1
|
Ge T, Yuan L, Xu L, Yang F, Xu W, Niu C, Li G, Zhou H, Zheng Y. Coiled-coil domain containing 159 is required for spermatid head and tail assembly in mice†. Biol Reprod 2024; 110:877-894. [PMID: 38236177 DOI: 10.1093/biolre/ioae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
The centrosome is critical for maintaining the sperm head-tail connection and the formation of flagellar microtubules. In this study, we found that in mouse testes, CCDC159 (coiled-coil domain-containing protein 159) is specifically localized to the head-tail coupling apparatus (HTCA) of spermatids, a structure that ensures sperm head-tail tight conjunction. CCDC159 contains a C-terminal coiled-coil domain that functions as the centrosomal localization signal. Gene knockout (KO) of Ccdc159 in mice resulted in acephalic spermatozoa, abnormal flagella, and male infertility. To explore the mechanism behind CCDC159 regulating spermatogenesis, we identified CCDC159-binding proteins using a yeast two-hybrid screen and speculated that CCDC159 participates in HTCA assembly by regulating protein phosphatase PP1 activity. Further RNA-sequencing analyses of Ccdc159 KO testes revealed numerous genes involved in male gamete generation that were downregulated. Together, our results show that CCDC159 in spermatids is a novel centrosomal protein anchoring the sperm head to the tail. Considering the limitation of KO mouse model in clarifying the biological function of CCDC159 in spermatogenesis, a gene-rescue experiment will be performed in the future.
Collapse
Affiliation(s)
- Tingting Ge
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lu Yuan
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Linwei Xu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fan Yang
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenhua Xu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Changmin Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guanghua Li
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiping Zhou
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Wang SY, Xiang QM, Zhu JQ, Mu CK, Wang CL, Hou CC. The Functions of Pt-DIC and Pt-Lamin B in Spermatogenesis of Portunus trituberculatus. Int J Mol Sci 2023; 25:112. [PMID: 38203284 PMCID: PMC10778907 DOI: 10.3390/ijms25010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cytoplasmic Dynein is a multiple-subunit macromolecular motor protein involved in the transport process of cells. The Dynein intermediate chain (DIC) is one of the subunits of Dynein-1. In our previous studies, we showed that Pt-DIC may play an important role in the nuclear deformation of spermiogenesis in Portunus trituberculatus. Lamin B is essential for maintaining nuclear structure and functions. Surprisingly, Pt-Lamin B was expressed not only in the perinucleus but also in the pro-acrosome during spermiogenesis in P. trituberculatus. Studies have also shown that Dynein-1 can mediate the transport of Lamin B in mammals. Thus, to study the relationship of Pt-DIC and Pt-Lamin B in the spermatogenesis of P. trituberculatus, we knocked down the Pt-DIC gene in P. trituberculatus by RNAi. The results showed that the distribution of Pt-DIC and Pt-Lamin B in spermiogenesis was abnormal, and the colocalization was weakened. Moreover, we verified the interaction of Pt-DIC and Pt-Lamin B via coimmunoprecipitation. Therefore, our results suggested that both Pt-DIC and Pt-Lamin B were involved in the spermatogenesis of P. trituberculatus, and one of the functions of Dynein-1 is to mediate the transport of Lamin B in the spermiogenesis of P. trituberculatus.
Collapse
Affiliation(s)
| | | | | | | | | | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.-Y.W.); (Q.-M.X.); (J.-Q.Z.); (C.-K.M.); (C.-L.W.)
| |
Collapse
|
3
|
Godar S, Oristian J, Hinsch V, Wentworth K, Lopez E, Amlashi P, Enverso G, Markley S, Alper JD. Light chain 2 is a Tctex-type related axonemal dynein light chain that regulates directional ciliary motility in Trypanosoma brucei. PLoS Pathog 2022; 18:e1009984. [PMID: 36155669 PMCID: PMC9536576 DOI: 10.1371/journal.ppat.1009984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Flagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids. Trypanosoma brucei flagella beat with a bending wave that propagates from the flagellum's tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein-associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex-type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi in both wild-type and FLAM3, a flagellar attachment zone protein, knockdown cells and quantified TbLC2's effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to-tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids' unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.
Collapse
Affiliation(s)
- Subash Godar
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - James Oristian
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Valerie Hinsch
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Katherine Wentworth
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Ethan Lopez
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Parastoo Amlashi
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Gerald Enverso
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Samantha Markley
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Joshua Daniel Alper
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
4
|
Hiradate Y, Harima R, Yanai R, Hara K, Nagasawa K, Osada M, Kobayashi T, Matsuyama M, Kanno S, Yasui A, Tanemura K. Loss of Axdnd1 causes sterility due to impaired spermatid differentiation in mice. Reprod Med Biol 2022; 21:e12452. [PMID: 35386379 PMCID: PMC8968163 DOI: 10.1002/rmb2.12452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Spermiogenesis, the process of deformation of sperm head morphology and flagella formation, is a phenomenon unique to sperm. Axonemal dynein light chain proteins are localized to sperm flagella and are known to be involved in sperm motility. Here, we focused on the gene axonemal dynein light chain domain containing 1 (Axdnd1) with the aim to determine the function of its protein product AXDND1. Methods To elucidate the role of AXDND1 in spermatogenesis, we generated Axdnd1 knockout (KO) mice using the CRISPR/Cas9 system. The generated mice were subjected to fertility tests and analyzed by immunohistochemistry. Result The Axdnd1 KO mouse exhibited sterility caused by impaired spermiogenesis during the elongation step as well as abnormal nuclear shaping and manchette, which are essential for spermiogenesis. Moreover, AXDND1 showed enriched testicular expression and was localized from the mid-pachytene spermatocytes to the early spermatids. Conclusion Axdnd1 is essential for spermatogenesis in the mouse testes. These findings improve our understanding of spermiogenesis and related defects. According to a recent report, deleterious heterozygous mutations in AXDND1 were found in non-obstructive azoospermia (NOA) patients. Therefore, Axdnd1 KO mice could be used as a model system for NOA, which will greatly contribute to future NOA treatment studies.
Collapse
Affiliation(s)
- Yuki Hiradate
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Present address:
Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
| | - Ryua Harima
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Rin Yanai
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kazue Nagasawa
- Laboratory of Aquacultural BiologyGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Makoto Osada
- Laboratory of Aquacultural BiologyGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Tomoe Kobayashi
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Makoto Matsuyama
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Shin‐ichiro Kanno
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of DevelopmentAging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Akira Yasui
- Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of DevelopmentAging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and DevelopmentGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Fang X, Gamallat Y, Chen Z, Mai H, Zhou P, Sun C, Li X, Li H, Zheng S, Liao C, Yang M, Li Y, Yang Z, Ma C, Han D, Zuo L, Xu W, Hu H, Sun L, Li N. Hypomorphic and hypermorphic mouse models of Fsip2 indicate its dosage-dependent roles in sperm tail and acrosome formation. Development 2021; 148:269073. [PMID: 34125190 DOI: 10.1242/dev.199216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023]
Abstract
Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.
Collapse
Affiliation(s)
- Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Zhiheng Chen
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Xiaoliang Li
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Zeyu Yang
- Guangdong Technion-Israel Institute of Technology, Shantou, 515063 Guangdong, China
| | - Caiqi Ma
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Wenming Xu
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| |
Collapse
|
6
|
Saberiyan M, Mirfakhraie R, Moghni M, Teimori H. Study of Linc00574 Regulatory Effect on the TCTE3 Expression in Sperm Motility. Reprod Sci 2020; 28:159-165. [PMID: 32749594 DOI: 10.1007/s43032-020-00275-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
We investigated the relationship of t-complex-associated-testis-expressed 3 (TCTE3) and linc00574 expression levels with sperm motility and morphology in patients with asthenozoospermia (AZ) and terato-asthenozoospermia (TAZ). The study population consisted of 31 AZ patients, 31 TAZ patients, and 32 normozoospermia (NZ) as controls. Quantitative real-time PCR was conducted to evaluate the expression levels of TCTE3 and linc00574. Bioinformatics investigations were performed using databases to find molecular pathway. TCTE3 expression was reduced significantly in AZ and TAZ patients (P < 0.05). Linc00574 expression level increased only in the AZ patients (P < 0.05). The subsequent analyses showed a significantly positive correlation between TCTE3 and linc00574 expression levels (P < 0.05). In addition, a significantly positive relationship was observed between TCTE3 expression level and sperm motility and morphology (P < 0.05). The present study suggests that TCTE3 expression is regulated by linc00574 through a negative self-regulating mechanism and therefore may affect the flagella structure and function.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh, Shahrekord, 8813833435, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Moghni
- Department of pathology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh, Shahrekord, 8813833435, Iran.
| |
Collapse
|
7
|
Peng Y, Zhao W, Qu F, Jing J, Hu Y, Liu Y, Ding Z. Proteomic alterations underlie an association with teratozoospermia in obese mice sperm. Reprod Biol Endocrinol 2019; 17:82. [PMID: 31651332 PMCID: PMC6813985 DOI: 10.1186/s12958-019-0530-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity is a worldwide crisis impairing human health. In this condition, declines in sperm quality stem from reductions in sperm concentration, motility and increase in sperm deformity. The mechanism underlying these alterations remains largely unknown. This study, determined if obesity-associated proteomic expression patterns in mice sperm parallel those in spermatozoa obtained from obese humans. METHODS An obese mouse model was established via feeding a high-fat diet (HFD). Histological analysis identified testicular morphology and a computer assisted semen analyzer (CASA) evaluated sperm parameters. Proteome analysis was performed using a label-free quantitative LC-MS/MS system. Western blot, immunohistochemical and immunofluorescent analyses characterized protein expression levels and localization in testis, sperm and clinical samples. RESULTS Bodyweight gains on the HFD induced hepatic steatosis. Declines in sperm motility accompanied sperm deformity development. Differential proteomic analysis identified reduced cytoskeletal proteins, centrosome and spindle pole associated protein 1 (CSPP1) and Centrin 1 (CETN1), in sperm from obese mice. In normal weight mice, both CSPP1 and CETN1 were localized in the spermatocytes and spermatids. Their expression was appreciable in the post-acrosomal region parallel to the microtubule tracks of the manchette structure in spermatids, which affects spermatid head shaping and morphological maintenance. Moreover, CSPP1 was localized in the head-tail coupling apparatus of the mature sperm, while CETN1 expression was delimited to the post-acrosomal region within the sperm head. Importantly, sperm CSPP1 and CETN1 abundance in both the overweight and obese males decreased in comparison with that in normal weight men. CONCLUSION These findings show that regionally distinct expression and localization of CETN1 and CSPP1 is strongly related to spermiogenesis and sperm morphology maintaining. Obesity is associated with declines in the CETN1 and CSPP1 abundance and compromise of both sperm morphology in mice and relevant clinical samples. This parallelism between altered protein expression in mice and humans suggests that these effects may contribute to poor sperm quality including increased deformity.
Collapse
Affiliation(s)
- Yuanhong Peng
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, Dali, 671000, Yunnan, China
- Institute of Reproductive Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Fei Qu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Liu Y, Zhang L, Li W, Li Y, Liu J, Zhang S, Pin G, Song S, Ray PF, Arnoult C, Cho C, Garcia-Reyes B, Knippschild U, Strauss JF, Zhang Z. The sperm-associated antigen 6 interactome and its role in spermatogenesis. Reproduction 2019; 158:181-197. [PMID: 31146259 PMCID: PMC7368494 DOI: 10.1530/rep-18-0522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
Mammalian SPAG6, the orthologue of Chlamydomonas reinhardtii PF16, is a component of the central apparatus of the '9 + 2' axoneme that controls ciliary/flagellar motility, including sperm motility. Recent studies revealed that SPAG6 has functions beyond its role in the central apparatus. Hence, we reexamined the role of SPAG6 in male fertility. In wild-type mice, SPAG6 was present in cytoplasmic vesicles in spermatocytes, the acrosome of round and elongating spermatids and the manchette of elongating spermatids. Spag6-deficient testes showed abnormal spermatogenesis, with abnormalities in male germ cell morphology consistent with the multi-compartment pattern of SPAG6 localization. The armadillo repeat domain of mouse SPAG6 was used as a bait in a yeast two-hybrid screen, and several proteins with diverse functions appeared multiple times, including Snapin, SPINK2 and COPS5. Snapin has a similar localization to SPAG6 in male germ cells, and SPINK2, a key protein in acrosome biogenesis, was dramatically reduced in Spag6-deficient mice which have defective acrosomes. SPAG16L, another SPAG6-binding partner, lost its localization to the manchette in Spag6-deficient mice. Our findings demonstrate that SPAG6 is a multi-functional protein that not only regulates sperm motility, but also plays roles in spermatogenesis in multiple cellular compartments involving multiple protein partners.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, MI, 48201
| | - Yuhong Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Junpin Liu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Shiyang Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Guanglun Pin
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Shizhen Song
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Balbina Garcia-Reyes
- Department of General and Visceral Surgery, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Jerome F. Strauss
- Department of Obstetrics/Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, 48201
- Department of Obstetrics/Gynecology, Wayne State University, Detroit, MI, 48201
| |
Collapse
|
9
|
Association of DNAH11 gene polymorphisms with asthenozoospermia in Northeast Chinese patients. Biosci Rep 2019; 39:BSR20181450. [PMID: 31160482 PMCID: PMC6617048 DOI: 10.1042/bsr20181450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 11/17/2022] Open
Abstract
Reduced or no progressive sperm motility in the fresh ejaculate defines asthenozoospermia as one of the major causes of male infertility. The axonemal heavy chain dynein type 11 (DNAH11) gene encodes for one of the axonemal dynein heavy chain (DHC) family members and participates in assembling respiratory cilia and sperm flagella. Given the high degree of conservation of DNAH11, mutations could give rise to primary ciliary dyskinesia (PCD) and asthenozoospermia. To date, few studies have reported on the association between variants in DNAH11 and asthenozoospermia. In the present study, 87 patients with idiopathic asthenozoospermia for variants in DNAH11 were screened by using high-throughput targeted gene sequencing technology. Bioinformatics analysis was further assessed. We found compound heterozygous variants (c.9484-1 G>T, c.12428 T>C) of DNAH11 detected in 1 of 87 patients. The variant c.9484-1 G>T was confirmed as a novel virulence variant which was predicted to affect splicing by Human Splicing Finder 3.1. And c.12428 T>C was predicted to be mildly pathogenic in silico analysis. We found that DNAH11 polymorphisms display strong associations with asthenozoospermia, and may contribute to an increased risk of male infertility in Chinese patients.
Collapse
|
10
|
Sagare-Patil V, Modi D. Identification of motility-associated progesterone-responsive differentially phosphorylated proteins. Reprod Fertil Dev 2018; 29:1115-1129. [PMID: 27166179 DOI: 10.1071/rd15492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
Progesterone is one of the regulators of sperm motility and hyperactivation. In human spermatozoa, the effects of progesterone are thought to be mediated by protein phosphorylation. In the present study, we identified 22 proteins that are differentially phosphorylated (12 phosphorylated and 10 dephosphorylated) by progesterone in human spermatozoa. Functionally, the differentially phosphorylated proteins are predicted to have cytoskeletal localisation and to be associated with sperm motility. 5µM of progesterone to capacitated increased the phosphorylation of tyrosine residues in the principal piece and protein tyrosine kinase activity increased by almost 3.5-fold. For the first time, we demonstrate that tyrosine phosphatases are also activated in response to progesterone and that inhibition of tyrosine phosphatases attenuates dephosphorylation of flagellar proteins. We propose that progesterone activates both kinase and phosphatase pathways, leading to changes in the phosphorylation of many proteins in sperm flagella to increase motility.
Collapse
Affiliation(s)
- V Sagare-Patil
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India
| | - D Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India
| |
Collapse
|
11
|
Zhao CL, Hui Y, Wang LJ, Lombardo K, Yang D, Mangray S, Yakirevich E, Amin A, Huang CK, Lu S. T-complex-associated-testis-expressed 3 (TCTE3) is a novel marker for pancreatobiliary carcinomas. Hum Pathol 2017; 70:62-69. [PMID: 29079176 DOI: 10.1016/j.humpath.2017.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
Several markers of pancreatobiliary lineage have been described in the literature. However, none have demonstrated sufficient specificity and sensitivity to warrant diagnostic use. We evaluated the utility of T-complex-associated-testis-expressed 3 (TCTE3) as a pancreatobiliary marker. A set of 247 adenocarcinomas from the gastrointestinal (GI) tract was identified including 18 from the gastroesophageal junction (GEJ), 29 stomach, 17 ampullary, 62 pancreatic, and 16 common bile duct and gallbladder (CBD/GB), 13 non-ampullary small intestine, 32 colon, and 24 rectum. The remainder consisted of 16 cholangiocarcinomas and 20 hepatocellular carcinomas (HCC). Additionally, 163 adenocarcinomas from the breast, gynecologic tract, prostate, urothelium, kidney, and lung were stained for comparison. Immunohistochemistry for TCTE3 and other gastrointestinal markers was performed. Positive expression of TCTE3 was characterized by a strong, well-defined membranous pattern with or without weak cytoplasmic staining. Expression was identified in the normal epithelial cells of pancreatobiliary tree, but staining was absent in normal epithelial cells of esophagus, stomach, and intestine. Hepatocytes, pancreatic acini and islets and other non-epithelial cells were also negative for staining. TCTE3 was expressed in 93.5% of pancreatic ductal adenocarcinomas, 37.5% of CBD/GB adenocarcinomas, 50% of cholangiocarcinomas, 76.4% of ampullary adenocarcinomas, and 33.3% of GEJ adenocarcinomas. Only 3.5% of the gastric, 7.7% of non-ampullary small intestinal and 6.25% of colonic tumors exhibited positive staining. Expression was absent in rectal carcinomas and HCCs. These results suggest that TCTE3 is a useful marker of pancreatobiliary differentiation and may aid in distinguishing these tumors from gastric and intestinal primary tumors.
Collapse
Affiliation(s)
- Chaohui Lisa Zhao
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Yiang Hui
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Li Juan Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Kara Lombardo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903.
| |
Collapse
|
12
|
Vicens A, Borziak K, Karr TL, Roldan ERS, Dorus S. Comparative Sperm Proteomics in Mouse Species with Divergent Mating Systems. Mol Biol Evol 2017; 34:1403-1416. [PMID: 28333336 PMCID: PMC5435083 DOI: 10.1093/molbev/msx084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sexual selection is the pervasive force underlying the dramatic divergence of sperm form and function. Although it has been demonstrated that testis gene expression evolves rapidly, exploration of the proteomic basis of sperm diversity is in its infancy. We have employed a whole-cell proteomics approach to characterize sperm divergence among closely related Mus species that experience different sperm competition regimes and exhibit pronounced variation in sperm energetics, motility and fertilization capacity. Interspecific comparisons revealed significant abundance differences amongst proteins involved in fertilization capacity, including those that govern sperm-zona pellucida interactions, axoneme components and metabolic proteins. Ancestral reconstruction of relative testis size suggests that the reduction of zona pellucida binding proteins and heavy-chain dyneins was associated with a relaxation in sperm competition in the M. musculus lineage. Additionally, the decreased reliance on ATP derived from glycolysis in high sperm competition species was reflected in abundance decreases in glycolytic proteins of the principle piece in M. spretus and M. spicilegus. Comparison of protein abundance and stage-specific testis expression revealed a significant correlation during spermatid development when dynamic morphological changes occur. Proteins underlying sperm diversification were also more likely to be subject to translational repression, suggesting that sperm composition is influenced by the evolution of translation control mechanisms. The identification of functionally coherent classes of proteins relating to sperm competition highlights the utility of evolutionary proteomic analyses and reveals that both intensified and relaxed sperm competition can have a pronounced impact on the molecular composition of the male gamete.
Collapse
Affiliation(s)
- Alberto Vicens
- Reproductive Biology and Evolution Group, Department of Biodiversity and Biological Evolution, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Kirill Borziak
- Department of Biology, Syracuse University, Syracuse, NY
| | - Timothy L Karr
- Department of Genomics and Genetic Resources, Kyoto Institute of Technology, Kyoto, Japan
| | - Eduardo R S Roldan
- Reproductive Biology and Evolution Group, Department of Biodiversity and Biological Evolution, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY
| |
Collapse
|
13
|
Rahman MS, Kwon WS, Yoon SJ, Park YJ, Ryu BY, Pang MG. A novel approach to assessing bisphenol-A hazards using an in vitro model system. BMC Genomics 2016; 17:577. [PMID: 27507061 PMCID: PMC4977886 DOI: 10.1186/s12864-016-2979-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022] Open
Abstract
Background Although the toxicological impacts of the xenoestrogen bisphenol-A (BPA) have been studied extensively, but the mechanism of action is poorly understood. Eventually, no standard method exists for evaluating the possible health hazards of BPA exposure. Considering mice spermatozoa as a potential in vitro model, we investigated the effects of BPA exposure (0.0001, 0.01, 1, and 100 μM for 6 h) on spermatozoa and the related mechanisms of action. The same doses were also employed to evaluate protein profiles of spermatozoa as a means to monitor their functional affiliation to diseases. Results Our results demonstrated that high concentrations of BPA negatively affect sperm motility, viability, mitochondrial functions, and intracellular ATP levels by activating the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase-A pathways. Moreover, short-term exposure of spermatozoa to high concentrations of BPA induced differential expressions of 24 proteins. These effects appeared to be caused by protein degradation and phosphorylation in spermatozoa. Proteins differentially expressed in spermatozoa from BPA treatment groups are putatively involved in the pathogenesis of several diseases, mainly cancer, carcinoma, neoplasm, and infertility. Conclusions Based on these results, we propose that BPA adversely affects sperm function by the activation of several kinase pathways in spermatozoa. In addition, BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa, subsequently involve in the pathogenesis of many diseases. Therefore, we anticipated that current strategy might broadly consider for the health hazards assessment of other toxicological agents. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2979-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Sung-Jae Yoon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea.
| |
Collapse
|
14
|
Swift DG, Dunning LT, Igea J, Brooks EJ, Jones CS, Noble LR, Ciezarek A, Humble E, Savolainen V. Evidence of positive selection associated with placental loss in tiger sharks. BMC Evol Biol 2016; 16:126. [PMID: 27296413 PMCID: PMC4906603 DOI: 10.1186/s12862-016-0696-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All vertebrates initially feed their offspring using yolk reserves. In some live-bearing species these yolk reserves may be supplemented with extra nutrition via a placenta. Sharks belonging to the Carcharhinidae family are all live-bearing, and with the exception of the tiger shark (Galeocerdo cuvier), develop placental connections after exhausting yolk reserves. Phylogenetic relationships suggest the lack of placenta in tiger sharks is due to secondary loss. This represents a dramatic shift in reproductive strategy, and is likely to have left a molecular footprint of positive selection within the genome. RESULTS We sequenced the transcriptome of the tiger shark and eight other live-bearing shark species. From this data we constructed a time-calibrated phylogenetic tree estimating the tiger shark lineage diverged from the placental carcharhinids approximately 94 million years ago. Along the tiger shark lineage, we identified five genes exhibiting a signature of positive selection. Four of these genes have functions likely associated with brain development (YWHAE and ARL6IP5) and sexual reproduction (VAMP4 and TCTEX1D2). CONCLUSIONS Our results indicate the loss of placenta in tiger sharks may be associated with subsequent adaptive changes in brain development and sperm production.
Collapse
Affiliation(s)
- Dominic G Swift
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Berkshire, SL5 7PY, UK.
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Javier Igea
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Edward J Brooks
- Shark Research & Conservation Program, Cape Eleuthera Institute, PO Box EL - 26029, Eleuthera, the Bahamas
| | - Catherine S Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - Leslie R Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - Adam Ciezarek
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Berkshire, SL5 7PY, UK
| | - Emily Humble
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Berkshire, SL5 7PY, UK.
| |
Collapse
|
15
|
Defaus S, Avilés M, Andreu D, Gutiérrez-Gallego R. Identification of Bovine Sperm Surface Proteins Involved in Carbohydrate-mediated Fertilization Interactions. Mol Cell Proteomics 2016; 15:2236-51. [PMID: 27094474 DOI: 10.1074/mcp.m115.057703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Glycan-protein interactions play a key role in mammalian fertilization, but data on the composition and identities of protein complexes involved in fertilization events are scarce, with the added complication that the glycans in such interactions tend to differ among species. In this study we have used a bovine model to detect, characterize and identify sperm lectins relevant in fertilization. Given the complexity of the sperm-toward-egg journey, two important aspects of the process, both primarily mediated by protein-sugar interactions, have been addressed: (1) formation of the sperm reservoir in the oviductal epithelium, and (2) gamete recognition (oocyte-sperm interaction). Using whole sperm cells and a novel affinity capture method, several groups of proteins with different glycan specificities, including 58 hitherto unreported as lectins, have been identified in sperm surface, underscoring both the efficacy of our selective approach and the complex composition and function of sperm. Based on these results and previous data, we suggest that sperm surface proteins play significant roles in fertilization events such as membrane remodeling, transport, protection and function, thus supporting the hypothesis that rather than a simple lock-and-key model, mammalian fertilization relies on a complex interactome involving multiple ligands/receptors and recognition/binding events.
Collapse
Affiliation(s)
- Sira Defaus
- From the ‡Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Manuel Avilés
- §Department of Cell Biology and Histology, School of Medicine, University of Murcia and IMIB, Campus Mare Nostrum, 30071 Murcia, Spain
| | - David Andreu
- From the ‡Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain;
| | - Ricardo Gutiérrez-Gallego
- From the ‡Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain;
| |
Collapse
|
16
|
Abstract
Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution. Deficiency in the axonemal structure causes defects in sperm motility, and often leads to male infertility. It has been known since the 1970s that, in some cases, male infertility is linked with other symptoms or diseases such as Kartagener syndrome. Given that these links are mostly caused by deficiencies in the common components of cilia and flagella, they are called "immotile cilia syndrome" or "primary ciliary dyskinesia," or more recently, "ciliopathy," which includes deficiencies in primary and sensory cilia. Here, we review the structure of the sperm flagellum and epithelial cilia in the human body, and discuss how male fertility is linked to ciliopathy.
Collapse
|
17
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
18
|
Parveen Z, Bibi Z, Bibi N, Neesen J, Rashid S. Disruption of murine Tcte3-3 induces tissue specific apoptosis via co-expression of Anxa5 and Pebp1. Comput Biol Chem 2014; 53PB:214-225. [PMID: 25462330 DOI: 10.1016/j.compbiolchem.2014.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023]
Abstract
Programmed cell death or apoptosis plays a vital physiological role in the development and homeostasis. Any discrepancy in apoptosis may trigger testicular and neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. Tcte3 (T-complex testis expressed 3) is an accessory component of axonemal and cytoplasmic dynein which expresses predominantly in meiotic and postmeiotic germ cells. It plays an essential role during spermatogenesis; however, to explore its diverse and complex functioning in male germ cell apoptosis, requires further prosecution. Here, 2D-gel electrophoresis, mass spectrometry and qRT-PCR analyses were performed to elucidate the differential expression of genes, in both wild-type and homozygous Tcte3-3 mice. We observed an increased expression of Tcte3 in homozygotes as compared to wild-type testes. Perpetually, an increased expression of Anxa5 and Pebp1, while a lower expression of Rsph1 was detected in Tcte3-3-/- mice. We propose that over-expression of Pebp1 and Anxa5 in Tcte3-3-/- testes might be due to increased apoptosis. To evaluate this possibility, testes specific microarray data set extracted from NCBI gene ontology omnibus (GEO) was used to cluster the possible co-expression partners of Tcte3. Further functional coherence of compiled candidate genes was monitored computationally by studying the common TFBS overlapped at the regulatory regions. Differential expression of Tcte3-3 and its involvement in apoptosis may provide a basis for the investigation of transcriptional specificities of other Tcte3 paralogs (Tcte3-1 and Tcte3-2). A complete understanding of controlling factors which have implications in regulating tissue-specific Tcte3 expression would provide additional insights into the gene control events. The collective knowledge may prove useful for the development of novel therapeutic regimen and would open new avenues in defining selective roles of Tcte3 in germ cell development.
Collapse
Affiliation(s)
- Zahida Parveen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zohra Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Juergen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
19
|
Abstract
Early in embryogenesis, cells that are destined to become germ cells take on a different destiny from other cells in the embryo. The germ cells are not programmed to perform "vital" functions but to perpetuate the species through the transfer of genetic materials to the next generation. To fulfill their destiny, male germ cells undergo meiosis and extensive morphogenesis that transforms the round-shaped cells into freely motile sperm propelled by a beating flagellum to seek out their missing half. Apparently, extra genes and additional regulatory mechanisms are required to achieve all these unique features, and an estimated 11 % of genes are involved in fertility in Drosophila (Hackstein et al., Trends Genet 16(12):565-572, 2000). If comparative numbers of male fertility genes are needed in mammals, extra risks of male fertility problems are associated with disruptive mutations in those genes. Among human male infertility cases, approximately 22 % were classified as "idiopathic," a term used to describe diseases of unknown causes, with idiopathic oligozoospermia being the most common semen abnormality (11.2 %) (Comhaire et al., Int J Androl (Suppl 7):1-53, 1987). "Idiopathic" is a widely used adjective that is used to reflect our lack of understanding of the genetics of male fertility. Fortunately, after more than two decades of phenotypic studies using knockout mice and identifying genes disrupted in spontaneous mutant mice, we have unveiled new and unexpected aspects of crucial gene functions for fertility. Other efforts to categorize genes involved in male fertility in mammals have suggested a total of 1,188 genes (Hermo et al., Microsc Res Tech 73(4):241-494, 2010). Although intracytoplasmic sperm injection (ICSI) can be used to bypass many fertilization obstacles to achieve fertilization with only a few extracted sperm, the widespread use of ICSI without proper knowledge for genetic testing and counseling could still potentially propagate pleiotropic gene mutations associated with male infertility and other genetic diseases (Alukal and Lamb, Urol Clin North Am 35(2):277-288, 2008). In this chapter, we give a brief account of major events during the development of male germ cells and focus on the functions of several crucial genes that have been studied in mutant mouse models and are potential causes of human male infertility.
Collapse
Affiliation(s)
- Yi-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
20
|
Fortes MRS, Reverter A, Kelly M, McCulloch R, Lehnert SA. Genome-wide association study for inhibin, luteinizing hormone, insulin-like growth factor 1, testicular size and semen traits in bovine species. Andrology 2013; 1:644-50. [PMID: 23785023 DOI: 10.1111/j.2047-2927.2013.00101.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/28/2022]
Abstract
The fertility of young bulls impacts on reproduction rates, farm profit and the rate of genetic progress in beef herds. Cattle researchers and industry therefore routinely collect data on the reproductive performance of bulls. Genome-wide association studies were carried out to identify genomic regions and genes associated with reproductive traits measured during the pubertal development of Tropical Composite bulls, from 4 to 24 months of age. Data from 1 085 bulls were collected for seven traits: blood hormone levels of inhibin at 4 months (IN), luteinizing hormone following a gonadotropin releasing hormone challenge at 4 months (LH), insulin-like growth factor 1 at 6 months (IGF1), scrotal circumference at 12 months (SC), sperm motility at 18 months (MOT), percentage of normal spermatozoa at 24 months (PNS) and age at a scrotal circumference of 26 cm (AGE26, or pubertal age). Data from 729 068 single-nucleotide polymorphisms were used in the association analysis. Significant polymorphism associations were discovered for IN, IGF1, SC, AGE26 and PNS. Based on these associations, INHBE, INHBC and HELB are proposed as candidate genes for IN regulation. Polymorphisms associated with IGF1 mapped to the PLAG1 gene region, validating a reported quantitative trait locus on chromosome 14 for IGF1. The X chromosome contained most of the significant associations found for SC, AGE26 and PNS. These findings will contribute to the identification of diagnostic genetic markers and informed genomic selection strategies to assist breeding of cattle with improved fertility. Furthermore, this work provides evidence contributing to gene function annotation in the context of male fertility.
Collapse
Affiliation(s)
- M R S Fortes
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Animal Science, Gatton, Qld, Australia
| | | | | | | | | |
Collapse
|
21
|
Fortes MR, Reverter A, Hawken RJ, Bolormaa S, Lehnert SA. Candidate Genes Associated with Testicular Development, Sperm Quality, and Hormone Levels of Inhibin, Luteinizing Hormone, and Insulin-Like Growth Factor 1 in Brahman Bulls1. Biol Reprod 2012; 87:58. [DOI: 10.1095/biolreprod.112.101089] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Dev Biol 2011; 357:235-47. [PMID: 21740898 DOI: 10.1016/j.ydbio.2011.06.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
Abstract
Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function.
Collapse
|
23
|
Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011; 17:524-38. [PMID: 21586547 DOI: 10.1093/molehr/gar034] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sperm motility is necessary for the transport of male DNA to eggs in species with both external and internal fertilization. Flagella comprise several proteins for generating and regulating motility. Central cytoskeletal structures called axonemes have been well conserved through evolution. In mammalian sperm flagella, two accessory structures (outer dense fiber and the fibrous sheath) surround the axoneme. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into outer and inner arm dyneins according to positioning on the doublet microtubule. Outer and inner arm dyneins play different roles in the production and regulation of flagellar motility. Several regulatory mechanisms are known for both dyneins, which are important in motility activation and chemotaxis at fertilization. Although dynein itself has certain properties that contribute to the formation and propagation of flagellar bending, other axonemal structures-specifically, the radial spoke/central pair apparatus-have essential roles in the regulation of flagellar bending. Recent genetic and proteomic studies have explored several new components of axonemes and shed light on the generation and regulation of sperm motility during fertilization.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
| |
Collapse
|
24
|
Teshiba R, Masumoto K, Esumi G, Nagata K, Kinoshita Y, Tajiri T, Taguchi T, Yamamoto K. Identification of TCTE3 as a gene responsible for congenital diaphragmatic hernia using a high-resolution single-nucleotide polymorphism array. Pediatr Surg Int 2011; 27:193-8. [PMID: 21085971 DOI: 10.1007/s00383-010-2778-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) is a birth defect of the diaphragm associated with pulmonary hypoplasia. Although genetic factors have been suggested to play a role, the etiology of CDH is still largely unknown. In this study, we analyzed copy number variants (CNVs) using a single-nucleotide polymorphism (SNP) array to examine whether microdeletions contribute to the pathogenesis of this disease. METHODS A total of 28 CDH patients, including 24 isolated and 4 non-isolated cases, were available. We performed CNV analysis using high-resolution SNP arrays (370K, 550K, 660K; Illumina Inc.) and CNstream software. Deletions in loci that have been suggested in previous studies to contain candidate genes affecting CDH were analyzed. RESULTS We detected 335, 6 and 133 deletions specific for patients in 14 (350K array), 3 (550K) and 11 (660K) cases, respectively. Among these deletions, no segments included the previously suggested candidate genes with the exception of an 18-kb deletion observed in the candidate locus 6q27 in two non-isolated patients. This deleted region contains exon 4 of the t-complex-associated-testis-expressed 3 (TCTE3) gene. CONCLUSION Because TCTE3 encodes a putative light chain of the outer dynein arm of cilia and human diseases caused by ciliary dysfunction show various phenotypes including skeletal defect, TCTE3 may be a genetic candidate influencing CDH.
Collapse
Affiliation(s)
- Risa Teshiba
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|