1
|
Kim EE, Shekhar A, Ramachandran J, Khodadadi-Jamayran A, Liu FY, Zhang J, Fishman GI. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 2023; 150:dev202054. [PMID: 37787076 PMCID: PMC10652039 DOI: 10.1242/dev.202054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
Collapse
Affiliation(s)
- Eugene E. Kim
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jayalakshmi Ramachandran
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Davies GCG, Dedi N, Jones PS, Kevorkian L, McMillan D, Ottone C, Schulze MSED, Scott-Tucker A, Tewari R, West S, Wright M, Rowley TF. Discovery of ginisortamab, a potent and novel anti-gremlin-1 antibody in clinical development for the treatment of cancer. MAbs 2023; 15:2289681. [PMID: 38084840 DOI: 10.1080/19420862.2023.2289681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gremlin-1, a high-affinity antagonist of bone morphogenetic proteins (BMP)-2, -4, and -7, is implicated in tumor initiation and progression. Increased gremlin-1 expression, and therefore suppressed BMP signaling, correlates with poor prognosis in a range of cancer types. A lack of published work using therapeutic modalities has precluded the testing of the hypothesis that blocking the gremlin-1/BMP interaction will provide benefits to patients. To address this shortfall, we developed ginisortamab (UCB6114), a first-in-class clinical anti-human gremlin-1 antibody, currently in clinical development for the treatment of cancer, along with its murine analog antibody Ab7326 mouse immunoglobulin G1 (mIgG1). Surface plasmon resonance assays revealed that ginisortamab and Ab7326 mIgG1 had similar affinities for human and mouse gremlin-1, with mean equilibrium dissociation constants of 87 pM and 61 pM, respectively. The gremlin-1/Ab7326 antigen-binding fragment (Fab) crystal structure revealed a gremlin-1 dimer with a Fab molecule bound to each monomer that blocked BMP binding. In cell culture experiments, ginisortamab fully blocked the activity of recombinant human gremlin-1, and restored BMP signaling pathways in human colorectal cancer (CRC) cell lines. Furthermore, in a human CRC - fibroblast co-culture system where gremlin-1 is produced by the fibroblasts, ginisortamab restored BMP signaling in both the CRC cells and fibroblasts, demonstrating its activity in a relevant human tumor microenvironment model. The safety and efficacy of ginisortamab are currently being evaluated in a Phase 1/2 clinical trial in patients with advanced solid tumors (NCT04393298).
Collapse
|
3
|
Zhou Y, Richard S, Batchelor NJ, Oorschot DE, Anderson GM, Pankhurst MW. Anti-Müllerian hormone-mediated preantral follicle atresia is a key determinant of antral follicle count in mice. Hum Reprod 2022; 37:2635-2645. [PMID: 36107143 PMCID: PMC9627584 DOI: 10.1093/humrep/deac204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/23/2022] [Indexed: 07/21/2023] Open
Abstract
STUDY QUESTION Does anti-Müllerian hormone (AMH) induce preantral follicle atresia in mice? SUMMARY ANSWER The present findings suggest that AMH-mediated follicle atresia only occurs in early follicles before they become sensitive to FSH. WHAT IS KNOWN ALREADY Most prior studies have investigated the ability of AMH to inhibit primordial follicle activation. Our previous study showed that AMH-overexpressing mice had fewer preantral follicles than expected after accounting for primordial follicle inhibition but the reason for this was not determined. STUDY DESIGN, SIZE, DURATION Cross-sectional-control versus transgenic/knockout mouse studies were carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS Studies were conducted on female wild-type (Amh+/+), AMH-knockout (Amh-/-) and AMH overexpressing (Thy1.2-AMHTg/0) mice on a C57Bl/6J background (age: 42-120 days). The follicle counts were conducted for primordial, transitioning, primary, secondary and antral follicles in Amh-/- and Amh+/+ mice. After confirming that follicle development speeds were identical (proliferating cell nuclear antigen immunohistochemistry), the ratio of follicles surviving beyond each stage of folliculogenesis was determined in both genotypes. Evidence for increased rates of preantral follicle atresia was assessed by active caspase-3 immunohistochemistry in wild-type and Thy1.2-AMHTg/0 mice. MAIN RESULTS AND THE ROLE OF CHANCE Amh -/- mice at 100-120 days of age had lower primordial follicle counts but higher primordial follicle activation rates compared to Amh+/+ mice. These counteracting effects led to equivalent numbers of primordial follicles transitioning to the primary stage in Amh+/+ and Amh-/- mice. Despite this, Amh+/+ mice had fewer primary, secondary, small antral and medium antral follicles than Amh-/- mice indicating differing rates of developing follicle atresia between genotypes. Cleaved caspase-3 immunohistochemistry in Thy1.2-AMHTg/0 ovaries revealed high rates of granulosa cell and oocyte apoptosis in late primary/early secondary follicles of Thy1.2-AMHTg/0 mice. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The findings were shown only in one species and additional research will be required to determine generalizability to other species. WIDER IMPLICATIONS OF THE FINDINGS This study is consistent with prior studies showing that Amh-/- mice have increased primordial follicle activation but these new findings demonstrate that AMH-mediated preantral follicle atresia is a predominant cause of the increased small antral follicle counts in Amh-/- mice. This suggests that the role of AMH is not to conserve the ovarian reserve to prolong fertility, but instead to prevent the antral follicle pool from becoming too large. While this study may demonstrate a new function for AMH, the biological purpose of this function requires further investigation, particularly in mono-ovulatory species. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Health Research Council of New Zealand and the University of Otago. No competing interests to declare.
Collapse
Affiliation(s)
- Y Zhou
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - S Richard
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - N J Batchelor
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - D E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - G M Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - M W Pankhurst
- Correspondence address. Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand. Tel: +64-3-479-7440; E-mail:
| |
Collapse
|
4
|
Abstract
Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in reproductive development and regulation. Its chemical and mechanistic similarities to members of the Transforming Growth Factor β (TGF-β) family have led to its placement within this signaling family. As a member of the TGF-β family, AMH exists as a noncovalent complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain. To produce a signal, the mature domain will bind to the extracellular domains of two type I and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will be discussed in this review, AMH possesses several unique characteristics which set it apart from other ligands within the TGF-β family. In particular, AMH has a dedicated type II receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has remained largely uncharacterized, despite being the largest prodomain within the family. Recent advancements in the field have provided valuable insight into the molecular mechanisms of AMH signaling, however there are still many areas of AMH signaling not understood. Herein, we will discuss what is known about the biochemistry of AMH and AMHR2, focusing on recent advances in understanding the unique characteristics of AMH signaling and the molecular mechanisms of receptor engagement.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N. Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
5
|
Maher JY, Islam MS, Yin O, Brennan J, Gough E, Driggers P, Segars J. The role of Hippo pathway signaling and A-kinase anchoring protein 13 in primordial follicle activation and inhibition. F&S SCIENCE 2022; 3:118-129. [PMID: 35560009 PMCID: PMC11096729 DOI: 10.1016/j.xfss.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine whether the mechanotransduction and pharmacomanipulation of A-kinase anchoring protein 13 (AKAP13) altered Hippo signaling pathway transcription and growth factors in granulosa cells. Primary ovarian insufficiency is the depletion or dysfunction of primordial ovarian follicles. In vitro activation of ovarian tissue in patients with primary ovarian insufficiency alters the Hippo and phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B/forkhead box O3 pathways. A-kinase anchoring protein 13 is found in granulosa cells and may regulate the Hippo pathway via F-actin polymerization resulting in altered nuclear yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif coactivators and Tea domain family (TEAD) transcription factors. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S) None. INTERVENTION(S) COV434 cells, derived from a primary human granulosa tumor cell line, were studied under different cell density and well stiffness conditions. Cells were transfected with a TEAD-luciferase (TEAD-luc) reporter as well as expression constructs for AKAP13 or AKAP13 mutants and then treated with AKAP13 activators, inhibitors, and follicle-stimulating hormone. MAIN OUTCOME MEASURE(S) TEAD gene activation or inhibition was measured by TEAD-luciferase assays. The messenger ribonucleic acid levels of Hippo pathway signaling molecules, including connective tissue growth factor (CTGF), baculoviral inhibitors of apoptosis repeat-containing 5, Ankyrin repeat domain-containing protein 1, YAP1, and TEAD1, were measured by quantitative real-time polymerase chain reaction. Protein expressions for AKAP13, CTGF, YAP1, and TEAD1 were measured using Western blot. RESULT(S) Increased TEAD-luciferase activity and expression of markers for cellular growth were associated with decreased cell density, increased well stiffness, and AKAP13 activator (A02) treatment. Additionally, decreased TEAD-luc activity and expression of markers for cellular growth were associated with AKAP13 inhibitor (A13) treatment, including a reduced expression of the BIRC5 and ANKRD1 (YAP-responsive genes) transcript levels and CTGF protein levels. There were no changes in TEAD-luc with follicle-stimulating hormone treatment, supporting Hippo pathway involvement in the gonadotropin-independent portion of folliculogenesis. CONCLUSION(S) These findings suggest that AKAP13 mediates Hippo-regulated changes in granulosa cell growth via mechanotransduction and pharmacomanipulation. The AKAP13 regulation of the Hippo pathway may represent a potential target for regulation of follicle activation.
Collapse
Affiliation(s)
- Jacqueline Yano Maher
- Johns Hopkins School of Medicine, Baltimore, Maryland; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Children's National Medical Center, Washington, D.C..
| | | | - Ophelia Yin
- David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - Ethan Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Paul Driggers
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James Segars
- Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still Open. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042099. [PMID: 35206286 PMCID: PMC8871992 DOI: 10.3390/ijerph19042099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Research on proteins and peptides that play roles in metabolic regulation, which may be considered potential insulin resistance markers in some medical conditions, such as diabetes mellitus, obesity and polycystic ovarian syndrome (PCOS), has recently gained in interest. PCOS is a common endocrine disorder associated with hyperandrogenemia and failure of ovulation, which is often accompanied by metabolic abnormalities, including obesity, dyslipidemia, hyperinsulinemia, and insulin resistance. In this review, we focus on less commonly known peptides/proteins and investigate their role as potential biomarkers for insulin resistance in females affected by PCOS. We summarize studies comparing the serum fasting concentration of particular agents in PCOS individuals and healthy controls. Based on our analysis, we propose that, in the majority of studies, the levels of nesfastin-1, myonectin, omentin, neudesin were decreased in PCOS patients, while the levels of the other considered agents (e.g., preptin, gremlin-1, neuregulin-4, xenopsin-related peptide, xenin-25, and galectin-3) were increased. However, there also exist studies presenting contrary results; in particular, most data existing for lipocalin-2 are inconsistent. Therefore, further research is required to confirm those hypotheses, as well as to elucidate the involvement of these factors in PCOS-related metabolic complications.
Collapse
|
7
|
Luo X, Chang HM, Yi Y, Sun Y, Leung PCK. Bone morphogenetic protein 2 inhibits growth differentiation factor 8-induced cell signaling via upregulation of gremlin2 expression in human granulosa-lutein cells. Reprod Biol Endocrinol 2021; 19:173. [PMID: 34838049 PMCID: PMC8626944 DOI: 10.1186/s12958-021-00854-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP2), growth differentiation factor 8 (GDF8) and their functional receptors are expressed in human ovarian follicles, and these two intrafollicular factors play essential roles in regulating follicle development and luteal function. As BMP antagonists, gremlin1 (GREM1) and gremlin2 (GREM2) suppress BMP signaling through blockage of ligand-receptor binding. However, whether BMP2 regulates the expression of GREM1 and GREM2 in follicular development remains to be determined. METHODS In the present study, we investigated the effect of BMP2 on the expression of GREM1 and GREM2 and the underlying mechanisms in human granulosa-lutein (hGL) cells. An established immortalized human granulosa cell line (SVOG) and primary hGL cells were used as study models. The expression of GREM1 and GREM2 were examined following cell incubation with BMP2 at different concentrations and time courses. The TGF-β type I inhibitors (dorsomorphin, DMH-1 and SB431542) and small interfering RNAs targeting ALK2, ALK3, SMAD2/3, SMAD1/5/8 and SMAD4 were used to investigate the involvement of the SMAD-dependent pathway. RESULTS Our results showed that BMP2 significantly increased the expression of GREM2 (but not GREM1) in a dose- and time-dependent manner. Using a dual inhibition approach combining kinase inhibitors and siRNA-mediated knockdown, we found that the BMP2-induced upregulation of GREM2 expression was mediated by the ALK2/3-SMAD1/5-SMAD4 signaling pathway. Moreover, we demonstrated that BMP2 pretreatment significantly attenuated the GDF8-induced phosphorylation of SMAD2 and SMAD3, and this suppressive effect was reversed by knocking down GREM2 expression. CONCLUSIONS Our findings provide new insight into the molecular mechanisms by which BMP2 modulates the cellular activity induced by GDF8 through the upregulated expression of their antagonist (GREM2).
Collapse
Affiliation(s)
- Xiaoyan Luo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, Zhengzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, Zhengzhou, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
8
|
di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian Hormone in Female Reproduction. Endocr Rev 2021; 42:753-782. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, was shown to be synthesized by the ovary in the 1980s. This article reviews the main findings of the past 20 years on the regulation of the expression of AMH and its specific receptor AMHR2 by granulosa cells, the mechanism of action of AMH, the different roles it plays in the reproductive organs, its clinical utility, and its involvement in the principal pathological conditions affecting women. The findings in respect of regulation tell us that AMH and AMHR2 expression is mainly regulated by bone morphogenetic proteins, gonadotropins, and estrogens. It has now been established that AMH regulates the different steps of folliculogenesis and that it has neuroendocrine effects. On the other hand, the importance of serum AMH as a reliable marker of ovarian reserve and as a useful tool in the prediction of the polycystic ovary syndrome (PCOS) and primary ovarian failure has also been acknowledged. Last but not least, a large body of evidence points to the involvement of AMH in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, Paris, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| | - Joëlle Taieb
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| |
Collapse
|
9
|
Abstract
The reproductive lifespan of female mammals is limited and ultimately depends on the production of a sufficient number of high quality oocytes from a pool of non-growing primordial follicles that are set aside during embryonic and perinatal development. Recent studies show multiple signaling pathways are responsible for maintaining primordial follicle arrest and regulation of activation. Identification of these pathways and their regulatory mechanisms is essential for developing novel treatments for female infertility, improving existing in vitro fertilization techniques, and more recently, restoring the function of cryopreserved ovarian tissue. This review focuses on recent developments in transforming growth factor beta (TGFβ) family signaling in ovarian follicle development and its potential application to therapeutic design. Mouse models have been an essential tool for discovering genes critical for fertility, and recent advancements in human organ culture have additionally allowed for the translation of murine discoveries into human research and clinical settings.
Collapse
|
10
|
Rydze RT, Patton B, Briley SM, Salazar-Torralba H, Gipson G, James R, Rajkovic A, Thompson T, Pangas SA. Deletion of Gremlin-2 alters estrous cyclicity and disrupts female fertility in mice. Biol Reprod 2021; 105:1205-1220. [PMID: 34333627 DOI: 10.1093/biolre/ioab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Members of the differential screening-selected gene aberrative in neuroblastoma (DAN) protein family are developmentally conserved extracellular binding proteins that antagonize bone morphogenetic protein (BMP) signaling. This protein family includes the Gremlin proteins, GREM1 and GREM2, which have key functions during embryogenesis and adult physiology. While BMPs play essential roles in ovarian follicle development, the role of the DAN family in female reproductive physiology is less understood. We generated mice null for Grem2 to determine its role in female reproduction in addition to screening patients with primary ovarian insufficiency for variants in GREM2. Grem2-/- mice are viable, but female Grem2-/- mice have diminished fecundity and irregular estrous cycles. This is accompanied by significantly reduced production of ovarian anti-Müllerian hormone (AMH) from small growing follicles, leading to a significant decrease in serum AMH. Surprisingly, as AMH is a well-established marker of the ovarian reserve, morphometric analysis of ovarian follicles showed maintenance of primordial follicles in Grem2-/- mice like wild type littermates. While Grem2 mRNA transcripts were not detected in the pituitary, Grem2 is expressed in hypothalami of wild type female mice, suggesting the potential for dysfunction in multiple tissues composing the hypothalamic-pituitary-ovarian axis that contribute to the subfertility phenotype. Additionally, screening 106 women with primary ovarian insufficiency identified one individual with a heterozygous variant in GREM2 that lies within the predicted BMP-GREM2 interface. In total, these data suggest Grem2 is necessary for female fecundity by playing a novel role in regulating the HPO axis and contributing to female reproductive disease.
Collapse
Affiliation(s)
- Robert T Rydze
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Baylor College of Medicine and Texas Children's Hospital Pavilion for Women, Houston, TX, 77030, USA.,Graduate Program in Clinical Scientist Training, Baylor College of Medicine, Houston, TX 77030
| | - Bethany Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Shawn M Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | | | - Gregory Gipson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rebecca James
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Aleksandar Rajkovic
- Department of Pathology, University of California, San Francisco, USA, Department of OB-GYN, University of California, San Francisco, USA, Institute of Human Genetics, University of California, San Francisco, USA
| | - Thomas Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Stephanie A Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
11
|
Mayère C, Neirijnck Y, Sararols P, Rands CM, Stévant I, Kühne F, Chassot AA, Chaboissier MC, Dermitzakis ET, Nef S. Single-cell transcriptomics reveal temporal dynamics of critical regulators of germ cell fate during mouse sex determination. FASEB J 2021; 35:e21452. [PMID: 33749946 DOI: 10.1096/fj.202002420r] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Despite the importance of germ cell (GC) differentiation for sexual reproduction, the gene networks underlying their fate remain unclear. Here, we comprehensively characterize the gene expression dynamics during sex determination based on single-cell RNA sequencing of 14 914 XX and XY mouse GCs between embryonic days (E) 9.0 and 16.5. We found that XX and XY GCs diverge transcriptionally as early as E11.5 with upregulation of genes downstream of the bone morphogenic protein (BMP) and nodal/Activin pathways in XY and XX GCs, respectively. We also identified a sex-specific upregulation of genes associated with negative regulation of mRNA processing and an increase in intron retention consistent with a reduction in mRNA splicing in XY testicular GCs by E13.5. Using computational gene regulation network inference analysis, we identified sex-specific, sequential waves of putative key regulator genes during GC differentiation and revealed that the meiotic genes are regulated by positive and negative master modules acting in an antagonistic fashion. Finally, we found that rare adrenal GCs enter meiosis similarly to ovarian GCs but display altered expression of master genes controlling the female and male genetic programs, indicating that the somatic environment is important for GC function. Our data are available on a web platform and provide a molecular roadmap of GC sex determination at single-cell resolution, which will serve as a valuable resource for future studies of gonad development, function, and disease.
Collapse
Affiliation(s)
- Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,CNRS, Inserm, iBV, Université Côte d'Azur, Nice, France
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | | | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Lv Y, Cao RC, Liu HB, Su XW, Lu G, Ma JL, Chan WY. Single-Oocyte Gene Expression Suggests That Curcumin Can Protect the Ovarian Reserve by Regulating the PTEN-AKT-FOXO3a Pathway. Int J Mol Sci 2021; 22:ijms22126570. [PMID: 34207376 PMCID: PMC8235657 DOI: 10.3390/ijms22126570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.
Collapse
Affiliation(s)
- Yue Lv
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Rui-Can Cao
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Hong-Bin Liu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Xian-Wei Su
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jin-Long Ma
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-0531-8565-1166
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Chen Y, Yang W, Shi X, Zhang C, Song G, Huang D. The Factors and Pathways Regulating the Activation of Mammalian Primordial Follicles in vivo. Front Cell Dev Biol 2020; 8:575706. [PMID: 33102482 PMCID: PMC7554314 DOI: 10.3389/fcell.2020.575706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian ovaries consist of follicles as basic functional units. Each follicle comprised an innermost oocyte and several surrounding flattened granulosa cells. Unlike males, according to the initial size of the primordial follicle pool and the rate of its activation and depletion, a female's reproductive life has been determined early in life. Primordial follicles, once activated, will get into an irreversible process of development. Most follicles undergo atretic degeneration, and only a few of them could mature and ovulate. Although there are a lot of researches contributing to exploring the activation of primordial follicles, little is known about its underlying mechanisms. Thus, in this review, we collected the latest papers and summarized the signaling pathways as well as some factors involved in the activation of primordial follicles, hoping to lead to a more profound understanding of the cellular and molecular mechanisms of primordial follicle activation.
Collapse
Affiliation(s)
- Yao Chen
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Shi
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Donghui Huang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Qin N, Tyasi TL, Sun X, Chen X, Zhu H, Zhao J, Xu R. Determination of the roles of GREM1 gene in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical follicles. Theriogenology 2020; 151:28-40. [PMID: 32251937 DOI: 10.1016/j.theriogenology.2020.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Gremlin genes are known members of the DAN family of bone morphogenetic protein (BMP) antagonists, but their functions and regulatory mechanisms in ovarian follicular development of chicken remain unknown. The current study was designed to investigate the mRNA expression patterns of gremlin1 gene (GREM1) and its protein location in the follicles sampled, and to explore the biological effect of GREM1 on the prehierarchical follicular development. This work revealed that chicken GREM1 mRNA exhibits a constant expression level across all the prehierarchical follicles (PFs) from 1-4 mm to 7-8 mm in diameter, and the preovulatory follicles (from F6 to F1) by using RT-qPCR (P > 0.05). The GREM1 protein is predominantly expressed in the oocytes and granulosa cells (GCs) of the PFs by immunohistochemistry. Furthermore, our data demonstrated that siRNA-mediated knockdown of GREM1 in the GCs resulted in a significant reduction in cell proliferation (P < 0.001); conversely, overexpression of GREM1 in the GCs led to a remarkable increase in cell proliferation (P < 0.001). Interestingly, the expression levels of proliferating cell nuclear antigen (PCNA) and cyclin D2 (CCND2) mRNA and proteins were notably increased when GREM1 expression was upregulated in the GCs (P < 0.01), however, the expression levels of CYP11A1 and StAR were markedly downregulated (P < 0.01). The current results showed that GREM1 gene plays a stimulatory role in GC proliferation during growth and development of the prehierarchical follicles in vitro but an inhibitory role in GC differentiation and steroidogenesis of the hen ovary follicles.
Collapse
Affiliation(s)
- Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Thobela Louis Tyasi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
16
|
Harvesting, processing, and evaluation of in vitro-manipulated equine preantral follicles: A review. Theriogenology 2020; 156:283-295. [PMID: 32905900 DOI: 10.1016/j.theriogenology.2020.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
The mammalian ovary is responsible for essential stages of folliculogenesis and hormonal production, regulating the female physiological functions during the menstrual/estrous cycles. The mare has been considered an attractive model for comparative studies due to the striking similarities shared with women regarding in vivo and in vitro folliculogenesis. The ovarian follicular population in horses contains a large number of oocytes enclosed in preantral follicles that are yet to be explored. Therefore, the in vitro manipulation of equine preantral follicles aims to avoid the process of atresia and promote the development of follicles with competent oocytes. In this regard, after ovarian tissue harvesting, the use of appropriate processing techniques, as well as suitable approaches to evaluating equine preantral follicles and ovarian tissue, are necessary. Although high-quality equine ovarian tissue can be obtained from several sources, some critical aspects, such as the age of the animals, ovarian cyclicity, reproductive phase, and the types of ovarian structures, should be considered. Therefore, this review will focus on providing an update on the most current advances concerning the critical factors able to influence equine preantral follicle quality and quantity. Also, the in vivo strategies used to harvest equine ovarian tissue, the approaches to manipulating ovarian tissue post-harvesting, the techniques for processing ovarian tissue, and the classical approaches used to evaluate preantral follicles will be discussed.
Collapse
|
17
|
Koroglu N, Aydogan Mathyk B, Tola EN, Aslan Cetin B, Temel Yuksel I, Dag I, Yetkin Yıldırım G. Gremlin-1 and gremlin-2 levels in polycystic ovary syndrome and their clinical correlations. Gynecol Endocrinol 2019; 35:604-607. [PMID: 30712421 DOI: 10.1080/09513590.2019.1566452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Objective: Gremlin 1 and 2 regulate oocyte primordial follicle transition in animal models. The main objective of this study is to measure the blood levels of Gremlin 1 and 2 in the women with Polycystic Ovary Syndrome (PCOS). We also aimed to evaluate the association of these markers with hormonal and biochemical parameters of PCOS as interrupted folliculogenesis in those women is related to metabolic dysfunction. Material and methods: Fifty women with PCOS were diagnosed according to Rotterdam criteria, and thirty age-matched female controls were included in this prospective study. Gremlin 1 and 2 levels along with hormonal and metabolic parameters were compared between PCOS and control groups. Results: Serum Gremlin 1 levels were significantly higher in the PCOS group than in the control group (p = .001). Gremlin 2 levels were similar between the groups. Besides, there was a significant positive correlation between Gremlin 1 and insulin levels, Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) and waist to hip ratio (WHR) (r = 0.305; r = 0.297; r = 0.303, respectively). Conclusion: Our data suggest that Gremlin 1 may be the key regulator in the pathogenesis of PCOS. In future, Gremlin 1 may be a novel therapeutic target for the treatment of PCOS.
Collapse
Affiliation(s)
- Nadiye Koroglu
- a Department of Obstetrics and Gynecology , Health Sciences University Kanuni Sultan Suleyman Training and Research Hospital , Istanbul , Turkey
| | | | - Esra Nur Tola
- c Department of Obstetrics and Gynecology Suleyman Demirel University Faculty of Medicine , Isparta , Turkey
| | - Berna Aslan Cetin
- a Department of Obstetrics and Gynecology , Health Sciences University Kanuni Sultan Suleyman Training and Research Hospital , Istanbul , Turkey
| | - Ilkbal Temel Yuksel
- a Department of Obstetrics and Gynecology , Health Sciences University Kanuni Sultan Suleyman Training and Research Hospital , Istanbul , Turkey
| | - Ismail Dag
- d Department of Biochemistry , Eyup State Hospital , Istanbul , Turkey
| | - Gonca Yetkin Yıldırım
- a Department of Obstetrics and Gynecology , Health Sciences University Kanuni Sultan Suleyman Training and Research Hospital , Istanbul , Turkey
| |
Collapse
|
18
|
Ren J, Sun C, Chen L, Hu J, Huang X, Liu X, Lu L. Exploring differentially expressed key genes related to development of follicle by RNA-seq in Peking ducks (Anas Platyrhynchos). PLoS One 2019; 14:e0209061. [PMID: 31237879 PMCID: PMC6592512 DOI: 10.1371/journal.pone.0209061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Duck follicles enter different reproductive phases throughout life, and follicle gene expression patterns differ according to these phases. In particular, differentially expressed genes and related to development of follicle (mRNAs) play an important role to explore the key genes in this process; however, the expression profiles of these genes remain unclear. In this study, transcriptome sequencing was used to investigate the expression levels of duck ovarian genes, and comparative transcriptional analysis was carried out to identify differential genes, and cluster them into groups and function identification. The results showed differential expression of 593 coding genes between young and laying ducks, and of 518 coding genes between laying and old ducks. In further GO analysis, 35 genes from the comparison between old ducks and laying ducks have significant been changed involved in hormones related to follicle development. They include up-regulated genes StAR, CYP17, EPOX, 3β-HSD, CYP1B1 CYP19A1 and down-regulated genes SR-B1 in laying ducks hormone synthesis than old ducks. Among which EPOX is a key gene for time special highly expression during egg laying stage, and other key regulatory genes' highly expression showed in young and laying stage, and lower expression showing with follicular development stopping. Therefore, EPOX is a key regulator for duck follicle development in laying period, its expression level increase 100 times higher than in youth and decrease 98% than stop laying period in duck life cycle.
Collapse
Affiliation(s)
- Jindong Ren
- School of Life Science, Taizhou University, Taizhou, Zhejiang, People’s Republic of China
| | - Changsen Sun
- School of Life Science, Taizhou University, Taizhou, Zhejiang, People’s Republic of China
| | - Li Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianhong Hu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People’s Republic of China
| | - Xuetao Huang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People’s Republic of China
| | - Lizhi Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
19
|
Lee HN, Chang EM. Primordial follicle activation as new treatment for primary ovarian insufficiency. Clin Exp Reprod Med 2019; 46:43-49. [PMID: 31181871 PMCID: PMC6572666 DOI: 10.5653/cerm.2019.46.2.43] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Primordial follicle activation is a process in which individual primordial follicles leave their dormant state and enter a growth phase. While existing hormone stimulation strategies targeted the growing follicles, the remaining dormant primordial follicles were ruled out from clinical use. Recently, in vitro activation (IVA), which is a method for controlling primordial follicle activation, has provided an innovative technology for primary ovarian insufficiency (POI) patients. IVA was developed based on Hippo signaling and phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/forkhead box O3 (FOXO3) signaling modulation. With this method, dormant primordial follicles are activated to enter growth phase and developed into competent oocytes. IVA has been successfully applied in POI patients who only have a few remaining remnant primordial follicles in the ovary, and healthy pregnancies and deliveries have been reported. IVA may also provide a promising option for fertility preservation in cancer patients and prepubertal girls whose fertility preservation choices are limited to tissue cryopreservation. Here, we review the basic mechanisms, translational studies, and current clinical results for IVA. Limitations and further study requirements that could potentially optimize IVA for future use will also be discussed.
Collapse
Affiliation(s)
- Hye Nam Lee
- Department of Obstetrics and Gynecology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Eun Mi Chang
- Department of Obstetrics and Gynecology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
20
|
Glister C, Regan SL, Samir M, Knight P. Gremlin, Noggin, Chordin and follistatin differentially modulate BMP induced suppression of androgen secretion by bovine ovarian theca cells. J Mol Endocrinol 2018; 62:JME-18-0198.R1. [PMID: 30400042 DOI: 10.1530/jme-18-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic proteins (BMP) are firmly implicated as intra-ovarian regulators of follicle function and steroidogenesis but information is lacking regarding the regulation of BMP signalling by extracellular binding proteins co-expressed in the ovary. In this study we compared the abilities of four BMP binding proteins (gremlin, noggin, chordin, follistatin) to antagonize the action of four different BMPs (BMP2 BMP4, BMP6, BMP7) on LH-induced androstenedione secretion by bovine theca cells in primary culture. Expression of the four BMP binding proteins and BMPs investigated here has previously been documented in bovine follicles. All four BMPs suppressed androstenedione secretion by >85%. Co-treatment with gremlin antagonized BMP2- and, less potently, BMP4-induced suppression of androgen secretion but did not affect responses to BMP6 and BMP7. Noggin antagonized the effects of three BMPs (rank order: BMP4 > BMP2 > BMP7) but did not affect the response to BMP6. Follistatin partially reversed the suppressive effects of BMP6 on androgen secretion but did not affect BMP2, BMP4 and BMP7 action. Chordin had no effect on the response to any of the four BMPs. BMP6 treatment upregulated thecal expression of GREM1, NOG, CHRD and SMAD6 mRNA whilst inhibiting expression of the four BMPs. Taken together with previous work documenting the intra-ovarian expression of different BMPs, BMP binding proteins and signalling receptors, these observations reinforce the conclusion that extracellular binding proteins selectively modulate BMP-dependent alterations in thecal steroidogenesis. As such they likely constitute an important regulatory component of this, and other intra-ovarian actions of BMPs.
Collapse
Affiliation(s)
- Claire Glister
- C Glister, Sch of Biological Sciences, Reading University, Reading, United Kingdom of Great Britain and Northern Ireland
| | - Sheena L Regan
- S Regan, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Moafaq Samir
- M Samir, Sch of Biological Sciences, Reading University, Reading, United Kingdom of Great Britain and Northern Ireland
| | - Pg Knight
- P Knight, Sch of Biological Sciences, Reading University, Reading, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
21
|
Pankhurst MW, Kelley RL, Sanders RL, Woodcock SR, Oorschot DE, Batchelor NJ. Anti-Müllerian hormone overexpression restricts preantral ovarian follicle survival. J Endocrinol 2018; 237:153-163. [PMID: 29540452 DOI: 10.1530/joe-18-0005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
Anti-Müllerian hormone (AMH) is an ovarian regulator that affects folliculogenesis. AMH inhibits the developmental activation of the dormant primordial follicles and the oocyte within. In more mature follicles, AMH reduces granulosa cell sensitivity to follicle-stimulating hormone (FSH). We examined the effects of AMH overexpression on the stages of ovarian folliculogenesis, and the development of embryos, with a transgenic mouse that overexpresses human AMH in central nervous system neurons under the control of the mouse Thy1.2 promoter (Thy1.2-AMHTg mice). These mice are severely sub-fertile, despite relatively normal ovulation rates. The embryos of Thy1.2-AMHTg females exhibited delayed preimplantation development and extensive mid-gestation fetal resorption. Young Thy1.2-AMHTg mouse ovaries exhibited only a slight reduction in the rate of primordial follicle activation but large declines in the number of developing follicles surviving past the primary stage. It was expected that Thy1.2-AMHTg mice would retain more primordial follicles as they aged, but at 5 months, their number was significantly reduced relative to wild-type females. These data indicate that moderate elevations in AMH levels can severely restrict reproductive output and the number of developing follicles in the ovary. This evidence suggests that early antral follicles are a target for AMH signaling, which may regulate early follicle survival.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca L Kelley
- School of BiosciencesUniversity of Melbourne, Melbourne, Australia
| | - Rachel L Sanders
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Savana R Woodcock
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Dorothy E Oorschot
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research CentreUniversity of Otago, Dunedin, New Zealand
| | - Nicola J Batchelor
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Kallen A, Polotsky AJ, Johnson J. Untapped Reserves: Controlling Primordial Follicle Growth Activation. Trends Mol Med 2018; 24:319-331. [PMID: 29452791 DOI: 10.1016/j.molmed.2018.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022]
Abstract
Even with the benefit of assisted reproductive technologies (ART), many women are unable to conceive and deliver healthy offspring. One common cause of infertility is the inability to produce eggs capable of contributing to live birth. This can occur despite standard-of-care treatment to maximize the recovery of eggs from growing ovarian follicles. Dormant primordial follicles in the human ovary are a 'reserve ' that can be exploited clinically to overcome this problem. We discuss how controlling primordial follicle growth activation (PFGA) can produce increased numbers of high-quality eggs available for fertility treatment(s). We consider the state of the art in interventions used to control PFGA, and consider genetic and epigenetic strategies on the horizon that might improve compromised oocyte quality to increase live births.
Collapse
Affiliation(s)
- Amanda Kallen
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Reproductive Endocrinology, New Haven, CT, USA
| | - Alex J Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Aurora, CO 80045, USA
| | - Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Sominsky L, Goularte JF, Andrews ZB, Spencer SJ. Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility. Front Endocrinol (Lausanne) 2018; 9:815. [PMID: 30697193 PMCID: PMC6340924 DOI: 10.3389/fendo.2018.00815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Ghrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form of ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterize how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We combined the assessment of markers of reproductive maturity and the capacity to breed with measures of ovarian morphometry, as well as with ovarian RNA sequencing analysis. Our data show that while GOAT KO mice retain the capacity to breed in young adulthood, there is a diminished number of ovarian follicles (per mm3) in the juvenile and adult ovaries, due to a significant reduction in the number of small follicles, particularly the primordial follicles. We also show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of a potential for premature ovarian development. Collectively, these findings indicate that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Luba Sominsky
| | - Jeferson F. Goularte
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Shahrokhi SZ, Kazerouni F, Ghaffari F. Anti-Müllerian Hormone: genetic and environmental effects. Clin Chim Acta 2018; 476:123-129. [DOI: 10.1016/j.cca.2017.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
|
25
|
Kawagishi Y, Pankhurst MW, Nakatani Y, McLennan IS. Anti-Müllerian hormone signaling is influenced by Follistatin 288, but not 14 other transforming growth factor beta superfamily regulators. Mol Reprod Dev 2017; 84:626-637. [PMID: 28500669 DOI: 10.1002/mrd.22828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/30/2017] [Indexed: 11/11/2022]
Abstract
The hypothesis that, in contrast to other transforming growth factor-beta (TGFβ) superfamily ligands, the dose-response curve of Anti-Müllerian hormone (AMH) is unmodulated was tested by examining whether known TGFB superfamily modulators affect AMH signaling, using a P19/BRE luciferase reporter assay. AMHC and AMHN,C activated the reporter with an EC50 of approximately 0.5 nM. Follistatins (FS) produced concentration-dependent increases in AMHC - and AMHN,C -initiated reporter activity, with FS288 being more potent than FS315; however, the maximum bioactivity of AMH was not altered by either follistatin. Thirteen other TGFβ regulators (Chordin, Chordin-like 1, Chordin-like 2, Differential screening-selected gene aberrative in neuroblastoma [DAN], Decorin, Endoglin, Follistatin-like 1, Follistatin-like 3, Follistatin-like 4, Noggin, α2 macroglobulin, TGFβ receptor 3, Von Willebrand factor C domain-containing 2) had little or no effect. Surface plasmon resonance analysis showed no significant association between FS288 and AMHC , suggesting that FS288 indirectly regulates AMH signaling. Activin A, a direct target of FS288, did not itself induce reporter activity in P19 cells, but did prevent the FS288-induced increase in AMH signaling. Hence, local concentrations of FS288 and Activin A may influence the response of some cell types to AMH.
Collapse
Affiliation(s)
- Yui Kawagishi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yoshio Nakatani
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ian S McLennan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Patiño LC, Beau I, Carlosama C, Buitrago JC, González R, Suárez CF, Patarroyo MA, Delemer B, Young J, Binart N, Laissue P. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Hum Reprod 2017; 32:1512-1520. [DOI: 10.1093/humrep/dex089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
|
27
|
Pankhurst MW. A putative role for anti-Müllerian hormone (AMH) in optimising ovarian reserve expenditure. J Endocrinol 2017; 233:R1-R13. [PMID: 28130407 DOI: 10.1530/joe-16-0522] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
The mammalian ovary has a finite supply of oocytes, which are contained within primordial follicles where they are arrested in a dormant state. The number of primordial follicles in the ovary at puberty is highly variable between females of the same species. Females that enter puberty with a small ovarian reserve are at risk of a shorter reproductive lifespan, as their ovarian reserve is expected to be depleted faster. One of the roles of anti-Müllerian hormone (AMH) is to inhibit primordial follicle activation, which slows the rate at which the ovarian reserve is depleted. A simple interpretation is that the function of AMH is to conserve ovarian reserve. However, the females with the lowest ovarian reserve and the greatest risk of early reserve depletion have the lowest levels of AMH. In contrast, AMH apparently strongly inhibits primordial follicle activation in females with ample ovarian reserve, for reasons that remain unexplained. The rate of primordial follicle activation determines the size of the developing follicle pool, which in turn, determines how many oocytes are available to be selected for ovulation. This review discusses the evidence that AMH regulates the size of the developing follicle pool by altering the rate of primordial follicle activation in a context-dependent manner. The expression patterns of AMH across life are also consistent with changing requirements for primordial follicle activation in the ageing ovary. A potential role of AMH in the fertility of ageing females is proposed herein.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Ikeda Y, Hasegawa A, Tsubamoto H, Wakimoto Y, Kumamoto K, Shibahara H. Effects of gremlin-2 on the transition of primordial follicles during early folliculogenesis in the human ovary. Eur J Obstet Gynecol Reprod Biol 2016; 203:72-7. [PMID: 27267869 DOI: 10.1016/j.ejogrb.2016.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the localization and function of gremlin-2 during human ovarian folliculogenesis. STUDY DESIGN Ovarian tissue from a gynecologic cancer patient was cultured in the presence or absence of gremlin-2 and then analyzed histologically. Growing follicles were counted by the microscopic observations of ovarian histological sections. Immunocytochemical staining was carried out to detect the expression of bone morphogenetic protein (BMP) 4 and phosphorylated Smad 1/5/8 (p-Smad 1/5/8). RESULTS Gremlin-2 was detected in human primordial, primary, and early growing follicles before culture. By day 4 of culture, the follicle growth rate in the presence of gremlin-2 (13.7%; 24/175) was significantly lower than that of the control (54.8%; 92/175; p<0.01). BMP4 expression was similar in the presence and absence of gremlin-2, whereas the p-Smad 1/5/8 signal was noticeably stronger in the absence of gremlin-2 in primordial and early-stage growing follicles. CONCLUSIONS Gremlin-2 maintains the follicle store as primordial follicles by suppressing Smad 1/5/8 signaling in the human ovary. The data presented here provide potential insight into reproductive medicine for cases of intractable infertility, such as premature ovarian insufficiency and cancer survivors.
Collapse
Affiliation(s)
- Yuki Ikeda
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa-cho, 1-1, Nishinomiya, Hyogo 663-8501, Japan
| | - Akiko Hasegawa
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa-cho, 1-1, Nishinomiya, Hyogo 663-8501, Japan; Institute of Animal Experimental Sciences, Hyogo College of Medicine, Mukogawa-cho, 1-1, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroshi Tsubamoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa-cho, 1-1, Nishinomiya, Hyogo 663-8501, Japan
| | - Yu Wakimoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa-cho, 1-1, Nishinomiya, Hyogo 663-8501, Japan
| | - Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi, 1-4-3, Abeno, Osaka 545-8586, Japan
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa-cho, 1-1, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
29
|
Morohaku K, Hirao Y, Obata Y. Developmental competence of oocytes grown in vitro: Has it peaked already? J Reprod Dev 2015; 62:1-5. [PMID: 26685717 PMCID: PMC4768772 DOI: 10.1262/jrd.2015-148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro growth of immature oocytes provides opportunities to increase gametic resources and
to understand the mechanisms underlying oocyte development. Many studies on the in vitro
growth of oocytes have been reported thus far; however, only a few cases have been reported, which
demonstrated that oocytes can support full-term development after in vitro fertilization. Our
research group recently found that culture of mouse neonatal primordial follicles increased the birthrate;
however, the establishment of an in vitro system that can completely mimic follicle or oocyte
growth in vivo and control oogenesis remains an ongoing challenge.
Collapse
Affiliation(s)
- Kanako Morohaku
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | |
Collapse
|
30
|
Mulloy B, Rider CC. The Bone Morphogenetic Proteins and Their Antagonists. VITAMINS AND HORMONES 2015; 99:63-90. [PMID: 26279373 DOI: 10.1016/bs.vh.2015.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic proteins (BMPs) and the growth and differentiation factors comprise a single family of some 20 homologous, dimeric cytokines which share the cystine-knot domain typical of the TGF-β superfamily. They control the differentiation and activity of a range of cell types, including many outside bone and cartilage. They serve as developmental morphogens, but are also important in chronic pathologies, including tissue fibrosis and cancer. One mechanism for enabling tight spatiotemporal control of their activities is through a number of antagonist proteins, including Noggin, Follistatin, Chordin, Twisted gastrulation (TSG), and the seven members of the Cerberus and Dan family. These antagonists are secreted proteins that bind selectively to particular BMPs with high affinity, thereby blocking receptor engagement and signaling. Most of these antagonists also possess a TGF-β cystine-knot domain. Here, we discuss current knowledge and understanding of the structures and activities of the BMPs and their antagonists, with a particular focus on the latter proteins. Recent advances in structural biology of BMP antagonists have begun the process of elucidating the molecular basis of their activity, displaying a surprising variety between the modes of action of these closely related proteins. We also discuss the interactions of the antagonists with the glycosaminoglycan heparan sulfate, which is found ubiquitously on cell surfaces and in the extracellular matrix.
Collapse
Affiliation(s)
- Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Chris C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom.
| |
Collapse
|