuss the clinical, pathological, and radiological markers predicting response to pasireotide, and the difference in side-effect profiles of pasireotide, compared to first-generation SSTRA.
Collapse
Affiliation(s)
- Salman Zahoor Bhat
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Tidal Health Endocrinology, Salisbury, MD, USA.
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
MacFarlane J, Korbonits M. Growth hormone receptor antagonist pegvisomant and its role in the medical therapy of growth hormone excess. Best Pract Res Clin Endocrinol Metab 2024; 38:101910. [PMID: 38981769 DOI: 10.1016/j.beem.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pegvisomant is a growth-hormone (GH) receptor antagonist that prevents the formation of the active heterotrimer of the dimerised GH receptor and the GH molecule necessary for downstream signal transduction. Over the past 20 years, it has become a key therapeutic option for physicians treating syndromes of GH/IGF-1 excess. Sufficient longitudinal follow-up data suggest that it can be deemed both safe and effective. It is the drug with the greatest potential for achieving an amelioration of the biochemical effects of GH excess with a corresponding normalisation of IGF-1 levels; however, insufficient dose titration has lessened real-world therapeutic outcomes. Theoretical concerns about stimulating tumour growth have been resolved as this has not been observed, while derangement of liver enzymes and local skin-related adverse reactions may occur in a minority of the patients. It may be a particularly impactful medication for the treatment of children, young people, and those with inherited disorders of GH excess, where other treatment modalities often fail. Combination therapy of pegvisomant with first- and second-generation somatostatin receptor ligands or with dopamine agonists remains an ongoing area of interest and research. High cost remains a barrier to the use of pegvisomant in many settings.
Collapse
Affiliation(s)
- James MacFarlane
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK.
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
7
|
Hofland J, Refardt JC, Feelders RA, Christ E, de Herder WW. Approach to the Patient: Insulinoma. J Clin Endocrinol Metab 2024; 109:1109-1118. [PMID: 37925662 PMCID: PMC10940262 DOI: 10.1210/clinem/dgad641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Insulinomas are hormone-producing pancreatic neuroendocrine neoplasms with an estimated incidence of 1 to 4 cases per million per year. Extrapancreatic insulinomas are extremely rare. Most insulinomas present with the Whipple triad: (1) symptoms, signs, or both consistent with hypoglycemia; (2) a low plasma glucose measured at the time of the symptoms and signs; and (3) relief of symptoms and signs when the glucose is raised to normal. Nonmetastatic insulinomas are nowadays referred to as "indolent" and metastatic insulinomas as "aggressive." The 5-year survival of patients with an indolent insulinoma has been reported to be 94% to 100%; for patients with an aggressive insulinoma, this amounts to 24% to 67%. Five percent to 10% of insulinomas are associated with the multiple endocrine neoplasia type 1 syndrome. Localization of the insulinoma and exclusion or confirmation of metastatic disease by computed tomography is followed by endoscopic ultrasound or magnetic resonance imaging for indolent, localized insulinomas. Glucagon-like peptide 1 receptor positron emission tomography/computed tomography or positron emission tomography/magnetic resonance imaging is a highly sensitive localization technique for seemingly occult, indolent, localized insulinomas. Supportive measures and somatostatin receptor ligands can be used for to control hypoglycemia. For single solitary insulinomas, curative surgical excision remains the treatment of choice. In aggressive malignant cases, debulking procedures, somatostatin receptor ligands, peptide receptor radionuclide therapy, everolimus, sunitinib, and cytotoxic chemotherapy can be valuable options.
Collapse
Affiliation(s)
- Johannes Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Julie C Refardt
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- ENETS Center of Excellence, Division of Endocrinology, Diabetology and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Richard A Feelders
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Emanuel Christ
- ENETS Center of Excellence, Division of Endocrinology, Diabetology and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Wouter W de Herder
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Strosberg JR, Al-Toubah T, El-Haddad G, Reidy Lagunes D, Bodei L. Sequencing of Somatostatin-Receptor-Based Therapies in Neuroendocrine Tumor Patients. J Nucl Med 2024; 65:340-348. [PMID: 38238038 DOI: 10.2967/jnumed.123.265706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 03/03/2024] Open
Abstract
Most well-differentiated neuroendocrine tumors (NETs) express high levels of somatostatin receptors, particularly subtypes 2 and 5. Somatostatin analogs (SSAs) bind to somatostatin receptors and are used for palliation of hormonal syndromes and control of tumor growth. The long-acting SSAs octreotide long-acting release and lanreotide are commonly used in the first-line metastatic setting because of their tolerable side effect profile. Radiolabeled SSAs are used both for imaging and for treatment of NETs. 177Lu-DOTATATE is a β-emitting radiolabeled SSA that has been proven to significantly improve progression-free survival among patients with progressive midgut NETs and is approved for treatment of metastatic gastroenteropancreatic NETs. A key question in management of patients with gastroenteropancreatic and lung NETs is the sequencing of 177Lu-DOTATATE in relation to other systemic treatments (such as everolimus) or liver-directed therapies. This question is particularly complicated given the heterogeneity of NETs and the near absence of randomized trials comparing active treatment options. This state-of-the-art review examines the evidence supporting use of somatostatin-receptor-targeted treatments within the larger landscape of NET therapy and offers insights regarding optimal patient selection, assessment of benefit versus risk, and treatment sequencing.
Collapse
Affiliation(s)
- Jonathan R Strosberg
- Department of GI Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida;
| | - Taymeyah Al-Toubah
- Department of GI Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ghassan El-Haddad
- Department of Radiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Diane Reidy Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Maroufi SF, Sabahi M, Aarabi SS, Samadian M, Dabecco R, Adada B, Arce KM, Borghei-Razavi H. Recurrent acromegaly: a systematic review on therapeutic approaches. BMC Endocr Disord 2024; 24:13. [PMID: 38279102 PMCID: PMC10811946 DOI: 10.1186/s12902-023-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Management of recurrent acromegaly is challenging for both neurosurgeons and endocrinologists. Several treatment options including repeat surgery, medical therapy, and radiation are offered for such patients. The efficacy of these modalities for the treatment of recurrence has not been studied previously in the literature. In this study, we aim to systematically review the existing cases of recurrence and come to a conclusion regarding the appropriate treatment in such cases. METHOD A systematic review was performed through PubMed, Scopus, Web of Science, and Cochrane database to identify studies reporting the treatment outcome of recurrent acromegaly patients. Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, the included studies were reviewed for primary and secondary treatment, complications, and outcomes of the secondary treatment. RESULTS The systematic review retrieved 23 records with 95 cases of recurrent acromegaly. The mean time of recurrence was 4.16 years after the initial treatment. The most common primary treatment was surgery followed by radiotherapy. The remission rate was significantly higher in medical and radiotherapy compared to surgical treatment. CONCLUSION In cases of recurrent acromegaly, the patient may benefit more from radiotherapy and medical therapy compared to surgery. As the quality of evidence is low on this matter feature studies specifically designed for recurrent patients are needed.
Collapse
Affiliation(s)
- Seyed Farzad Maroufi
- Neurosurgery Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, Cleveland Clinic Florida, Weston, Florida, USA
| | - Seyed Sahab Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadian
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rocco Dabecco
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, Cleveland Clinic Florida, Weston, Florida, USA
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, Cleveland Clinic Florida, Weston, Florida, USA
| | - Karla M Arce
- Department of Endocrinology Diabetes and Metabolism, Cleveland Clinic Florida, Weston, Florida, USA
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, Cleveland Clinic Florida, Weston, Florida, USA.
- Department of Neurological Surgery, Pauline Braathen Neurological Centre, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA.
| |
Collapse
|
10
|
Faggiano A. Long-acting somatostatin analogs and well differentiated neuroendocrine tumors: a 20-year-old story. J Endocrinol Invest 2024; 47:35-46. [PMID: 37581846 PMCID: PMC10776682 DOI: 10.1007/s40618-023-02170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE The specific indications of somatostatin analogs (SSAs) in patients with neuroendocrine tumor (NET) emerged over the time. The objective of this review is to summarize and discuss the most relevant data concerning long-acting SSAs in NET. METHODS A narrative review was performed including publications focusing on therapy with the long-acting octreotide, lanreotide, and pasireotide in patients with NET. RESULTS Long-acting SSAs confirm to be a manageable and widely used tool in patients with NET. Both long-acting octreotide and lanreotide are safe as the short-acting formulations, while patient compliance and adherence is further improved. Together with some randomized phase-3 trials, many retrospective and prospective studies have been performed in the last 20 years revealing a variable but substantial impact on progression free survival, not only in gastroenteropancreatic but also in lung and unknown primary NETs. The most frequent tumor response to SSAs is stable disease, but an objective response can be observed, more frequently by using high-dose schedules and in MEN1-related pancreatic NETs. Low tumor burden, low tumor grade (G1 and low G2), good performance status and use as first-line therapy are the main predictive factors to SSAs in NET patients. Pasireotide has been evaluated in few studies. This compound remains a promising SSA and would deserve to be further evaluated as a potential additional indication in NET therapy. CONCLUSIONS Long-acting SSAs are an effective and safe initial therapy of patients with well differentiated NET, allowing tumor growth as well as symptoms control for long-time in selected patients.
Collapse
Affiliation(s)
- A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, ENETS Center of Excellence, Via di Grottarossa 1038, 00189, Rome, Italy.
| |
Collapse
|
11
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Chang CL, Cai Z, Hsu SYT. A gel-forming α-MSH analog promotes lasting melanogenesis. Eur J Pharmacol 2023; 958:176008. [PMID: 37673364 DOI: 10.1016/j.ejphar.2023.176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
The α-MSH peptide plays a significant role in the regulation of pigmentation via the melanocortin 1 receptor (MC1R). It increases the DNA repair capacity of melanocytes and reduces the incidence of skin cancers. As such, α-MSH analogs could have the utility for protecting against UV-induced skin DNA damage in susceptible patients. Recently, α-MSH analogs have been approved for the treatment of erythropoietic protoporphyria, hypoactive sexual desire, or pediatric obesity. However, the delivery of these drugs requires inconvenient implants or frequent injections. We recently found that select palmitoylated melanocortin analogs such as afamelanotide and adrenocorticotropin peptides self-assemble to form liquid gels in situ. To explore the utility of these novel analogs, we studied their pharmacological characteristics in vitro and in vivo. Acylated afamelanotide (DDE 313) and ACTH1-24 (DDE314) analogs form liquid gels at 6-20% and have a significantly increased viscosity at >2.5% compared to original analogs. Using the DDE313 analog as a prototype, we showed gel-formation reduces the passage of DDE313 through Centricon filters, and subcutaneous injection of analog gel in rats leads to the sustained presence of the peptide in circulation for >12 days. In addition, DDE313 darkened the skin of frogs for >4 weeks, whereas those injected with an equivalent dose of afamelanotide lost the tanning response within a few days. Because self-assembled gels allow sustained activation of melanocortin receptors, further studies of these analogs may allow the development of effective and convenient tanning therapies to prophylactically protect against UV-induced malignant transformation of skin cells in susceptible patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, 20878, United States
| | | |
Collapse
|
13
|
Alexander ES, Ziv E. Neuroendocrine Tumors: Genomics and Molecular Biomarkers with a Focus on Metastatic Disease. Cancers (Basel) 2023; 15:cancers15082249. [PMID: 37190177 DOI: 10.3390/cancers15082249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Neuroendocrine tumors (NETs) are considered rare tumors that originate from specialized endocrine cells. Patients often present with metastatic disease at the time of diagnosis, which negatively impacts their quality of life and overall survival. An understanding of the genetic mutations that drive these tumors and the biomarkers used to detect new NET cases is important to identify patients at an earlier disease stage. Elevations in CgA, synaptophysin, and 5-HIAA are most commonly used to identify NETs and assess prognosis; however, new advances in whole genome sequencing and multigenomic blood assays have allowed for a greater understanding of the drivers of NETs and more sensitive and specific tests to diagnose tumors and assess disease response. Treating NET liver metastases is important in managing hormonal or carcinoid symptoms and is imperative to improve patient survival. Treatment for liver-dominant disease is varied; delineating biomarkers that may predict response will allow for better patient stratification.
Collapse
Affiliation(s)
- Erica S Alexander
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Etay Ziv
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
15
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|
16
|
Wang F, Deng Y, Yu L, Zhou A, Wang J, Jia J, Li N, Ding F, Lian W, Liu Q, Yang Y, Lin X. A Macrophage Membrane-Polymer Hybrid Biomimetic Nanoplatform for Therapeutic Delivery of Somatostatin Peptide to Chronic Pancreatitis. Pharmaceutics 2022; 14:pharmaceutics14112341. [PMID: 36365160 PMCID: PMC9698601 DOI: 10.3390/pharmaceutics14112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical translation of therapeutic peptides is generally challenged by multiple issues involving absorption, distribution, metabolism and excretion. In this study, a macrophage membrane-coated poly(lactic-co-glycolic acid) (PLGA) nanodelivery system was developed to enhance the bioavailability of the somatostatin (SST) peptide, which faces the hurdles of short half-life and potential side effects in the treatment of chronic pancreatitis. Using a facile nanoprecipitation strategy, SST was loaded in the nanoparticles with an encapsulation efficiency (EE) and a loading efficiency (LE) of 73.68 ± 3.56% and 1.47 ± 0.07%, respectively. The final formulation of SST-loaded nanoparticles with the camouflage of macrophage membrane (MP-SST) showed a mean diameter of 151 ± 4 nm and an average zeta potential of −29.6 ± 0.3 mV, which were stable long term during storage. With an above 90% cell viability, a hemolysis level of about 2% (<5%) and a preference for being ingested by activated endothelial cells compared to macrophages, the membrane−polymer hybrid nanoparticle showed biocompatibility and targeting capability in vitro. After being intravenously administered to mice with chronic pancreatitis, the MP-SST increased the content of SST in the serum (123.6 ± 13.6 pg/mL) and pancreas (1144.9 ± 206.2 pg/g) compared to the treatment of (Dulbecco’s phosphate-buffered saline) DPBS (61.7 ± 6.0 pg/mL in serum and 740.2 ± 172.4 pg/g in the pancreas). The recovery of SST by MP-SST downregulated the expressions of chronic pancreatitis-related factors and alleviated the histologic severity of the pancreas to the greatest extent compared to other treatment groups. This augmentation of SST therapeutic effects demonstrated the superiority of integrating the synthetic polymer with biological membranes in the design of nanoplatforms for advanced and smart peptide delivery. Other peptides like SST can also be delivered via the membrane−polymer hybrid nanosystem for the treatment of diseases, broadening and promoting the potential clinical applications of peptides as therapeutics.
Collapse
Affiliation(s)
- Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu Deng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Luying Yu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ao Zhou
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jieting Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingyan Jia
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fadian Ding
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Wei Lian
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Qicai Liu
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Juqian Road 185, Changzhou 213000, China
- Correspondence: (Y.Y.); (X.L.)
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (Y.Y.); (X.L.)
| |
Collapse
|
17
|
Raj N, Cruz E, O'Shaughnessy S, Calderon C, Chou JF, Capanu M, Heffernan O, DeMore A, Punn S, Le T, Hauser H, Saltz L, Reidy-Lagunes D. A Randomized Trial Evaluating Patient Experience and Preference Between Octreotide Long-Acting Release and Lanreotide for Treatment of Well-Differentiated Neuroendocrine Tumors. JCO Oncol Pract 2022; 18:e1533-e1541. [PMID: 35724357 PMCID: PMC9509059 DOI: 10.1200/op.22.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 09/03/2023] Open
Abstract
PURPOSE Somatostatin analogs octreotide long-acting release (octLAR) and lanreotide are equally acceptable in National Comprehensive Cancer Network guidelines for neuroendocrine tumors (NETs). Lanreotide is more expensive and given by deep subcutaneous injection, whereas octLAR is given intramuscularly. We evaluated patient preference between these agents in terms of injection site pain. MATERIALS AND METHODS Randomized, single-blinded study. Patients with NETs received injections every 4 weeks. Arm 1: octLAR × 3, then lanreotide × 3; arm 2: reverse order. Self-reported injection site pain scores (range, 0-10) were obtained after each of the first three injections. Primary end point was comparison of mean pain scores over the first three injections. Secondary end points included patient-reported preference. RESULTS Fifty-one patients enrolled (26 in arm 1 and 25 arm 2), all evaluable for primary end point. No significant difference was identified in the mean pain score over the first three injections (2.4 ± 1.9 v 1.9 ± 1.5, P = .5). Thirty-four of 51 (67%) patients (15 in arm 1 and 19 in arm 2) completed post-therapy questionnaires and were evaluable for secondary end points. Seven patients (47%) in arm 1 and eight patients (42%) in arm 2 indicated no drug preference at the end of treatment. In the other 19 patients, more patients indicated mild or strong preference for octLAR over lanreotide. CONCLUSION We found minimal pain with octLAR and lanreotide and no significant pain score differences between the two. Patients indicating a drug preference trended toward favoring octLAR.
Collapse
Affiliation(s)
- Nitya Raj
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | - April DeMore
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sippy Punn
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tiffany Le
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Haley Hauser
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Leonard Saltz
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
18
|
Jensen LR, Maier AD, Lomstein A, Graillon T, Hrachova M, Bota D, Ruiz-Patiño A, Arrieta O, Cardona AF, Rudà R, Furtner J, Roeckle U, Clement P, Preusser M, Scheie D, Broholm H, Kristensen BW, Skjøth-Rasmussen J, Ziebell M, Munch TN, Fugleholm K, Walter MA, Mathiesen T, Mirian C. Somatostatin analogues in treatment-refractory meningioma: a systematic review with meta-analysis of individual patient data. Neurosurg Rev 2022; 45:3067-3081. [PMID: 35984552 DOI: 10.1007/s10143-022-01849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Treatment-refractory meningiomas have a dismal prognosis and limited treatment options. Meningiomas express high-densities of somatostatin receptors (SSTR), thus potentially susceptible to antitumorigenic effects of somatostatin analogues (SSA). Evidence for SSA in meningiomas is scarce, and it is unclear if published literature would either (1) support wider use of SSA, if (2) more evidence is desirable, or if (3) available evidence is sufficient to discard SSA. We addressed the need for more evidence with a systematic review and meta-analysis. We performed an individual patient data (IPD) meta-analysis. Main outcomes were toxicity, best radiological response, progression-free survival, and overall survival. We applied multivariable logistic regression models to estimate the effect of SSA on the probability of obtaining radiological disease control. The predictive performance was evaluated using area under the curve and Brier scores. We included 16 studies and compiled IPD from 8/9 of all previous cohorts. Quality of evidence was overall ranked "very low." Stable disease was reported in 58% of patients as best radiological response. Per 100 mg increase in total SSA dosage, the odds ratios for obtaining radiological disease control was 1.42 (1.11 to 1.81, P = 0.005) and 1.44 (1.00 to 2.08, P = 0.05) for patients treated with SSA as monodrug therapy vs SSA in combination with everolimus, respectively. Low quality of evidence impeded exact quantification of treatment efficacy, and the association between response and treatment may represent reverse causality. Yet, the SSA treatment was well tolerated, and beneficial effect cannot be disqualified. A prospective trial without bias from inconsistent study designs is warranted to assess SSA therapy for well-defined meningioma subgroups.
Collapse
Affiliation(s)
- Lasse Rehné Jensen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Atle Lomstein
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Graillon
- Department of Neurosurgery, Hospital La Timone, Aix Marseille University, APHM, INSERM, MMG, Marseille, France
| | - Maya Hrachova
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma, OK, USA
| | - Daniela Bota
- Department of Neurology, UC Irvine Medical Center, Orange, CA, USA
- Department of Neurological Surgery, UC Irvine Medical Center, Orange, CA, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCaN), Mexico City, México
| | | | - Roberta Rudà
- Department of Neurology, Castelfranco Veneto/Treviso, Treviso, Italy
- Department of Neuro-Oncology, City of Health and Science Hospital and University of Turin, Turin, Italy
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ulrich Roeckle
- Department of Neurology and Brain Tumor Center, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Paul Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Louvain, Belgium
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - David Scheie
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Broholm
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin A Walter
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
- Gesundheitswissenschaften Und Medizin EN, University of Lucerne, Lucerne, Switzerland
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Mirian
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Albarel F, Cuny T, Graillon T, Dufour H, Brue T, Castinetti F. Preoperative Medical Treatment for Patient with Acromegaly: yes or no? J Endocr Soc 2022; 6:bvac114. [PMID: 35965944 PMCID: PMC9368018 DOI: 10.1210/jendso/bvac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 11/19/2022] Open
Abstract
Transsphenoidal surgery is the first-line treatment for acromegaly. However, several factors can modify surgical remission rates, such as the initial hormone levels, the size and invasiveness of the tumor, and the degree of experience of the surgeon. Physicians treating patients with acromegaly should thus consider how to improve surgical remission rates. As stated in recent guidelines, the major point is to consider that any patient with acromegaly should be referred to an expert neurosurgeon to maximize the chances of surgical sure. The benefits of presurgical medical treatment, mainly using somatostatin receptor ligands (SRLs), given 3 to 6 months before surgery, remain controversial. By normalizing growth hormone and insulin-like growth factor 1 levels, SRLs may improve the overall condition of the patient, thus decreasing anesthetic and surgical complications. By decreasing the tumor size and modifying the consistency of the tumor, SRLs might also make surgical excision easier. This is however theoretical as published data are contradictory on both points, and only limited data support the use of a systematical presurgical medical treatment. The aim of this review is to analyze the potential benefits and pitfalls of using presurgical medical treatment in acromegaly in view of the contradictory literature data. We also attempt to determine the profile of patients who might most benefit from this presurgical medical treatment approach as an individualized therapeutic management of acromegaly.
Collapse
Affiliation(s)
- Frederique Albarel
- Aix Marseille Univ, INSERM, MMG, Marseille, France and French Reference Center for rare Pituitary Diseases, Department of Endocrinology, La Conception Hospital , Marseille, France
- Department of Endocrinology, Assistance Publique Hopitaux de Marseille , Marseille, France
| | - Thomas Cuny
- Aix Marseille Univ, INSERM, MMG, Marseille, France and French Reference Center for rare Pituitary Diseases, Department of Endocrinology, La Conception Hospital , Marseille, France
- Department of Endocrinology, Assistance Publique Hopitaux de Marseille , Marseille, France
| | - Thomas Graillon
- Aix Marseille Univ, INSERM, MMG, Marseille, France and French Reference Center for rare Pituitary Diseases, Department of Endocrinology, La Conception Hospital , Marseille, France
- Department of Neurosurgery, Assistance Publique Hopitaux de Marseille , Marseille, France
| | - Henry Dufour
- Aix Marseille Univ, INSERM, MMG, Marseille, France and French Reference Center for rare Pituitary Diseases, Department of Endocrinology, La Conception Hospital , Marseille, France
- Department of Neurosurgery, Assistance Publique Hopitaux de Marseille , Marseille, France
| | - Thierry Brue
- Aix Marseille Univ, INSERM, MMG, Marseille, France and French Reference Center for rare Pituitary Diseases, Department of Endocrinology, La Conception Hospital , Marseille, France
- Department of Endocrinology, Assistance Publique Hopitaux de Marseille , Marseille, France
| | - Frederic Castinetti
- Aix Marseille Univ, INSERM, MMG, Marseille, France and French Reference Center for rare Pituitary Diseases, Department of Endocrinology, La Conception Hospital , Marseille, France
- Department of Endocrinology, Assistance Publique Hopitaux de Marseille , Marseille, France
| |
Collapse
|
20
|
Soulek DK, Mastascusa NJ, Martin ME, Graves SA. Practical Considerations for Implementation of 177Lu-DOTATATE Neuroendocrine Tumor Treatment Programs. J Nucl Med Technol 2022; 50:jnmt.122.263813. [PMID: 35701215 DOI: 10.2967/jnmt.122.263813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The 2018 FDA approval of 177Lu-DOTATATE for the treatment of somatostatin receptor-positive (SSTR) neuroendocrine tumors (NETs) represents a paradigm shifting approach to cancer treatments around the globe. Gastroenteropancreatic (GEP) NETs overexpress the somatostatin subtype receptor 2, which is now exploited for receptor-based imaging and therapy, thus generating significant progress in the diagnosis and treatment of this orphan disease. The recent FDA approval of receptor-based PET radiopharmaceuticals and a new peptide receptor radiopharmaceutical therapy (PRRT), 177Lu-DOTATATE, has dramatically impacted NET patient management. The focus of this paper is to review clinical considerations associated with implementing a 177Lu-DOTATATE program. We review receptor-based NET radiopharmaceuticals, 177Lu-DOTATATE patient selection criteria, administration methods, clinical, regulatory, and radiation safety considerations, technical factors, tissue dosimetry, and reimbursement guidelines.
Collapse
|
21
|
Bo Q, Yang F, Li Y, Meng X, Zhang H, Zhou Y, Ling S, Sun D, Lv P, Liu L, Shi P, Tian C. Structural insights into the activation of somatostatin receptor 2 by cyclic SST analogues. Cell Discov 2022; 8:47. [PMID: 35595746 PMCID: PMC9122944 DOI: 10.1038/s41421-022-00405-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
The endogenous cyclic tetradecapeptide SST14 was reported to stimulate all five somatostatin receptors (SSTR1-5) for hormone release, neurotransmission, cell growth arrest and cancer suppression. Two SST14-derived short cyclic SST analogues (lanreotide or octreotide) with improved stability and longer lifetime were developed as drugs to preferentially activate SSTR2 and treat acromegalia and neuroendocrine tumors. Here, cryo-EM structures of the human SSTR2-Gi complex bound with SST14, octreotide or lanreotide were determined at resolutions of 2.85 Å, 2.97 Å, and 2.87 Å, respectively. Structural and functional analysis revealed that interactions between β-turn residues in SST analogues and transmembrane SSTR2 residues in the ligand-binding pocket are crucial for receptor binding and functional stimulation of the two SST14-derived cyclic octapeptides. Additionally, Q1022.63, N2766.55, and F2947.35 could be responsible for the selectivity of lanreotide or octreotide for SSTR2 over SSTR1 or SSTR4. These results provide valuable insights into further rational development of SST analogue drugs targeting SSTR2.
Collapse
Affiliation(s)
- Qing Bo
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Fan Yang
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingge Li
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianyu Meng
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanhuan Zhang
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingxin Zhou
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglong Ling
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Demeng Sun
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Pei Lv
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Pan Shi
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
| | - Changlin Tian
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
22
|
Vitali E, Palagano E, Schiavone ML, Mantovani G, Sobacchi C, Mazziotti G, Lania A. Direct effects of octreotide on osteoblast cell proliferation and function. J Endocrinol Invest 2022; 45:1045-1057. [PMID: 35020172 DOI: 10.1007/s40618-022-01740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Octreotide (OCT) is a first-generation somatostatin analog (SSA) used in the treatment of acromegaly and neuroendocrine tumors (NETs). In both diseases, OCT interacts with somatostatin receptors 2 and 5 (SSTR2 and SSTR5), inhibiting hormone hypersecretion and cell proliferation. Skeletal health is an important clinical concern in acromegaly and NETs, since acromegalic osteopathy and NET bone metastasis occur in a remarkable number of patients. While OCT's effect on NET and pituitary cells has been extensively investigated, its direct action on bone cells remains unknown. METHODS Here, we investigated OCT direct effects on cell proliferation, differentiation, mineralization, and chemoattractant capacity of murine primary osteoblasts and osteoblast cell line MC3T3-E1. RESULTS OCT inhibited osteoblasts and MC3T3-E1 cell proliferation (- 30 ± 16%, and - 22 ± 4%, both p < 0.05 vs control) and increased MC3T3-E1 cell apoptosis (+ 76 ± 32%, p < 0.05 vs control). The anti-proliferative action of OCT was mediated by SSTR2 and SSTR5 in MC3T3-E1, while its pro-apoptotic effect was abrogated in SSTR2-silenced cells. The analysis of genes related to the early and late phases of osteoblast differentiation showed that OCT did not affect Alp, Runx2, Bglap, Spp1, and Sost levels in MC3T3-E1 cells. Similarly, OCT did not affect ALP activity, mineralization, and osteoclastogenic induction. Finally, Vegfa expression decreased in OCT-treated MC3T3-E1 cells and OCT inhibited pancreatic NET cell migration toward the osteoblast-conditioned medium. CONCLUSION This study provides the first evidence of the direct action of OCT on osteoblasts which may have clinically relevant implications for the management of skeletal health in subjects with acromegaly and metastatic NETs.
Collapse
Affiliation(s)
- E Vitali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - E Palagano
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Via Madonna del Piano-Polo Scientifico CNR 10, 50019, Sesto Fiorentino, FI, Italy
| | - M L Schiavone
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Sobacchi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- National Research Council, Institute of Genetic and Biomedical Research (CNR-IRGB), Via Fantoli 16/15, 20138, Milan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| |
Collapse
|
23
|
Fodi CK, Schittenhelm J, Honegger J, Castaneda-Vega SG, Behling F. The Current Role of Peptide Receptor Radionuclide Therapy in Meningiomas. J Clin Med 2022; 11:jcm11092364. [PMID: 35566491 PMCID: PMC9104797 DOI: 10.3390/jcm11092364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Meningiomas are the most common primary intracranial tumors. The majority of patients can be cured by surgery, or tumor growth can be stabilized by radiation. However, the management of recurrent and more aggressive tumors remains difficult because no established alternative treatment options exist. Therefore, innovative therapeutic approaches are needed. Studies have shown that meningiomas express somatostatin receptors. It is well known from treating neuroendocrine tumors that peptide radioreceptor therapy that targets somatostatin receptors can be effective. As yet, this therapy has been used for treating meningiomas only within individual curative trials. However, small case series and studies have demonstrated stabilization of the disease. Therefore, we see potential for optimizing this therapeutic option through the development of new substances and specific adaptations to the different meningioma subtypes. The current review provides an overview of this topic.
Collapse
Affiliation(s)
- Christina-Katharina Fodi
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Jürgen Honegger
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
| | - Salvador Guillermo Castaneda-Vega
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany;
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Felix Behling
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
- Correspondence: ; Tel.: +49-707129-80235; Fax: +49-707129-4549
| |
Collapse
|
24
|
Grimaldi M, Santoro A, Buonocore M, Crivaro C, Funicello N, Sublimi Saponetti M, Ripoli C, Rodriquez M, De Pasquale S, Bobba F, Ferrazzano L, Cabri W, D’Ursi AM, Ricci A. A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel. Pharmaceutics 2022; 14:pharmaceutics14030681. [PMID: 35336055 PMCID: PMC8954372 DOI: 10.3390/pharmaceutics14030681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
The supramolecular structure in peptides’ prolonged-released gel formulations is the most critical parameter for the determination of the pharmaceutical profile of the drug. Here, we report our investigation on lanreotide Autogel as a case study. For the first time, we describe the use of the pulsed field gradient (PFG) diffusion-ordered spectroscopy (DOSY) magic-angle spinning NMR to characterize the supramolecular self-assembly and molecular mobility of different samples of lanreotide Autogel formulations prepared according to different formulation protocols. The diffusion coefficient was used to calculate the hydrodynamic radii of supramolecular assemblies and build relative molecular models. DOSY data were integrated with NMR imaging (MRI) measurements and atomic force microscopy (AFM) imaging.
Collapse
Affiliation(s)
- Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy; (M.G.); (A.S.); (M.B.); (M.R.)
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy; (M.G.); (A.S.); (M.B.); (M.R.)
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy; (M.G.); (A.S.); (M.B.); (M.R.)
| | - Claudio Crivaro
- Fresenius Kabi iPSUM, Via San Leonardo 23, 45010 Villadose, Italy; (C.C.); (A.R.)
| | - Nicola Funicello
- Department of Physics ‘E.R. Caianiello’ of University and Gruppo Collegato INFN, 84084 Salerno, Italy; (N.F.); (C.R.); (S.D.P.)
| | - Matilde Sublimi Saponetti
- Physics Department and Research Centre for Nanomaterials and Nanotechnology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy; (M.S.S.); (F.B.)
| | - Cristina Ripoli
- Department of Physics ‘E.R. Caianiello’ of University and Gruppo Collegato INFN, 84084 Salerno, Italy; (N.F.); (C.R.); (S.D.P.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy; (M.G.); (A.S.); (M.B.); (M.R.)
| | - Salvatore De Pasquale
- Department of Physics ‘E.R. Caianiello’ of University and Gruppo Collegato INFN, 84084 Salerno, Italy; (N.F.); (C.R.); (S.D.P.)
| | - Fabrizio Bobba
- Physics Department and Research Centre for Nanomaterials and Nanotechnology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy; (M.S.S.); (F.B.)
| | - Lucia Ferrazzano
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| | - Walter Cabri
- Fresenius Kabi iPSUM, Via San Leonardo 23, 45010 Villadose, Italy; (C.C.); (A.R.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
- Correspondence: (W.C.); (A.M.D.); Tel.: +39-08996-9748 (A.M.D.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy; (M.G.); (A.S.); (M.B.); (M.R.)
- Correspondence: (W.C.); (A.M.D.); Tel.: +39-08996-9748 (A.M.D.)
| | - Antonio Ricci
- Fresenius Kabi iPSUM, Via San Leonardo 23, 45010 Villadose, Italy; (C.C.); (A.R.)
| |
Collapse
|
25
|
Gosain R, Gupta M, Roy AM, Strosberg J, Glaser KM, Iyer R. Health-Related Quality of Life (HRQoL) in Neuroendocrine Tumors: A Systematic Review. Cancers (Basel) 2022; 14:1428. [PMID: 35326587 PMCID: PMC8946839 DOI: 10.3390/cancers14061428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
Therapeutic advancements in neuroendocrine tumors (NETs) have improved survival outcomes. This study aims to review the impact of the current therapeutics on health-related quality of life (HRQoL) in NET patients. A literature review was performed utilizing PubMed, The Cochrane Library, and EMBASE, using the keywords "Carcinoid", "Neuroendocrine tumor", "NET", "Quality of life", "Chemotherapy", "Chemoembolization", "Radiofrequency ablation", "Peptide receptor radionucleotide therapy", "PRRT", "Surgery", "Everolimus", "Octreotide", "Lanreotide", "Sunitinib", and "Somatostatin analog". Letters, editorials, narrative reviews, case reports, and studies not in English were excluded. Out of 2375 publications, 61 studies met our inclusion criteria. The commonly used instruments were EORTC QLQ-C30, FACT G, and EORTC- QLQ GI.NET-21. HRQoL was assessed in all pivotal trials that led to approvals of systemic therapies. All systemic therapies showed no worsening in HRQoL. The NETTER-1 study was the only study to show a statistically significant improvement in HRQoL in several domains. The trial examining sunitinib versus placebo in pancreatic NETs showed no change in QoL, except for worsening of diarrhea. In addition to clinical outcomes, patient-reported outcomes are a key element in making appropriate treatment decisions. HRQoL data should be readily provided to patients to assist in shared decision-making.
Collapse
Affiliation(s)
- Rohit Gosain
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, UPMC Chautauqua Hospital, Jamestown, NY 14701, USA;
| | - Medhavi Gupta
- Program in Women’s Oncology, Women and Infants Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02912, USA;
| | - Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Jonathan Strosberg
- Department of Gastro Intestinal Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA;
| | - Kathryn M. Glaser
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
26
|
Andre A, Squittieri N, Patil S. Evaluating Use of the Octreotide Acetate Pen Injector in a Summative Human Factors Validation Study. Endocr Pract 2022; 28:414-419. [PMID: 35123070 DOI: 10.1016/j.eprac.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Subcutaneous injections of octreotide acetate require chronic administration by healthcare providers (HCPs). We aimed to validate the safe and effective use of the octreotide acetate pen injector, its labelling, and instructions for use (IFU) by patients, caregivers, and HCPs and mitigation of use-related risks. METHODS This summative human factors validation study enrolled adults with neuroendocrine tumors and related diarrhea or flushing, adult caregivers, and HCPs. Prior to simulated use, participants self-familiarized as they desired. Each participant was assigned 1 injection site for administration into an injection pad. The first of 2 unaided injections assessed first use and required priming; the second assessed routine use and dose change. Participants gave subjective feedback after each injection and completed knowledge probes and reading comprehension questions after the second injection. RESULTS The study enrolled 45 participants (15/group). Forty-two participants completed the first injection successfully by administering the dose correctly. Three participants did not successfully dose; 3 failed to prime the pen and 1 also failed to dial the correct dose. Unrelated to dosing, 2 participants failed to remove the needle after injection. Forty-four participants completed the second injection-1 participant failed to dial the correct dose. No other errors were observed. Overall success rates on knowledge probes and reading comprehension questions were 99.1% and 99.6%, respectively. All participants found the IFU easy to follow and understand. CONCLUSION The octreotide acetate pen injector, labelling, and IFU enabled intended users to administer subcutaneous octreotide safely and effectively. The residual risks of use are low and acceptable.
Collapse
Affiliation(s)
- Anthony Andre
- Founding Principal, Interface Analysis Associates, Saratoga, CA, USA.
| | | | - Satyashodhan Patil
- Device Development, Sun Pharmaceutical Industries Ltd., Tandalja, Gujarat, India
| |
Collapse
|
27
|
Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. Int J Mol Sci 2022; 23:ijms23031143. [PMID: 35163067 PMCID: PMC8835306 DOI: 10.3390/ijms23031143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed. In this context, the truncated splicing variant of the somatostatin receptor subtype 5 (sst5TMD4), which is produced by aberrant alternative splicing, has been demonstrated to be overexpressed and associated with increased aggressiveness features in several tumors. However, the presence, functional role, and associated molecular mechanisms of sst5TMD4 in GBM have not been yet explored. Therefore, we performed a comprehensive analysis to characterize the expression and pathophysiological role of sst5TMD4 in human GBM. sst5TMD4 was significantly overexpressed (at mRNA and protein levels) in human GBM tissue compared to non-tumor (control) brain tissue. Remarkably, sst5TMD4 expression was significantly associated with poor overall survival and recurrent tumors in GBM patients. Moreover, in vitro sst5TMD4 overexpression (by specific plasmid) increased, whereas sst5TMD4 silencing (by specific siRNA) decreased, key malignant features (i.e., proliferation and migration capacity) of GBM cells (U-87 MG/U-118 MG models). Furthermore, sst5TMD4 overexpression in GBM cells altered the activity of multiple key signaling pathways associated with tumor aggressiveness/progression (AKT/JAK-STAT/NF-κB/TGF-β), and its silencing sensitized GBM cells to the antitumor effect of pasireotide (a somatostatin analog). Altogether, these results demonstrate that sst5TMD4 is overexpressed and associated with enhanced malignancy features in human GBMs and reveal its potential utility as a novel diagnostic/prognostic biomarker and putative therapeutic target in GBMs.
Collapse
|
28
|
Somatostatin analogue pasireotide (SOM230) inhibits catecholamine secretion in human pheochromocytoma cells. Cancer Lett 2022; 524:232-244. [PMID: 34637845 DOI: 10.1016/j.canlet.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Increasingly common, neuroendocrine tumors (NETs) are regarded nowadays as neoplasms potentially causing debilitating symptoms and life-threatening medical conditions. Pheochromocytoma is a NET that develops from chromaffin cells of the adrenal medulla, and is responsible for an excessive secretion of catecholamines. Consequently, patients have an increased risk for clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Somatostatin analogues are among the main anti-secretory medical drugs used in current clinical practice in patients with NETs. However, their impact on pheochromocytoma-associated catecholamine hypersecretion remains incompletely explored. This study investigated the potential efficacy of octreotide and pasireotide (SOM230) on human tumor cells directly cultured from freshly resected pheochromocytomas using an implemented catecholamine secretion measurement by carbon fiber amperometry. SOM230 treatment efficiently inhibited nicotine-induced catecholamine secretion both in bovine chromaffin cells and in human tumor cells whereas octreotide had no effect. Moreover, SOM230 specifically decreased the number of exocytic events by impairing the stimulation-evoked calcium influx as well as the nicotinic receptor-activated inward current in human pheochromocytoma cells. Altogether, our findings indicate that SOM230 acts as an inhibitor of catecholamine secretion through a mechanism involving the nicotinic receptor and might be considered as a potential anti-secretory treatment for patients with pheochromocytoma.
Collapse
|
29
|
Pedraza-Arevalo S, Ibáñez-Costa A, Blázquez-Encinas R, Branco MR, Vázquez-Borrego MC, Herrera-Martínez AD, Venegas-Moreno E, Serrano-Blanch R, Arjona-Sánchez Á, Gálvez-Moreno MA, Korbonits M, Soto-Moreno A, Gahete MD, Charalambous M, Luque RM, Castaño JP. Epigenetic and post-transcriptional regulation of somatostatin receptor subtype 5 (SST 5 ) in pituitary and pancreatic neuroendocrine tumors. Mol Oncol 2021; 16:764-779. [PMID: 34601790 PMCID: PMC8807362 DOI: 10.1002/1878-0261.13107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Somatostatin receptor subtype 5 (SST5) is an emerging biomarker and actionable target in pituitary (PitNETs) and pancreatic (PanNETs) neuroendocrine tumors. Transcriptional and epigenetic regulation of SSTR5 gene expression and mRNA biogenesis is poorly understood. Recently, an overlapping natural antisense transcript, SSTR5‐AS1, potentially regulating SSTR5 expression, was identified. We aimed to elucidate whether epigenetic processes contribute to the regulation of SSTR5 expression in PitNETs (somatotropinomas) and PanNETs. We analyzed the SSTR5/SSTR5‐AS1 human locus in silico to identify CpG islands. SSTR5 and SSTR5‐AS1 expression was assessed by quantitative real‐time PCR (qPCR) in 27 somatotropinomas, 11 normal pituitaries (NPs), and 15 PanNETs/paired adjacent (control) samples. We evaluated methylation grade in four CpG islands in the SSTR5/SSTR5‐AS1 genes. Results revealed that SSTR5 and SSTR5‐AS1 were directly correlated in NP, somatotropinoma, and PanNET samples. Interestingly, selected CpG islands were differentially methylated in somatotropinomas compared with NPs. In PanNETs cell lines, SSTR5‐AS1 silencing downregulated SSTR5 expression, altered aggressiveness features, and influenced pasireotide response. These results provide evidence that SSTR5 expression in PitNETs and PanNETs can be epigenetically regulated by the SSTR5‐AS1 antisense transcript and, indirectly, by DNA methylation, which may thereby impact tumor behavior and treatment response.
Collapse
Affiliation(s)
- Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Miguel R Branco
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Raquel Serrano-Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Álvaro Arjona-Sánchez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Marta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Marika Charalambous
- Developmental Epigenetics group, Department of Medical and Molecular Genetics, King's College of London, London, UK
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
30
|
Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms. ANALYTICA 2021. [DOI: 10.3390/analytica2040012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Octreotide is a synthetic cyclic octapeptide analogue of somatostatin-14. It is mainly administered for the treatment of acromegaly, severe diarrhea, and neuroendocrine neoplasias. In this work, a hydrophilic interaction liquid chromatography (HILIC) method with fluorescence (FL) detection was developed and validated for the quantitation of octreotide in solutions for injection. Chromatographic separation was performed on an XBridge®-HILIC analytical column under isocratic elution with a short chromatographic run time of less than 10 min. The mobile phase consisted of ammonium bicarbonate 8.6 mM (pH 8.1)/acetonitrile 35/65 (v/v). The high sensitivity and selectivity of the fluorescence detection, with the excitation wavelength (λexcitation) set at 280 nm and the emission wavelength set at (λemission) 330 nm, enabled a simple sample preparation procedure that included only dilution steps. The calibration curve showed good linearity with a correlation coefficient greater than 0.998. The method was successfully applied to the analysis of commercially available octreotide injection forms.
Collapse
|
31
|
Differences in the expression of SSTR1-5 in meningiomas and its therapeutic potential. Neurosurg Rev 2021; 45:467-478. [PMID: 33899156 PMCID: PMC8827401 DOI: 10.1007/s10143-021-01552-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/15/2021] [Indexed: 12/05/2022]
Abstract
Beyond microsurgical resection and radiation therapy, there are currently no established treatment alternatives for meningioma patients. In selected cases, peptide radio receptor therapy (PRRT) can be implemented. For this purpose, a radionuclide is bound to a substance targeting specific receptors in meningiomas. One of them is somatostatin receptor 2, which can be found in most meningiomas. However, other somatostatin receptors (SSTR) exist, but their expressions have only been described in small case series. In this study, we analyzed the expression of SSTR1, 2A, 3, 4, and 5 in a large cohort of meningiomas in order to enable further refinement of this innovative treatment option. Overall, 726 tumor samples were processed into tissue microarrays and stained for SSTR1, 2A, 3, 4, and 5 immunohistochemically. Microscopic evaluation was done with an established semiquantitative score regarding percentual quantification and staining intensity, and results were correlated with clinical data. There was a significant lower rate of SSTR1 expression in meningiomas of male patients. Older age was associated with higher expression of SSTR1, 2A, and 5 and lower scores for SSTR3 and 4. Tumors treated with radiotherapy before resection showed lower rates of SSTR1 and 5 expression, while recurrent meningiomas had lower SSTR1 scores. Tumor tissue from patients suffering from neurofibromatosis type 2 had lower expression scores for SSTR1, 2, and 5. For SSTR3 and 4, NF2 patients showed higher scores than sporadic tumors. Spinal meningiomas had higher scores for SSTR1, 4, and 5 compared tumor location of the skull base and convexity/falx. Overall, higher WHO grade was associated with lower SSTR scores. While all SSTRs were expressed, there are marked differences of SSTR expression between meningioma subgroups. This has the potential to drive the development of more selective PRRT substances with higher treatment efficacy.
Collapse
|
32
|
Large Scale Molecular Studies of Pituitary Neuroendocrine Tumors: Novel Markers, Mechanisms and Translational Perspectives. Cancers (Basel) 2021; 13:cancers13061395. [PMID: 33808624 PMCID: PMC8003417 DOI: 10.3390/cancers13061395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pituitary neuroendocrine tumors are non-cancerous tumors of the pituitary gland, that may overproduce hormones leading to serious health conditions or due to tumor size cause chronic headache, vertigo or visual impairment. In recent years pituitary neuroendocrine tumors are studied with the latest molecular biology methods that simultaneously investigate a large number of factors to understand the mechanisms of how these tumors develop and how they could be diagnosed or treated. In this review article, we have studied literature reports, compiled information and described molecular factors that could affect the development and clinical characteristics of pituitary neuroendocrine tumors, discovered factors that overlap between several studies using large scale molecular analysis and interpreted the potential involvement of these factors in pituitary tumor development. Overall, this study provides a valuable resource for understanding the biology of pituitary neuroendocrine tumors. Abstract Pituitary neuroendocrine tumors (PitNETs) are non-metastatic neoplasms of the pituitary, which overproduce hormones leading to systemic disorders, or tumor mass effects causing headaches, vertigo or visual impairment. Recently, PitNETs have been investigated in large scale (exome and genome) molecular analyses (transcriptome microarrays and sequencing), to uncover novel markers. We performed a literature analysis on these studies to summarize the research data and extrapolate overlapping gene candidates, biomarkers, and molecular mechanisms. We observed a tendency in samples with driver mutations (GNAS, USP8) to have a smaller overall mutational rate, suggesting driver-promoted tumorigenesis, potentially changing transcriptome profiles in tumors. However, direct links from drivers to signaling pathways altered in PitNETs (Notch, Wnt, TGF-β, and cell cycle regulators) require further investigation. Modern technologies have also identified circulating nucleic acids, and pinpointed these as novel PitNET markers, i.e., miR-143-3p, miR-16-5p, miR-145-5p, and let-7g-5p, therefore these molecules must be investigated in the future translational studies. Overall, large-scale molecular studies have provided key insight into the molecular mechanisms behind PitNET pathogenesis, highlighting previously reported molecular markers, bringing new candidates into the research field, and reapplying traditional perspectives to newly discovered molecular mechanisms.
Collapse
|
33
|
Shamsi BH, Chatoo M, Xu XK, Xu X, Chen XQ. Versatile Functions of Somatostatin and Somatostatin Receptors in the Gastrointestinal System. Front Endocrinol (Lausanne) 2021; 12:652363. [PMID: 33796080 PMCID: PMC8009181 DOI: 10.3389/fendo.2021.652363] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Somatostatin (SST) and somatostatin receptors (SSTRs) play an important role in the brain and gastrointestinal (GI) system. SST is produced in various organs and cells, and the inhibitory function of somatostatin-containing cells is involved in a range of physiological functions and pathological modifications. The GI system is the largest endocrine organ for digestion and absorption, SST-endocrine cells and neurons in the GI system are a critical effecter to maintain homeostasis via SSTRs 1-5 and co-receptors, while SST-SSTRs are involved in chemo-sensory, mucus, and hormone secretion, motility, inflammation response, itch, and pain via the autocrine, paracrine, endocrine, and exoendocrine pathways. It is also a power inhibitor for tumor cell proliferation, severe inflammation, and post-operation complications, and is a first-line anti-cancer drug in clinical practice. This mini review focuses on the current function of producing SST endocrine cells and local neurons SST-SSTRs in the GI system, discusses new development prognostic markers, phosphate-specific antibodies, and molecular imaging emerging in diagnostics and therapy, and summarizes the mechanism of the SST family in basic research and clinical practice. Understanding of endocrines and neuroendocrines in SST-SSTRs in GI will provide an insight into advanced medicine in basic and clinical research.
Collapse
Affiliation(s)
- Bilal Haider Shamsi
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Mahanand Chatoo
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xiao Kang Xu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xun Xu
- College of Renji, Wenzhou Medical University, Wenzhou, China
| | - Xue Qun Chen
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
- National Health Commission (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Ministry of Education (MOE), Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue Qun Chen,
| |
Collapse
|
34
|
Haris B, Saraswathi S, Hussain K. Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia. Ther Adv Endocrinol Metab 2020; 11:2042018820965068. [PMID: 33329885 PMCID: PMC7720331 DOI: 10.1177/2042018820965068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023] Open
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is a biochemical finding of low blood glucose levels due to the dysregulation of insulin secretion from pancreatic β-cells. Under normal physiological conditions, glucose metabolism is coupled to β-cell insulin secretion so that blood glucose levels are maintained within the physiological range of 3.5-5.5 mmol/L. However, in HH this coupling of glucose metabolism to insulin secretion is perturbed so that insulin secretion becomes unregulated. HH typically occurs in the neonatal, infancy and childhood periods and can be due to many different causes. Adults can also present with HH but the causes in adults tend to be different. Somatostatin (SST) is a peptide hormone that is released by the delta cells (δ-cells) in the pancreas. It binds to G protein-coupled SST receptors to regulate a variety of location-specific and selective functions such as hormone inhibition, neurotransmission and cell proliferation. SST plays a potent role in the regulation of both insulin and glucagon secretion in response to changes in glucose levels by negative feedback mechanism. The half-life of SST is only 1-3 min due to quick degradation by peptidases in plasma and tissues. Thus, a direct continuous intravenous or subcutaneous infusion is required to achieve the therapeutic effect. These limitations prompted the discovery of SST analogues such as octreotide and lanreotide, which have longer half-lives and therefore can be administered as injections. SST analogues are used to treat different forms of HH in children and adults and therapeutic effect is achieved by suppressing insulin secretion from pancreatic β-cells by complex mechanisms. These treatments are associated with several side effects, especially in the newborn period, with necrotizing enterocolitis being the most serious side effect and hence SS analogues should be used with extreme caution in this age group.
Collapse
Affiliation(s)
- Basma Haris
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Professor of Paediatrics, Weill Cornell Medicine-Qatar, Division Chief – Endocrinology, Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, OPC, C6-340 |PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar
| |
Collapse
|
35
|
Gatto F, Arvigo M, Ferone D. Somatostatin receptor expression and patients' response to targeted medical treatment in pituitary tumors: evidences and controversies. J Endocrinol Invest 2020; 43:1543-1553. [PMID: 32557353 DOI: 10.1007/s40618-020-01335-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Somatostatin receptors (SSTs) are widely co-expressed in pituitary tumors. SST2 and SST5 are the most represented SST subtypes. First-generation somatostatin receptor ligands (SRLs) mainly target SST2, while pasireotide, a multi-receptor ligand, shows high binding affinity for both SST5 and SST2. Therefore, SRLs are routinely used as medical treatment for GH-, TSH-, and ACTH-secreting pituitary tumors. METHODS Critical revision of literature data correlating SST expression with patients' response to SRLs. RESULTS SST2 expression in somatroph tumors directly correlates with GH and IGF-1 decrease after first-generation SRL treatment. SST2 immunohistochemistry represents a valuable tool to predict biochemical response to first-generation SRLs in acromegalic patients. Pasireotide seems to exert its biological effects via SST2 in unselected patients. However, in those subjects resistant to first-generation SRLs, harbouring tumors with negligible SST2 expression, pasireotide can act throughout SST5. More than somatotroph tumors, TSH-omas represent the paradigm of tumors showing a satisfactory response to SRLs. This is probably due to the high SST2 expression observed in nearly 100% of cases, as well as to the balanced amount of SST5. In corticotroph tumors, pasireotide mainly act via SST5, although there is a need for translational studies correlating its efficacy with SST expression in this peculiar tumor histotype. CONCLUSIONS The assumption "more target receptor, more drug efficacy" is not straightforward for SRLs. The complex pathophysiology of SSTs, and the technical challenges faced to translate research findings into clinical practice, still need our full commitment to make receptor evaluation a worthwhile procedure for individualizing treatment decisions.
Collapse
Affiliation(s)
- F Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, 16132, Genoa, Italy.
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - M Arvigo
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - D Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, 16132, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
36
|
Costanzi E, Simioni C, Conti I, Laface I, Varano G, Brenna C, Neri LM. Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives. J Cell Physiol 2020; 236:2505-2518. [PMID: 32989768 DOI: 10.1002/jcp.30062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that G protein-coupled receptors (GPCRs), the largest signal-conveying receptor family, are targets for mutations occurring frequently in different cancer types. GPCR alterations associated with cancer development represent significant challenges for the discovery and the advancement of targeted therapeutics. Among the different molecules that can activate GPCRs, we focused on two molecules that exert their biological actions regulating many typical features of tumorigenesis such as cellular proliferation, survival, and invasion: somatostatin and melatonin. The modulation of signaling pathways, that involves these two molecules, opens an interesting scenario for cancer therapy, with the opportunity to act at different molecular levels. Therefore, the aim of this review is the analysis of the biological activity and the therapeutic potential of somatostatin and melatonin, displaying a high affinity for GPCRs, that interfere with cancer development and maintenance.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
37
|
Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules 2020; 25:4012. [PMID: 32887456 PMCID: PMC7504749 DOI: 10.3390/molecules25174012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways. Interestingly, the expression of SSTRs is significantly enhanced in many solid tumors, especially gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). Thus, somatostatin analogs (SSAs) have been developed to improve the stability of the endogenous ligand and so extend its half-life. Radiolabeled analogs have been developed with several radioelements such as indium-111, technetium-99 m, and recently gallium-68, fluorine-18, and copper-64, to visualize the distribution of receptor overexpression in tumors. Internal metabolic radiotherapy is also used as a therapeutic strategy (e.g., using yttrium-90, lutetium-177, and actinium-225). With some radiopharmaceuticals now used in clinical practice, somatostatin analogs developed for imaging and therapy are an example of the concept of personalized medicine with a theranostic approach. Here, we review the development of these analogs, from the well-established and authorized ones to the most recently developed radiotracers, which have better pharmacokinetic properties and demonstrate increased efficacy and safety, as well as the search for new clinical indications.
Collapse
Affiliation(s)
- Romain Eychenne
- UPS, CNRS, SPCMIB (Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique)—UMR 5068, Université de Toulouse, F-31062 Toulouse, France; (R.E.); (E.B.)
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint Herblain, France;
- CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Inserm, Université de Nantes, F-44000 Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis, Rennes, F-35000, France;
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Mickael Bourgeois
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint Herblain, France;
- CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Inserm, Université de Nantes, F-44000 Nantes, France
| | - Pascal Loyer
- INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Inserm, Univ Rennes, F-35000 Rennes, France;
| | - Eric Benoist
- UPS, CNRS, SPCMIB (Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique)—UMR 5068, Université de Toulouse, F-31062 Toulouse, France; (R.E.); (E.B.)
| | - Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, F-35000, France;
- INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Inserm, Univ Rennes, F-35000 Rennes, France;
| |
Collapse
|
38
|
Shi C, Ye Z, Han J, Ye X, Lu W, Ji C, Li Z, Ma Z, Zhang Q, Zhang Y, He W, Chen Z, Cao X, Shou X, Zhou X, Wang Y, Zhang Z, Li Y, Ye H, He M, Chen H, Cheng H, Sun J, Cai J, Huang C, Ye F, Luo C, Zhou B, Ding H, Zhao Y. BRD4 as a therapeutic target for nonfunctioning and growth hormone pituitary adenoma. Neuro Oncol 2020; 22:1114-1125. [PMID: 32246150 PMCID: PMC7594556 DOI: 10.1093/neuonc/noaa084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonfunctioning pituitary adenoma (NFPA) and growth hormone pituitary adenoma (GHPA) are major subtypes of pituitary adenomas (PAs). The primary treatment is surgical resection. However, radical excision remains challenging, and few effective medical therapies are available. It is urgent to find novel targets for the treatment. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that leads to aberrant transcriptional activation of oncogenes. Herein, we investigated the pathological role of BRD4 and evaluated the effectiveness of BRD4 inhibitors in the treatment of NFPA and GHPA. METHODS The expression of BRD4 was detected in NFPA, GHPA, and normal pituitary tissues. The efficacies of BRD4 inhibitors were evaluated in GH3 and MMQ cell lines, patient-derived tumor cells, and in vivo mouse xenograft models of PA. Standard western blots, real-time PCR, and flow cytometry experiments were performed to investigate the effect of BRD4 inhibitors on cell cycle progression, apoptosis, and the expression patterns of downstream genes. RESULTS Immunohistochemistry studies demonstrated the overexpression of BRD4 in NFPA and GHPA. In vitro and in vivo studies showed that treatment with the BRD4 inhibitor ZBC-260 significantly inhibited the proliferation of PA cells. Further mechanistic studies revealed that ZBC-260 could downregulate the expression of c-Myc, B-cell lymphoma 2 (Bcl2), and related genes, which are vital factors in pituitary tumorigenesis. CONCLUSION In this study, we determined the overexpression of BRD4 in NFPA and GHPA and assessed the effects of BRD4 inhibitors on PA cells in vitro and in vivo. Our findings suggest that BRD4 is a promising therapeutic target for NFPA and GHPA.
Collapse
Affiliation(s)
- Chengzhang Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Jie Han
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Ye
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenchao Lu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zizhou Li
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengyi Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Wenqiang He
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zhengyuan Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Xiaoyun Cao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Xuefei Shou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Zhaoyun Zhang
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Li
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongying Ye
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min He
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Chen
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haixia Cheng
- Shanghai Pituitary Tumor Center, Shanghai, China
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Sun
- Department of Neurosurgery, Central Hospital of Wenzhou, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianyong Cai
- Department of Neurosurgery, Central Hospital of Wenzhou, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhou
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ding
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Liu H, Xie R, Zhao Z, Xu D, Yang K, Ding M, Tan D, Liao W, Han X, Zhang J, Shen D, Yuan J, Xu Z, Fei J. An 11-year retrospective study: clinicopathological and survival analysis of gastro-entero-pancreatic neuroendocrine neoplasm. Medicine (Baltimore) 2020; 99:e21682. [PMID: 32872039 PMCID: PMC7437823 DOI: 10.1097/md.0000000000021682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/02/2022] Open
Abstract
To investigate the clinicopathological characteristics and relevant prognostic factors of gastro-entero-pancreatic neuroendocrine neoplasm (GEP-NEN), to improve our understanding of GEP-NEN.This was a retrospective analysis of 155 patients (average age 53.7 ± 13.6 years) pathologically diagnosed with GEP-NEN. We analyzed the clinicopathological characteristics, treatment, and prognostic factors of GEP-NEN.The most common primary site was the pancreas (41.9%), followed by the rectum, stomach and duodenum. Most cases were nonfunctional GEP-NENs (149/155) with nonspecific symptoms. TNM stage and histological grade were determined by the latest criteria. Surgical resection was the mainstay of treatment in 150 patients, and 22 patients received chemotherapy under different circumstances. A total of 130 patients were followed up for a median of 44 months, and 1-year and 3-year survival rates were 82.3% and 72.3%, respectively. According to univariate and multivariate analysis, incidental diagnosis, maximum tumor diameter, tumor stage, lymph node and distant metastasis, TNM stage, and histological grade were significantly correlated with overall survival, but histological grade was the only factor confirmed as an independent prognostic factor for long-term survival of GEP-NEN.GEP-NEN, with an increasing trend in incidence, occurred most frequently in the pancreas. Nonfunctional tumors with nonspecific symptoms comprised the majority of cases. The main treatment was surgical resection. Histological grade was confirmed as the only independent prognostic factor.
Collapse
Affiliation(s)
- Hua Liu
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
- Department of Surgery, Luwan Branch, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Zhao
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| | - Dan Xu
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| | - Kaige Yang
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| | - Min Ding
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| | - Dan Tan
- Department of Surgery, Luwan Branch, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Liao
- Department of Surgery, Luwan Branch, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xujie Han
- Department of Surgery, Luwan Branch, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| | - Dongjie Shen
- Department of Surgery, Luwan Branch, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Yuan
- Department of Surgery, Luwan Branch, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University, School of Medicine
| |
Collapse
|
40
|
Polowczyk B, Kałużny M, Bolanowski M. Somatostatin analogues in the therapy of neuroendocrine tumors: Indications, contraindications, side-effects. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.3056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The presence of somatostatin receptors (SSTRs) is crucial in planning the therapy of patients with neuroendocrine tumors. This applies especially to patients in whom surgery has proven unsuccessful or there are contraindications for it. Increased SSTR expression has been observed in many cancers originating in the neuroendocrine system. Among them we distinguish anterior pituitary adenomas producing GH in excess and leading to the development of acromegaly, adenocorticotropic adenomas that autonomously synthesize ACTH, which leads to the development of ACTH-dependent Cushing’s syndrome (Cushing’s disease), as well as
adenomas of the anterior pituitary from thyrotropic cells. Rich expression of these receptors
has been confirmed in epithelial tumors of neuroendocrine origin in the gastrointestinal
tract, pancreas and lungs. Somatostatin analogues, also called somatostatin receptor ligands,
are effective in symptomatic therapy; they enable disease control, exhibit anti-proliferative
effects and allow hormonal balance, which reduces mortality among patients and improves
their quality of life. The antitumor effect of somatostatin analogues has been proven in in
vitro and in vivo studies. In therapy they are usually well tolerated and safe. For many years,
somatostatin analogues have maintained an important place in the treatment of neuroendocrine
tumors and are still the subject of many studies. The aim of the study is to analyze,
based on available literature, therapeutic indications for the use of somatostatin analogues,
taking into account contraindications for therapy and its possible side effects.
Collapse
Affiliation(s)
- Beata Polowczyk
- Katedra i Klinika Endokrynologii, Diabetologii i Leczenia Izotopami, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| | - Marcin Kałużny
- Katedra i Klinika Endokrynologii, Diabetologii i Leczenia Izotopami, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| | - Marek Bolanowski
- Katedra i Klinika Endokrynologii, Diabetologii i Leczenia Izotopami, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
| |
Collapse
|
41
|
Colao A, Bronstein MD, Brue T, De Marinis L, Fleseriu M, Guitelman M, Raverot G, Shimon I, Fleck J, Gupta P, Pedroncelli AM, Gadelha MR. Pasireotide for acromegaly: long-term outcomes from an extension to the Phase III PAOLA study. Eur J Endocrinol 2020; 182:583. [PMID: 32217809 PMCID: PMC7222286 DOI: 10.1530/eje-19-0762] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In the Phase III PAOLA study (clinicaltrials.gov: NCT01137682), enrolled patients had uncontrolled acromegaly despite ≥6 months of octreotide/lanreotide treatment before study start. More patients achieved biochemical control with long-acting pasireotide versus continued treatment with octreotide/lanreotide (active control) at month 6. The current work assessed the extent of comorbidities at baseline and outcomes during a long-term extension. DESIGN/METHODS Patients receiving pasireotide 40 or 60 mg at core study end could continue on the same dose in an extension phase if biochemically controlled or receive pasireotide 60 mg if uncontrolled. Uncontrolled patients on active control were switched to pasireotide 40 mg, with the dose increased at week 16 of the extension if still uncontrolled (crossover group). Efficacy and safety are reported to 304 weeks (~5.8 years) for patients randomized to pasireotide (core + extension), and 268 weeks for patients in the crossover group (extension only). RESULTS Almost half (49.5%; 98/198) of patients had ≥3 comorbidities at core baseline. During the extension, 173 patients received pasireotide. Pasireotide effectively and consistently reduced GH and IGF-I levels for up to 5.8 years' treatment; 37.0% of patients achieved GH <1.0 µg/L and normal IGF-I at some point during the core or extension. Improvements were observed in key symptoms. The long-term safety profile was similar to that in the core study; 23/173 patients discontinued treatment because of adverse events. CONCLUSIONS In this patient population with a high burden of comorbid illness, pasireotide was well tolerated and efficacious, providing prolonged maintenance of biochemical control and improving symptoms.
Collapse
Affiliation(s)
- Annamaria Colao
- Università Federico II di Napoli, Naples, Italy
- Correspondence should be addressed to A Colao;
| | | | - Thierry Brue
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale INSERM U1251, Marseille Medical Genetics and Assistance Publique Hôpitaux de Marseille (APHM), Hôpital de la Conception, Marseille, France
| | | | - Maria Fleseriu
- Northwest Pituitary Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Mirtha Guitelman
- Endocrinology Division, Carlos G Durand Hospital, Buenos Aires, Argentina
| | - Gerald Raverot
- Groupement Hospitalier Est, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Ilan Shimon
- Rabin Medical Center and Sackler School of Medicine, Tel-Aviv University, Petah-Tiqva, Israel
| | | | - Pritam Gupta
- Novartis Healthcare Private Limited, Hyderabad, India
| | | | - Mônica R Gadelha
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
43
|
Liu F, Guo X, Liu T, Xu X, Li N, Xiong C, Li C, Zhu H, Yang Z. Evaluation of Pan-SSTRs Targeted Radioligand [ 64Cu]NOTA-PA1 Using Micro-PET Imaging in Xenografted Mice. ACS Med Chem Lett 2020; 11:445-450. [PMID: 32292548 DOI: 10.1021/acsmedchemlett.9b00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
64Cu-labeled new pan-somatostatin receptors (pan-SSTRs) probe PA1 was synthesized, characterized, and evaluated by in vitro and in vivo experiments. [64Cu]NOTA-PA1 was obtained with high specific activity, high radiochemical purity, and good stability. Cell uptake of [64Cu]NOTA-PA1 was higher than that of [64Cu]DOTA-TATE in MCF-7, A549, BGC823, and HT-29 cell lines. [64Cu]NOTA-PA1 showed high binding affinity for SSTRs expressed in A549 cells. The in vivo biodistribution and micropositron emission tomography (micro-PET) imaging studies of [64Cu]NOTA-PA1 revealed good detection ability in MCF-7 and A549 xenografted nude mice. The radiosynthesis, quality control, and preliminary biological evaluation of [64Cu]NOTA-PA1 have broaden the application of radiolabeled octreotide for SSTRs imaging, which could act as a potential multisubtypes targeted radiotracer for imaging SSTRs-positive tumors.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chiyi Xiong
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
44
|
Adelman D, Truong Thanh XM, Feuilly M, Houchard A, Cella D. Evaluation of Nurse Preferences Between the Lanreotide Autogel New Syringe and the Octreotide Long-Acting Release Syringe: An International Simulated-Use Study (PRESTO). Adv Ther 2020; 37:1608-1619. [PMID: 32157626 PMCID: PMC7140743 DOI: 10.1007/s12325-020-01255-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Somatostatin analogues are used to treat symptoms and slow tumour progression in patients with neuroendocrine tumours (NETs) and carcinoid syndrome and to reduce hormone secretion and pituitary tumour volume in patients with acromegaly. A new syringe for lanreotide autogel/depot (LAN) was developed following feedback from a human factors study to improve ease of injection compared with previous syringes. PRESTO aimed to assess preferences of nurses between the LAN new syringe and the octreotide long-acting release (LAR) syringe. METHODS PRESTO, a multinational, multicentre, prospective, noninterventional, simulated-use study, enrolled nurses with ≥ 2 years' experience injecting LAN and/or octreotide LAR in patients with NETs and/or acromegaly. Nurses administered injections into pads using the LAN new syringe and octreotide LAR syringe in a randomised sequence. In an anonymous web-based questionnaire, nurses reported their overall preference ('strong' or 'slight'; primary endpoint) and rated and ranked the importance of nine attributes for each syringe (1 [not at all] to 5 [very much]). RESULTS Overall, 90 nurses attended sessions and completed valid questionnaires. Most nurses (97.8%) expressed a preference (85.6% 'strong', 12.2% 'slight') for the LAN new syringe versus the octreotide LAR syringe (P < 0.0001). Attribute performance ratings (1 [not at all] to 5 [very much]) were consistently higher for the LAN new syringe versus the octreotide LAR syringe, with the greatest differences in 'fast administration' and 'confidence the syringe will not be clogged' (mean difference [SD]: 2.6 [1.2] and 2.3 [1.5], respectively; P < 0.0001). The attribute ranked most important was 'confidence the syringe will not be clogged' (24.4%); least important was 'convenience of syringe format, including packaging, from preparation to injection' (34.4%). CONCLUSIONS Nurses preferred the user experience of the LAN new syringe compared with the octreotide LAR syringe, with a particular preference for attributes related to product delivery with the LAN new syringe.
Collapse
Affiliation(s)
- Daphne Adelman
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | - Marion Feuilly
- Health Economics and Outcomes Research, Ipsen, Boulogne-Billancourt, France
| | | | - David Cella
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
45
|
Petersenn S, Houchard A, Sert C, Caron PJ. Predictive factors for responses to primary medical treatment with lanreotide autogel 120 mg in acromegaly: post hoc analyses from the PRIMARYS study. Pituitary 2020; 23:171-181. [PMID: 31879842 PMCID: PMC7066297 DOI: 10.1007/s11102-019-01020-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE PRIMARYS (NCT00690898) was a 48-week, open-label, phase 3b study, evaluating treatment with the somatostatin receptor ligand lanreotide autogel (stable dose: 120 mg/28 days) in treatment-naïve patients with growth hormone (GH)-secreting pituitary macroadenoma. This post hoc analysis aimed to evaluate factors predictive of long-term responses. METHODS Potential predictive factors evaluated were: sex, age, and body mass index at baseline; and GH, insulin-like growth factor-1 (IGF-1), and tumor volume (TV) at baseline and week 12, using univariate regression analyses. Treatment responses were defined as hormonal control (GH ≤ 2.5 µg/L and age- and sex-normalized IGF-1), tight hormonal control (GH < 1.0 µg/L and normalized IGF-1), or ≥ 20% TV reduction (TVR). Receiver-operating-characteristic (ROC) curves were constructed using predictive factors significant in univariate analyses. Cut-off values for predicting treatment responses at 12 months were derived by maximizing the Youden index (J). RESULTS At baseline, older age, female sex, and lower IGF-1 levels were associated with an increased probability of achieving long-term hormonal control. ROC area-under-the curve (AUC) values for hormonal control were high for week-12 GH and IGF-1 levels (0.87 and 0.93, respectively); associated cut-off values were 1.19 μg/L and 110% of the upper limit of normal (ULN), respectively. Results were similar for tight hormonal control (AUC values: 0.92 [GH] and 0.87 [IGF-1]; cut-off values: 1.11 μg/L and 125% ULN, respectively). AUC and J values associated with TVR were low. CONCLUSIONS The use of predictive factors at baseline and week 12 of treatment could inform clinical expectations of the long-term efficacy of lanreotide autogel.
Collapse
Affiliation(s)
- Stephan Petersenn
- ENDOC Center for Endocrine Tumors, Erik-Blumenfeld-Platz 27a, 22587, Hamburg, Germany.
| | | | | | - Philippe J Caron
- Department of Endocrinology and Metabolic Diseases, CHU Larrey, Toulouse, France
| |
Collapse
|
46
|
Ectopic Corticotropin-Releasing Hormone–Secreting Pancreatic Neuroendocrine Tumor. Clin Nucl Med 2019; 45:e125-e127. [DOI: 10.1097/rlu.0000000000002834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int J Mol Sci 2019; 20:ijms20163940. [PMID: 31412614 PMCID: PMC6720449 DOI: 10.3390/ijms20163940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous somatostatin shows anti-secretory effects in both physiological and pathological settings, as well as inhibitory activity on cell growth. Since somatostatin is not suitable for clinical practice, researchers developed synthetic somatostatin receptor ligands (SRLs) to overcome this limitation. Currently, SRLs represent pivotal tools in the treatment algorithm of neuroendocrine tumors (NETs). Octreotide and lanreotide are the first-generation SRLs developed and show a preferential binding affinity to somatostatin receptor (SST) subtype 2, while pasireotide, which is a second-generation SRL, has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). A number of studies demonstrated that first-generation and second-generation SRLs show distinct functional properties, besides the mere receptor affinity. Therefore, the aim of the present review is to critically review the current evidence on the biological effects of SRLs in pituitary adenomas and neuroendocrine tumors, by mainly focusing on the differences between first-generation and second-generation ligands.
Collapse
|
48
|
The Role of the Small Bowel in Unintentional Weight Loss after Treatment of Upper Gastrointestinal Cancers. J Clin Med 2019; 8:jcm8070942. [PMID: 31261800 PMCID: PMC6678792 DOI: 10.3390/jcm8070942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Upper gastrointestinal (GI) cancers are responsible for significant mortality and morbidity worldwide. To date, most of the studies focused on the treatments’ efficacy and post-treatment survival rate. As treatments improve, more patients survive long term, and thus the accompanying complications including unintentional weight loss are becoming more important. Unintentional weight loss is defined as >5% of body weight loss within 6–12 months. Malignancies, particularly GI cancers, are diagnosed in approximately 25% of patients who present with unintentional weight loss. Whereas some recent studies discuss pathophysiological mechanisms and new promising therapies of cancer cachexia, there is a lack of studies regarding the underlying mechanism of unintentional weight loss in patients who are tumor free and where cancer cachexia has been excluded. The small bowel is a central hub in metabolic regulation, energy homeostasis, and body weight control throughout the microbiota-gut-brain axis. In this narrative review article, the authors discussed the impacts of upper GI cancers’ treatment modalities on the small bowel which may lead to unintentional weight loss and some new promising therapeutic agents to treat unintentional weight loss in long term survivors after upper GI operations with curative intent.
Collapse
|
49
|
Delayed Response (Partial Remission) 3 Years After Peptide Receptor Radionuclide Therapy in a Patient Participating in the NETTER-1 Trial. Clin Nucl Med 2019; 44:223-226. [PMID: 30672759 DOI: 10.1097/rlu.0000000000002456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogues has been shown to be highly efficacious concerning progression-free survival and response rates in patients with advanced, progressive, well-differentiated, somatostatin-receptor-positive neuroendocrine neoplasm. We report here delayed response of a midgut neuroendocrine neoplasm patient, who had stable disease after 4 cycles of PRRT and over a long period of 5 restaging admissions with excellent quality of life (full working hours), persisting for 3 years of follow-up, and presented as further partial remission according to both Response Evaluation Criteria in Solid Tumors and EORTC criteria, respectively, 36 months after the last PRRT cycle.
Collapse
|
50
|
Dicuonzo F, Purciariello S, De Marco A, Guastamacchia E, Triggiani V. Inoperable Giant Growth Hormone-secreting Pituitary Adenoma: Radiological Aspects, Clinical Management and Pregnancy Outcome. Endocr Metab Immune Disord Drug Targets 2019; 19:214-220. [DOI: 10.2174/1871530318666180807160712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023]
Abstract
Background and Objective: Giant pituitary adenomas (GPAs) are benign tumours with a
diameter ≥ 4 cm [1]. They can cause symptoms and signs due to the possible hyper-secretion of one or
more pituitary hormones, and involvement of the surrounding structures whereas the compression of
the pituitary itself can lead to hypopituitarism.
Methods:
We report on a young woman with acromegaly due to an inoperable giant GH-secreting
pituitary adenoma extending to right cavernous sinus, right orbital cavity, ethmoid, right maxillary
sinus, sphenoid sinus, clivus and right temporal fossa, in which medical treatment with Octreotide-
LAR was able to promptly relieve headache and bilateral hemianopsia due to optic chiasm involvement,
improve acromegaly symptoms and, over the time, control tumor expansion, improving fertility
and therefore allowing the patient to become pregnant.
Results:
Octreotide-LAR therapy was withdrawn during pregnancy and the patient did not experience
complications and gave birth to a healthy son. On magnetic resonance, the size of the tumor at the end
of pregnancy and in the subsequent follow up was not increased.
Conclusion:
The history we report, therefore, confirms previous experiences reporting a possible
favourable outcome of pregnancy in patients affected by acromegaly and adds further information
about the behaviour of giant pituitary tumors in patients underwent pregnancy.
Collapse
Affiliation(s)
- Franca Dicuonzo
- Department of Neuroradiology, School of Medicine, Deptartment of Basic Medical Sciences Neuroscience & Sense Organs, University of Bari , Italy
| | - Stefano Purciariello
- Department of Neuroradiology, School of Medicine, Deptartment of Basic Medical Sciences Neuroscience & Sense Organs, University of Bari , Italy
| | - Aurora De Marco
- Department of Neuroradiology, School of Medicine, Deptartment of Basic Medical Sciences Neuroscience & Sense Organs, University of Bari , Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology & Rare Diseases, University of Bari , Italy
| | - Vicenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology & Rare Diseases, University of Bari , Italy
| |
Collapse
|