1
|
Trachtenberg E, Ruzal K, Sandbank E, Bigelman E, Ricon-Becker I, Cole SW, Ben-Eliyahu S, Ben-Ami Bartal I. Deleterious effects of social isolation on neuroendocrine-immune status, and cancer progression in rats. Brain Behav Immun 2025; 123:524-539. [PMID: 39378972 DOI: 10.1016/j.bbi.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Accumulating evidence indicates that social isolation (SI) in humans and rodents is associated with increased cancer incidence and mortality, yet mediating mechanisms remain elusive. Here, we examine the neuroendocrine and immunological consequences of SI and its short- and long-term physiological impacts in naïve and cancer-bearing rats. Findings indicate that isolated animals experienced a significant decrease in weight compared to controls. Specifically, females showed a marked weight decrease during the first week of isolation. Isolated rats had significantly higher numbers of MADB106 experimental pulmonary metastases. Although mortality rates were higher in isolated tumor-bearing rats, unexpectedly, they exhibited a reduced growth rate of orthotopically implanted MADB106 tumors. Transcriptomic analyses of these excised tumors indicated a major downregulation in the expression of various genes, including those associated with pro-metastatic processes (e.g., EMT). In naïve rats (no cancer), levels of IL-6 increased, and total IgG levels decreased under SI conditions. A mixed effect was found for TNFα, which increased in females and decreased in males. In the central nervous system, isolated rats showed altered gene expression in key brain regions associated with stress responses and social behavior. The paraventricular nucleus of the thalamus emerged as a significantly affected region, along with the bed nucleus of the stria terminalis. Changes were observed in the expression of oxytocin, serotonin, and dopamine receptors. Isolated rats also exhibited greater alterations in hypothalamic-pituitary-adrenal (HPA) axis-related regulation and an increase in plasma CORT levels. Our study highlights the profound impact of SI on metastatic processes. Additionally, the potential detrimental effects of SI on thermoregulation were discussed, emphasizing the importance of social thermoregulation in maintaining physiological stability and highlighting the need to avoid single-caging practices in research. We report neuro-immune interactions and changes in brain gene expression, highlighting the need for further research into these underlying processes to improve outcomes in animal models and potential interventions for cancer patients through increased social support.
Collapse
Affiliation(s)
- Estherina Trachtenberg
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Keren Ruzal
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Einat Bigelman
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Arnone AA, Wilson AS, Soto-Pantoja DR, Cook KL. Diet Modulates the Gut Microbiome, Metabolism, and Mammary Gland Inflammation to Influence Breast Cancer Risk. Cancer Prev Res (Phila) 2024; 17:415-428. [PMID: 38701438 PMCID: PMC11372361 DOI: 10.1158/1940-6207.capr-24-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Several studies indicate a strong link between obesity and the risk of breast cancer. Obesity decreases gut microbial biodiversity and modulates Bacteroidetes-to-Firmicutes phyla proportional abundance, suggesting that increased energy-harvesting capacity from indigestible dietary fibers and elevated lipopolysaccharide bioavailability may promote inflammation. To address the limited evidence linking diet-mediated changes in gut microbiota to breast cancer risk, we aimed to determine how diet affects the microbiome and breast cancer risk. For ten weeks, female 3-week-old BALB/c mice were fed six different diets (control, high-sugar, lard, coconut oil, lard + flaxseed oil, and lard + safflower oil). Fecal 16S sequencing was performed for each group. Diet shifted fecal microbiome populations and modulated mammary gland macrophage infiltration. Fecal-conditioned media shifted macrophage polarity and inflammation. In our DMBA-induced breast cancer model, diet differentially modulated tumor and mammary gland metabolism. We demonstrated how dietary patterns change metabolic outcomes and the gut microbiota, possibly contributing to breast tumor risk. Furthermore, we showed the influence of diet on metabolism, inflammation, and macrophage polarity. This study suggests that dietary-microbiome interactions are key mediators of breast cancer risk. Prevention Relevance: Our study demonstrates the impact of diet on breast cancer risk, focusing on the interplay between diet, the gut microbiome, and mammary gland inflammation.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Atrium Health Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Atrium Health Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
3
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
5
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
6
|
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21:767-785. [PMID: 34508247 DOI: 10.1038/s41568-021-00395-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
The notion that stress and cancer are interlinked has dominated lay discourse for decades. More recent animal studies indicate that stress can substantially facilitate cancer progression through modulating most hallmarks of cancer, and molecular and systemic mechanisms mediating these effects have been elucidated. However, available clinical evidence for such deleterious effects is inconsistent, as epidemiological and stress-reducing clinical interventions have yielded mixed effects on cancer mortality. In this Review, we describe and discuss specific mediating mechanisms identified by preclinical research, and parallel clinical findings. We explain the discrepancy between preclinical and clinical outcomes, through pointing to experimental strengths leveraged by animal studies and through discussing methodological and conceptual obstacles that prevent clinical studies from reflecting the impacts of stress. We suggest approaches to circumvent such obstacles, based on targeting critical phases of cancer progression that are more likely to be stress-sensitive; pharmacologically limiting adrenergic-inflammatory responses triggered by medical procedures; and focusing on more vulnerable populations, employing personalized pharmacological and psychosocial approaches. Recent clinical trials support our hypothesis that psychological and/or pharmacological inhibition of excess adrenergic and/or inflammatory stress signalling, especially alongside cancer treatments, could save lives.
Collapse
Affiliation(s)
- Anabel Eckerling
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Bellinger DL, Dulcich MS, Molinaro C, Gifford P, Lorton D, Gridley DS, Hartman RE. Psychosocial Stress and Age Influence Depression and Anxiety-Related Behavior, Drive Tumor Inflammatory Cytokines and Accelerate Prostate Cancer Growth in Mice. Front Oncol 2021; 11:703848. [PMID: 34604038 PMCID: PMC8481826 DOI: 10.3389/fonc.2021.703848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) prevalence is higher in older men and poorer coping with psychosocial stressors effect prognosis. Yet, interactions between age, stress and PCa progression are underexplored. Therefore, we characterized the effects of age and isolation combined with restraint (2 h/day) for 14 days post-tumor inoculation on behavior, tumor growth and host defense in the immunocompetent, orthotopic RM-9 murine PCa model. All mice were tumor inoculated. Isolation/restraint increased sympathetic and hypothalamic-pituitary-adrenal cortical activation, based on elevated serum 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratios and corticosterone levels, respectively. Elevated zero maze testing revealed age-related differences in naïve C57Bl/6 mice, and increased anxiety-like behavior in tumor-bearing mice. In open field testing, old stressed mice were less active throughout the 30-min test than young non-stressed and stressed, and old non-stressed mice, suggesting greater anxiety in old stressed mice. Old (18 month) mice demonstrated more depression-like behavior than young mice with tail suspension testing, without effects of isolation/restraint stress. Old mice developed larger tumors, despite similar tumor expression of tumor vascular endothelial growth factor or transforming growth factor-beta1 across age. Tumor chemokine/cytokine expression, commonly prognostic for poorer outcomes, were uniquely age- and stress-dependent, underscoring the need for PCa research in old animals. Macrophages predominated in RM-9 tumors. Macrophages, and CD4+ and CD4+FoxP3+ T-cell tumor infiltration were greater in young mice than in old mice. Stress increased macrophage infiltration in old mice. Conversely, stress reduced intratumoral CD4+ and CD4+FoxP3+ T-cell numbers in young mice. CD8+ T-cell infiltration was similar across treatment groups. Our findings support that age- and psychological stress interacts to affect PCa outcomes by interfering with neural-immune mechanisms and affecting behavioral responses.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Melissa S Dulcich
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| | - Christine Molinaro
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Peter Gifford
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Department of Psychology, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH, United States
| | - Daila S Gridley
- Departments of Radiation Medicine and Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Richard E Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
8
|
Soto-Pantoja DR, Gaber M, Arnone AA, Bronson SM, Cruz-Diaz N, Wilson AS, Clear KYJ, Ramirez MU, Kucera GL, Levine EA, Lelièvre SA, Chaboub L, Chiba A, Yadav H, Vidi PA, Cook KL. Diet Alters Entero-Mammary Signaling to Regulate the Breast Microbiome and Tumorigenesis. Cancer Res 2021; 81:3890-3904. [PMID: 34083249 PMCID: PMC8981494 DOI: 10.1158/0008-5472.can-20-2983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet-derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. SIGNIFICANCE: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3890/F1.large.jpg.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mohamed Gaber
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alana A Arnone
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Steven M Bronson
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nildris Cruz-Diaz
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Adam S Wilson
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kenysha Y J Clear
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Manuel U Ramirez
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gregory L Kucera
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Edward A Levine
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West-Lafayette, Indiana
| | - Lesley Chaboub
- Department of Basic Medical Sciences, Purdue University, West-Lafayette, Indiana
| | - Akiko Chiba
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research University of South Florida Morsani College of Medicine, Tampa, FL
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
9
|
Berry A, Collacchi B, Capoccia S, D'Urso MT, Cecchetti S, Raggi C, Sestili P, Aricò E, Pontecorvi G, Puglisi R, Ortona E, Cirulli F. Chronic Isolation Stress Affects Central Neuroendocrine Signaling Leading to a Metabolically Active Microenvironment in a Mouse Model of Breast Cancer. Front Behav Neurosci 2021; 15:660738. [PMID: 34305544 PMCID: PMC8298821 DOI: 10.3389/fnbeh.2021.660738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Social isolation is a powerful stressor capable of affecting brain plasticity and function. In the case of breast cancer, previous data indicate that stressful experiences may contribute to a worse prognosis, activating neuroendocrine and metabolism pathways, although the mechanisms underlying these effects are still poorly understood. In this study, we tested the hypothesis that chronic isolation stress (IS) may boost hypothalamic–pituitary–adrenal (HPA) axis activity, leading to changes in the hypothalamic expression of genes modulating both mood and metabolism in an animal model of breast cancer. This centrally activated signaling cascade would, in turn, affect the mammary gland microenvironment specifically targeting fat metabolism, leading to accelerated tumor onset. MMTVNeuTg female mice (a model of breast cancer developing mammary hyperplasia at 5 months of age) were either group-housed (GH) or subjected to IS from weaning until 5 months of age. At this time, half of these subjects underwent acute restraint stress to assess corticosterone (CORT) levels, while the remaining subjects were characterized for their emotional profile in the forced swimming and saccharin preference tests. At the end of the procedures, all the mice were sacrificed to assess hypothalamic expression levels of Brain-derived neurotrophic factor (Bdnf), Neuropeptide Y (NpY), Agouti-Related Peptide (AgRP), and Serum/Glucocorticoid-Regulated Protein Kinase 1 (SgK1). Leptin and adiponectin expression levels, as well as the presence of brown adipose tissue (BAT), were assessed in mammary fat pads. The IS mice showed higher CORT levels following acute stress and decreased expression of NpY, AgRP, and SgK1, associated with greater behavioral despair in the forced swimming test. Furthermore, they were characterized by increased consumption of saccharin in a preference test, suggesting an enhanced hedonic profile. The IS mice also showed an earlier onset of breast lumps (assessed by palpation) accompanied by elevated levels of adipokines (leptin and adiponectin) and BAT in the mammary fat pads. Overall, these data point to IS as a pervasive stressor that is able to specifically target neuronal circuits, mastered by the hypothalamus, modulating mood, stress reactivity and energy homeostasis. The activation of such IS-driven machinery may hold main implications for the onset and maintenance of pro-tumorigenic environments.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Capoccia
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa D'Urso
- Animal Research and Welfare Center, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Sestili
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Pontecorvi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Learning from and Leveraging Multi-Level Changes in Responses to the COVID 19 Pandemic to Facilitate Breast Cancer Prevention Efforts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136999. [PMID: 34208878 PMCID: PMC8297333 DOI: 10.3390/ijerph18136999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/21/2023]
Abstract
The coronavirus pandemic (COVID-19) has had multilevel effects on non-COVID-19 health and health care, including deferral of routine cancer prevention and screening and delays in surgical and other procedures. Health and health care use has also been affected by pandemic-related loss of employer-based health insurance, food and housing disruptions, and heightened stress, sleep disruptions and social isolation. These disruptions are projected to contribute to excess non-COVID-19 deaths over the coming decades. At the same time municipalities, health systems and individuals are making changes in response to the pandemic, including modifications in the environmental to promote health, implementation of telehealth platforms, and shifts towards greater self-care and using remote platforms to maintain social connections. We used a multi-level biopsychosocial model to examine the available literature on the relationship between COVID-19-related changes and breast cancer prevention to identify current gaps in knowledge and identify potential opportunities for future research. We found that COVID-19 has impacted several aspects of social and economic life, through a variety of mechanisms, including unemployment, changes in health care delivery, changes in eating and activity, and changes in mental health. Some of these changes should be reduced, while others should be explored and enhanced.
Collapse
|
11
|
de Figueiredo CS, Sandre PC, Portugal LCL, Mázala-de-Oliveira T, da Silva Chagas L, Raony Í, Ferreira ES, Giestal-de-Araujo E, Dos Santos AA, Bomfim POS. COVID-19 pandemic impact on children and adolescents' mental health: Biological, environmental, and social factors. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110171. [PMID: 33186638 PMCID: PMC7657035 DOI: 10.1016/j.pnpbp.2020.110171] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Since the Coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was announced, we had an unprecedented change in the way we organize ourselves socially and in our daily routine. Children and adolescents were also greatly impacted by the abrupt withdrawal from school, social life and outdoor activities. Some of them also experienced domestic violence growing. The stress they are subjected to directly impacts their mental health on account of increased anxiety, changes in their diets and in school dynamics, fear or even failing to scale the problem. Our aim is to bring up a discussion under different aspects and to alert public health and government agents about the need for surveillance and care of these individuals. We hope that the damage to their mental health as a result of the side effect of this pandemic can be mitigated by adequate and timely intervention.
Collapse
Affiliation(s)
- Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Poliana Capucho Sandre
- NuPEDEN, Nucleus for Research, Education, Dissemination and Neurosciences Popularization, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; Thymus Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Liana Catarina Lima Portugal
- NuPEDEN, Nucleus for Research, Education, Dissemination and Neurosciences Popularization, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; Department of Physiology and Pharmacology, Laboratory of Neurophysiology of Behavior, Biomedical Institute, Federal Fluminense University, Brazil
| | - Thalita Mázala-de-Oliveira
- NuPEDEN, Nucleus for Research, Education, Dissemination and Neurosciences Popularization, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Luana da Silva Chagas
- NuPEDEN, Nucleus for Research, Education, Dissemination and Neurosciences Popularization, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Ícaro Raony
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil; School of Medicine, Federal Fluminense University, Niterói 24033-900, Brazil
| | - Elenn Soares Ferreira
- NuPEDEN, Nucleus for Research, Education, Dissemination and Neurosciences Popularization, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil; National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Aline Araujo Dos Santos
- Department of Physiology and Pharmacology, Laboratory of Neurochemical Interactions, Biomedical Institute, Federal Fluminense University, Brazil
| | - Priscilla Oliveira-Silva Bomfim
- NuPEDEN, Nucleus for Research, Education, Dissemination and Neurosciences Popularization, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil; National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; Rio de Janeiro Neuroinflammation Research Network, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
12
|
Farbstein D, Hollander N, Peled O, Apter A, Fennig S, Haberman Y, Gitman H, Yaniv I, Shkalim V, Pick CG, Benaroya-Milshtein N. Social isolation in mice: behavior, immunity, and tumor growth. Stress 2021; 24:229-238. [PMID: 32510284 DOI: 10.1080/10253890.2020.1777976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to investigate the behavioral, immunological, and neurological effects of long-term isolation in an animal model. Male C3H/eB mice wereraised in either social isolation or standard conditions for 6 weeks. At 10 weeks, each group was further divided into 3 sets. (A) Physical strength and behavior were evaluated with the grip strength, hot plate, staircase, and elevated plus-maze tests. Natural-killer cell activity and lymphocyte proliferation were measured. (B) Half the animals were subjected to electric shock with 3 reminders, and freezing time was evaluated at each reminder. Cortisone levels were evaluated after 16 weeks. (C)Mice were injected with 38 C-13 B lymphoma cells and followed for tumor size and survival. Strength evaluation yielded asignificantly lower body weight and grip strength in the socially isolated mice. Behavioral test results were similar in the two groups. The pattern of reactions to stress conditioning differed significantly, with the socially isolated mice showing an incline in freezing with each successive reminder, and the control mice showing a decline. The socially isolated mice had significantly attenuated tumor growth, with no significant difference in survival from control mice. There were no significant between-group differences in immunological parameters. In conclusion, social isolation serves as a model for chronic stress. It was associated with significant changes in stress conditioning reaction, resembling symptoms of post-traumatic stress disorder, and attenuated tumor development. No differences from controls were found in behavior tests, immune parameters, or survival after tumor cell inoculation.Lay summaryThis article explores biological and behavioral consequences of social isolation in a mice model. Our results show that social isolation leads to changes in the Hypothalamic-hypophyseal-adrenal axis, which in turn alter the response to stress. Additionally, social isolation was shown to impact tumor progression.
Collapse
Affiliation(s)
- Dan Farbstein
- Department of Psychiatry, Feinberg Child Study Center, Schneider Children's Medical Center of Israel, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nurit Hollander
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Peled
- Department of Pharmacy, Schneider Children's Medical Center, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alan Apter
- Department of Psychiatry, Feinberg Child Study Center, Schneider Children's Medical Center of Israel, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Silvana Fennig
- Department of Psychiatry, Feinberg Child Study Center, Schneider Children's Medical Center of Israel, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gitman
- Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Isaac Yaniv
- Department of Hemato-Oncology, Schneider Children's Medical Center of Israel, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Shkalim
- Department of Hemato-Oncology, Schneider Children's Medical Center of Israel, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Benaroya-Milshtein
- Department of Psychiatry, Feinberg Child Study Center, Schneider Children's Medical Center of Israel, PetachTikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Portacolone E, Johnson JK, Halpern J, Kotwal A. Seeking a Sense of Belonging. GENERATIONS (SAN FRANCISCO, CALIF.) 2020; 44:1-8. [PMID: 37583626 PMCID: PMC10426317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
This article draws on investigations by its authors, and from American and Italian interventions to provide recommendations for decreasing social isolation in older adults for policy makers, researchers, and other professionals committed to supporting the improved social integration of older adults. The article argues that to mitigate social isolation it is critical to foster a sense of belonging (personal involvement in a system or environment so people feel they are an integral part of that system or environment). Suggestions are provided on how to leverage systematic interventions to foster isolated older adults' sense of belonging to their communities.
Collapse
Affiliation(s)
- Elena Portacolone
- Institute for Health & Aging University of California San Francisco (UCSF), USA
| | - Julene K Johnson
- Institute for Health & Aging Center for Aging in Diverse Communities University of California San Francisco, San Francisco, CA, USA
| | - Jodi Halpern
- Professor of Bioethics and Medical Humanities UCB-UCSF Joint Medical Program University of California Berkeley, Berkeley, CA, USA
| | - Ashwin Kotwal
- Medicine, Division of Geriatric Medicine University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Elevated leptin disrupts epithelial polarity and promotes premalignant alterations in the mammary gland. Oncogene 2019; 38:3855-3870. [PMID: 30670780 PMCID: PMC6525037 DOI: 10.1038/s41388-019-0687-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Obesity is a highly prevalent and modifiable breast cancer risk factor. While the role of obesity in fueling breast cancer progression is well established, the mechanisms linking obesity to breast cancer initiation are poorly understood. A hallmark of breast cancer initiation is the disruption of apical polarity in mammary glands. Here we show that mice with diet-induced obesity display mislocalization of Par3, a regulator of cellular junctional complexes defining mammary epithelial polarity. We found that epithelial polarity loss also occurs in a 3D coculture system that combines acini with human mammary adipose tissue, and establish that a paracrine effect of the tissue adipokine leptin causes loss of polarity by overactivation of the PI3K/Akt pathway. Leptin sensitizes non-neoplastic cells to proliferative stimuli, causes mitotic spindle misalignment, and expands the pool of cells with stem/progenitor characteristics, which are early steps for cancer initiation. We also found that normal breast tissue samples with high leptin/adiponectin transcript ratio characteristic of obesity have an altered distribution of apical polarity markers. This effect is associated with increased epithelial cell layers. Our results provide a molecular basis for early alterations in epithelial architecture during obesity-mediated cancer initiation.
Collapse
|
15
|
Unfolded protein response signaling impacts macrophage polarity to modulate breast cancer cell clearance and melanoma immune checkpoint therapy responsiveness. Oncotarget 2017; 8:80545-80559. [PMID: 29113324 PMCID: PMC5655219 DOI: 10.18632/oncotarget.19849] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022] Open
Abstract
The unfolded protein response (UPR) is a stress pathway controlled by GRP78 to mediate IRE1, PERK, and ATF6 signaling. We show that targeting GRP78, IRE1, and PERK differentially regulates macrophage polarization. Specifically, PERK targeting enhanced macrophage proliferation and macrophage-mediated killing but not GRP78 or IRE1. Targeting UPR in cancer cells also differentially affected macrophage cytolytic capacity. Tumoral IRE1 or GRP78 inhibition enhanced macrophage-mediated cancer cell clearance. Conditioned media from GRP78-silenced cancer cells caused reciprocal regulation of CD80 and CD206, suggesting control of plasticity by secreted factors. GRP78 targeting in mice resulted in a cytokine shift and increased tumoral CD80+/CD68+ cells, suggesting an M1-like profile. Targeting UPR in both macrophage and cancer cells indicates that PERK or GRP78 reduction enhances macrophage clearance of cancer cells. Recent evidence suggests that macrophage polarization influences immune checkpoint therapy resistance. To determine whether UPR effects immunotherapy resistance, analysis of matched melanoma patient PBMC before/after developing ipilimumab resistance demonstrated increased UPR signaling and an M2-like macrophage population, supporting a novel role of UPR signaling and innate immune regulation in anti-CTLA-4 therapy resistance. These data suggest that targeting GRP78 or PERK promotes an anti-tumor immune response by either directly promoting macrophage cytolytic activity or indirectly by shifting tumoral cytokine secretion.
Collapse
|