1
|
Lv Y, Li J, Wang Z, Liu Y, Jiang Y, Li Y, Lv Z, Huang X, Peng X, Cao Y, Yang H. Polycomb proteins RING1A/B promote H2A monoubiquitination to regulate female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4822-4836. [PMID: 38717070 DOI: 10.1093/jxb/erae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), which differentiates from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as the functional megaspore (FM), then undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we report that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. Mutations of RING1A/B resulted in defects in the specification of the MMC and the FM, and in the subsequent mitosis of the FM, thereby leading to aborted ovules. Detailed analysis revealed that several genes essential for female gametophyte development were ectopically expressed in the ring1a ring1b mutant, including Argonaute (AGO) family genes and critical transcription factors. Furthermore, RING1A/B bound to some of these genes to promote H2A monoubiquitination (H2Aub). Taken together, our study shows that RING1A/B promote H2Aub modification at key genes for female gametophyte development, suppressing their expression to ensure that the development progresses correctly.
Collapse
Affiliation(s)
- Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yili Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Liu G, Liu F, Jiang H, Li J, Jing J, Jin Q, Wang Y, Qian P, Xu Y. Cytological and Molecular Mechanism of Low Pollen Grain Viability in a Germplasm Line of Double Lotus. PLANTS (BASEL, SWITZERLAND) 2023; 12:387. [PMID: 36679100 PMCID: PMC9867118 DOI: 10.3390/plants12020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Self-fertilization rate is an essential index of lotus reproductive system development, and pollen activity is a key factor affecting lotus seed setting rate. Based on cytology and molecular biology, this study addresses the main reasons for the low self-set rate of double lotus. It takes two different double lotus breeds into consideration, namely 'Sijingganshan' with a low self-crossing rate and 'Jinfurong' with a high self-crossing rate. Cytological analysis results showed that the pollen abortion caused by excessive degradation of tapetum during the single phase was the root cause for the low self-mating rate of double lotus. Subsequent transcriptome analysis revealed that the gene NnPTC1 related to programmed tapetum cell death was significantly differentially expressed during the critical period of abortion, which further verified the specific expression of NnPTC1 in anthers. It was found that the expression level of NnPTC1 in 'Sijingganshan' at the mononuclear stage of its microspore development was significantly higher than that of 'Jinfurong' at the same stage. The overexpression of NnPTC1 resulted in the premature degradation of the tapetum and significantly decreased seed setting rate. These results indicated that the NnPTC1 gene regulated the pollen abortion of double lotus. The mechanism causing a low seed setting rate for double lotus was preliminarily revealed, which provided a theoretical basis for cultivating lotus varieties with both flower and seed.
Collapse
Affiliation(s)
- Guangyang Liu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| | - Huiyan Jiang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Li
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| | - Jing Jing
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| | - Qijiang Jin
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Qian
- Hangzhou West Lake Scenic Area Management Committee, Hangzhou 310013, China
| | - Yingchun Xu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Functional analysis of a conserved domain in SWITCH1 reveals a role in commitment to female meiocyte differentiation in Arabidopsis. Biochem Biophys Res Commun 2021; 551:121-126. [PMID: 33725573 DOI: 10.1016/j.bbrc.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
We have investigated the mechanism of action of SWITCH1/DYAD (SWI1), an important regulator of plant meiosis in Arabidopsis that is required for meiotic chromosome organization including maintenance of sister chromatid cohesion. The central portion of SWI1 contains a domain of unknown function that shows strong conservation between SWI1 and its orthologs in maize and rice and is also found in paralogs including MALE MEIOCYTE DEATH 1 (MMD1). In order to examine the role of this domain we performed domain swap experiments into SWI1 in a swi1 mutant background. Domain swap analysis revealed functional conservation of the central domain between SWI1 and its orthologs but not with the domain from MMD1 suggesting that the domain plays an important role in SWI1 function that has been conserved in orthologs and diverged in paralogs in plant evolution. Analysis of expression of the non-complementing MMD1 domain swap SWI1(DSMMD1)::GFP transgenic lines revealed an altered pattern of expression that suggests a role for SWI1 in commitment to female meiocyte differentiation and meiosis. The results suggest that SWI1 may also play a developmental role as an identity determinant in the female germ cell lineage in addition to its known role in meiotic chromosome organization.
Collapse
|
4
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
5
|
Abstract
Here we present an optimized protocol for immunolocalization of meiotic proteins during female meiosis in whole mount tissues. It ensures ovule morphology integrity and homogeneous reagent penetration. The method relies on paraformaldehyde tissue fixation, polyacrylamide embedding, tissue permeabilization, antibody incubation, counterstaining, and confocal microscopy analysis. This protocol has been used in diverse Arabidopsis ecotypes and in the legume Vigna unguiculata.
Collapse
|
6
|
Liu B, Mo WJ, Zhang D, De Storme N, Geelen D. Cold Influences Male Reproductive Development in Plants: A Hazard to Fertility, but a Window for Evolution. PLANT & CELL PHYSIOLOGY 2019; 60:7-18. [PMID: 30602022 DOI: 10.1093/pcp/pcy209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 05/16/2023]
Abstract
Being sessile organisms, plants suffer from various abiotic stresses including low temperature. In particular, male reproductive development of plants is extremely sensitive to cold which may dramatically reduce viable pollen shed and plant fertility. Cold stress disrupts stamen development and prominently interferes with the tapetum, with the stress-responsive hormones ABA and gibberellic acid being greatly involved. In particular, low temperature stress delays and/or inhibits programmed cell death of the tapetal cells which consequently damages pollen development and causes male sterility. On the other hand, studies in Arabidopsis and crops have revealed that ectopically decreased temperature has an impact on recombination and cytokinesis during meiotic cell division, implying a putative role for temperature in manipulating plant genomic diversity and architecture during the evolution of plants. Here, we review the current understanding of the physiological impact of cold stress on the main male reproductive development processes including tapetum development, male meiosis and gametogenesis. Moreover, we provide insights into the genetic factors and signaling pathways that are involved, with putative mechanisms being discussed.
Collapse
Affiliation(s)
- Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Wen-Juan Mo
- Experiment Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nico De Storme
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
7
|
Li LX, Liao HZ, Jiang LX, Tan Q, Ye D, Zhang XQ. Arabidopsis thaliana NOP10 is required for gametophyte formation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:723-736. [PMID: 29578643 DOI: 10.1111/jipb.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 05/19/2023]
Abstract
The female gametophyte is crucial for sexual reproduction of higher plants, yet little is known about the molecular mechanisms underlying its development. Here, we report that Arabidopsis thaliana NOP10 (AtNOP10) is required for female gametophyte formation. AtNOP10 was expressed predominantly in the seedling and reproductive tissues, including anthers, pollen grains, and ovules. Mutations in AtNOP10 interrupted mitosis of the functional megaspore during early development and prevented polar nuclear fusion in the embryo sacs. AtNOP10 shares a high level of amino acid sequence similarity with Saccharomyces cerevisiae (yeast) NOP10 (ScNOP10), an important component of the H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) implicated in 18S rRNA synthesis and rRNA pseudouridylation. Heterologous expression of ScNOP10 complemented the mutant phenotype of Atnop10. Thus, AtNOP10 influences functional megaspore mitosis and polar nuclear fusion during gametophyte formation in Arabidopsis.
Collapse
Affiliation(s)
- Lin-Xiao Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong-Ze Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Non-Food Biomass Energy and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery and Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Li-Xi Jiang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qing Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Czarnocka W, Van Der Kelen K, Willems P, Szechyńska-Hebda M, Shahnejat-Bushehri S, Balazadeh S, Rusaczonek A, Mueller-Roeber B, Van Breusegem F, Karpiński S. The dual role of LESION SIMULATING DISEASE 1 as a condition-dependent scaffold protein and transcription regulator. PLANT, CELL & ENVIRONMENT 2017; 40:2644-2662. [PMID: 28555890 DOI: 10.1111/pce.12994] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - Katrien Van Der Kelen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Patrick Willems
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239, Cracow, Poland
| | - Sara Shahnejat-Bushehri
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Street 24-25, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Street 24-25, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Street 24-25, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Meng L, Liu Z, Zhang L, Hu G, Song X. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi. BREEDING SCIENCE 2016; 66:752-761. [PMID: 28163591 PMCID: PMC5282749 DOI: 10.1270/jsbbs.16039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/14/2016] [Indexed: 05/05/2023]
Abstract
Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41-49 and 58-59. Morphologically, the line exhibited thermo-sensitive male sterility at 3-9 days before heading and at 3-6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures.
Collapse
Affiliation(s)
- Liying Meng
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Zihan Liu
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Gan Hu
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Xiyue Song
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| |
Collapse
|
10
|
Yang H, Yang N, Wang T. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:660-674. [PMID: 26846354 DOI: 10.1111/tpj.13133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
In flowering plants, male germline fate is determined after asymmetric division of the haploid microspore. Daughter cells have distinct fates: the generative cell (GC) undergoes further mitosis to generate sperm cells (SCs), and the vegetative cell (VC) terminally differentiates. However, our understanding of the mechanisms underlying germline development remains limited. Histone variants and modifications define chromatin states, and contribute to establishing and maintaining cell identities by affecting gene expression. Here, we constructed a lily protein database, then extracted and detailed histone entries into a comprehensive lily histone database. We isolated large amounts of nuclei from VCs, GCs and SCs from lily, and profiled histone variants of all five histone families in all three cell types using proteomics approaches. We revealed 92 identities representing 32 histone variants: six for H1, 11 for H2A, eight for H2B, five for H3 and two for H4. Nine variants, including five H1, two H2B, one H3 and one H4 variant, specifically accumulated in GCs and SCs. We also detected H3 modification patterns in the three cell types. GCs and SCs had almost identical histone profiles and similar H3 modification patterns, which were significantly different from those of VCs. Our study also revealed the presence of multiple isoforms, and differential expression patterns between isoforms of a variant. The results suggest that differential histone programs between the germline and companion VCs may be established following the asymmetric division, and are important for identity establishment and differentiation of the male germline as well as the VC.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
11
|
Qu G, Quan S, Mondol P, Xu J, Zhang D, Shi J. Comparative metabolomic analysis of wild type and mads3 mutant rice anthers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:849-63. [PMID: 25073727 DOI: 10.1111/jipb.12245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/27/2014] [Indexed: 05/24/2023]
Abstract
Rice (Oryza sativa L.) MADS3 transcription factor regulates the homeostasis of reactive oxygen species (ROS) during late anther development, and one MADS3 mutant, mads3-4, has defective anther walls, aborted microspores and complete male sterility. Here, we report the untargeted metabolomic analysis of both wild type and mads3-4 mature anthers. Mutation of MADS3 led to an unbalanced redox status and caused oxidative stress that damages lipid, protein, and DNA. To cope with oxidative stress in mads3-4 anthers, soluble sugars were mobilized and carbohydrate metabolism was shifted to amino acid and nucleic acid metabolism to provide substrates for the biosynthesis of antioxidant proteins and the repair of DNA. Mutation of MADS3 also affected other aspects of rice anther development such as secondary metabolites associated with cuticle, cell wall, and auxin metabolism. Many of the discovered metabolic changes in mads3-4 anthers were corroborated with changes of expression levels of corresponding metabolic pathway genes. Altogether, this comparative metabolomic analysis indicated that MADS3 gene affects rice anther development far beyond the ROS homeostasis regulation.
Collapse
Affiliation(s)
- Guorun Qu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
12
|
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. PLANT PHYSIOLOGY 2012; 159:721-38. [PMID: 22508932 PMCID: PMC3375937 DOI: 10.1104/pp.112.196048] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/15/2012] [Indexed: 05/18/2023]
Abstract
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Cold Temperature
- Computational Biology
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Indoleacetic Acids/metabolism
- MicroRNAs/metabolism
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Signal Transduction
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triticum/genetics
- Triticum/physiology
Collapse
|
13
|
Ye J, Xu M. Actin bundler PLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:516-22. [PMID: 22209219 DOI: 10.1016/j.jplph.2011.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 05/21/2023]
Abstract
Microspores develop inside the anther, where they are surrounded by nourishing tapetal cells. However, many cellular processes occurring during microspore development in the locule are poorly characterized. The actin cytoskeleton is known to play a crucial role in various aspects of the plant developmental process. During pollen tube tip growth, actin cytoskeleton serves as an efficient molecular transportation track, although how it functions in pollen development is unknown. The plant actin bundler PLIM2s have been shown to regulate actin bundling in different cells. Here, we investigate the biological function of three Arabidopsis pollen-specific LIM proteins, PLIM2a, PLIM2b, and PLIM2c (collectively, PLIM2s), in pollen development and tube growth. Variable degrees of suppressed expression of the PLIM2s by RNA interference resulted in aberrant phenotypes. Complete suppression of the PLIM2s totally disrupted pollen development, producing abortive pollen grains and rendering the transgenic plants sterile. Partial suppression of the PLIM2s arrested pollen tube growth to a lesser extent, resulting in short and swollen pollen tubes. Finally, the PLIM2c promoter initiated expression in pollen during stamen filament elongation, and the PLIM2c protein was located on particle structures in the developing pollen grains in Arabidopsis. These suggest that the actin bundler, PLIM2s, are an important factor for Arabidopsis pollen development and tube growth.
Collapse
Affiliation(s)
- Jianrong Ye
- National Maize Improvement Center of China, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | | |
Collapse
|
14
|
Julian C, Rodrigo J, Herrero M. Stamen development and winter dormancy in apricot (Prunus armeniaca). ANNALS OF BOTANY 2011; 108:617-25. [PMID: 21474504 PMCID: PMC3170150 DOI: 10.1093/aob/mcr056] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/01/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS In temperate woody perennials, flower bud development is halted during the winter, when the buds enter dormancy. This dormant period is a prerequisite for adequate flowering, is genetically regulated, and plays a clear role in possibly adapting species and cultivars to climatic areas. However, information on the biological events underpinning dormancy is lacking. Stamen development, with clear differentiated stages, appears as a good framework to put dormancy in a developmental context. Here, stamen developmental changes are characterized in apricot (Prunus armeniaca) and are related to dormancy. METHODS Stamen development was characterized cytochemically from the end of August to March, over 4 years. Developmental changes were related to dormancy, using the existing empirical information on chilling requirements. KEY RESULTS Stamen development continued during the autumn, and the flower buds entered dormancy with a fully developed sporogenous tissue. Although no anatomical changes were observed during dormancy, breaking of dormancy occurred following a clear sequence of events. Starch accumulated in particular places, pre-empting further development in those areas. Vascular bundles developed and pollen mother cells underwent meiosis followed by microspore development. CONCLUSIONS Dormancy appears to mark a boundary between the development of the sporogenous tissue and the occurrence of meiosis for further microspore development. Breaking of dormancy occurs following a clear sequence of events, providing a developmental context in which to study winter dormancy and to evaluate differences in chilling requirements among genotypes.
Collapse
Affiliation(s)
- C. Julian
- Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, 50059 Zaragoza, Spain
- Departamento de Pomología, EEAD-CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - J. Rodrigo
- Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, 50059 Zaragoza, Spain
| | - M. Herrero
- Departamento de Pomología, EEAD-CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
- For correspondence. E-mail
| |
Collapse
|
15
|
Silkova OG, Shchapova AI, Shumny VK. Meiotic restitution in amphihaploids in the tribe Triticeae. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tang Z, Zhang L, Yang D, Zhao C, Zheng Y. Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. PLANT, CELL & ENVIRONMENT 2011; 34:389-405. [PMID: 21062315 DOI: 10.1111/j.1365-3040.2010.02250.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The male sterility of a wheat thermosensitive genic male sterile (TGMS) line is strictly controlled by temperature. When the TGMS line BS366 was exposed to 10 °C from the pollen mother cell stage to the meiosis stage, a few pollen grains were formed and devoid of starch. We report here a large-scale transcriptomic study using the Affymetrix wheat GeneChip to follow gene expression in BS366 line anthers in response to cold stress. Notably, many cytoskeletal signaling components were gradually induced in response to cold stress in BS366 line anthers. However, the cytoskeleton-associated genes that play key roles in the dynamic organization of the cytoskeleton were dramatically repressed. Histological studies revealed that the separation of dyads occurred abnormally during male meiosis I, indicating defective male meiotic cytokinesis. Fluorescence labelling and subcellular histological observations revealed that the phragmoplast was defectively formed and the cell plate was abnormally assembled during meiosis I under cold stress. Based on the transcriptomic analysis and observations of characterized histological changes, our results suggest that cold stress repressed transcription of cytoskeleton dynamic factors and subsequently caused the defective cytokinesis during meiosis I. The results may explain the male sterility caused by low temperature in wheat TGMS lines.
Collapse
Affiliation(s)
- Zonghui Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
17
|
Abstract
The epigenomic regulation of chromatin structure and genome stability is essential for the interpretation of genetic information and ultimately the determination of phenotype. High-resolution maps of plant epigenomes have been obtained through a combination of chromatin technologies and genomic tiling microarrays and through high-throughput sequencing-based approaches. The transcriptomic activity of a plant at a certain stage of development is controlled by genome-wide combinatorial interactions of epigenetic modifications. Tissue- or environment-specific epigenomes are established during plant development. Epigenomic reprogramming triggered by the activation and movement of small RNAs is important for plant gametogenesis. Genome-wide loss of DNA methylation in the endosperm and the accompanying endosperm-specific gene expression during seed development provide a genomic insight into epigenetic regulation of gene imprinting in plants. Global changes of histone modifications during plant responses to different light environments play an important regulatory role in a sophisticated light-regulated transcriptional network. Epigenomic natural variation that developed during evolution is important for phenotypic diversity and can potentially contribute to the molecular mechanisms of complex biological phenomena such as heterosis in plants.
Collapse
Affiliation(s)
- Guangming He
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
18
|
Feng X, Dickinson HG. Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development 2010; 137:2409-16. [PMID: 20570940 DOI: 10.1242/dev.049320] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The four microsporangia of the flowering plant anther develop from archesporial cells in the L2 of the primordium. Within each microsporangium, developing microsporocytes are surrounded by concentric monolayers of tapetal, middle layer and endothecial cells. How this intricate array of tissues, each containing relatively few cells, is established in an organ possessing no formal meristems is poorly understood. We describe here the pivotal role of the LRR receptor kinase EXCESS MICROSPOROCYTES 1 (EMS1) in forming the monolayer of tapetal nurse cells in Arabidopsis. Unusually for plants, tapetal cells are specified very early in development, and are subsequently stimulated to proliferate by a receptor-like kinase (RLK) complex that includes EMS1. Mutations in members of this EMS1 signalling complex and its putative ligand result in male-sterile plants in which tapetal initials fail to proliferate. Surprisingly, these cells continue to develop, isolated at the locular periphery. Mutant and wild-type microsporangia expand at similar rates and the 'tapetal' space at the periphery of mutant locules becomes occupied by microsporocytes. However, induction of late expression of EMS1 in the few tapetal initials in ems1 plants results in their proliferation to generate a functional tapetum, and this proliferation suppresses microsporocyte number. Our experiments also show that integrity of the tapetal monolayer is crucial for the maintenance of the polarity of divisions within it. This unexpected autonomy of the tapetal 'lineage' is discussed in the context of tissue development in complex plant organs, where constancy in size, shape and cell number is crucial.
Collapse
Affiliation(s)
- Xiaoqi Feng
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
19
|
Kim OK, Jung JH, Park CM. An Arabidopsis F-box protein regulates tapetum degeneration and pollen maturation during anther development. PLANTA 2010; 232:353-66. [PMID: 20458496 DOI: 10.1007/s00425-010-1178-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/16/2010] [Indexed: 05/02/2023]
Abstract
The Arabidopsis anther has a bilateral symmetry with four lobes, each consisting of four distinct layers of somatic cells from the outer to inner side: epidermis, endothecium, middle layer and tapetum. The tapetum is a layer of cells comprising the inner surface of the pollen wall. It plays an important role in anther development by providing enzymes, materials and nutrients required for pollen maturation. Genes and molecular mechanisms underlying tapetum formation and pollen wall biosynthesis have been studied in Arabidopsis. However, tapetum degeneration and anther dehiscence have not been well characterized at the molecular level. Here, we report that an Arabidopsis gene, designated reduced male fertility (RMF), regulates degeneration of tapetum and middle layer during anther development. The Arabidopsis dominant mutant rmf-1D overexpressing the RMF gene exhibited pleiotropic phenotypes, including dwarfed growth with small, dark-green leaves and low male fertility. Tapetum development and subsequent degeneration were impaired in the mutant. Accordingly, pollen maturation was disturbed, reducing the male fertility. In contrast, tapetum degeneration was somewhat accelerated in the RMF RNAi plants. The RMF gene was expressed predominantly in the anther, particularly in the pollen grains. Notably, the RMF protein contains an F-box motif and is localized to the nucleus. It physically interacts with the Arabidopsis-Skp1-like1 protein via the F-box motif. These observations indicate that the RMF gene encodes an F-box protein functioning in tapetum degeneration during anther development.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- F-Box Motifs/genetics
- F-Box Motifs/physiology
- Flowers/genetics
- Flowers/growth & development
- Flowers/metabolism
- Flowers/ultrastructure
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
- Pollen/genetics
- Pollen/growth & development
- Pollen/metabolism
- Pollen/ultrastructure
- Protein Binding
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Ok-Kyoung Kim
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
20
|
Further mapping of quantitative trait loci for female sterility in wheat (Triticum aestivum L.). Genet Res (Camb) 2010; 92:63-70. [PMID: 20353623 DOI: 10.1017/s0016672310000054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epistasis underlying fertility plays an important role in crop breeding. Although a new female sterile mutant in wheat, XND126, has been identified and a major quantitative trait locus (QTL), taf1, for the female sterility has been mapped, the genetic architecture of the female sterility needs to be further addressed. To identify the interaction involving the gene(s) controlling the female sterility, an investigation was carried out for the seed setting ratio in an F2 population derived from the cross between XND126 and Gaocheng 8901. Among 1250 simple sequence repeat (SSR) primer pairs in the whole genome, a total of 21 markers, obtained by recessive class approach, along with other ten tightly linked markers on reference maps in wheat, were used to survey 243 F2 individuals. As a result, 28 markers were mapped into five genetic linkage groups. The performance for female sterility for each F2 individual was evaluated simultaneously at the Urumqi and Huai'an experimental stations in 2006-2007. The two phenotypic datasets along with marker information were jointly analysed in the detection of QTL using penalized maximum likelihood approach. A total of six QTLs, including two main-effect QTLs, three epistatic QTLs and one environmental interaction and accounting for 0.67-24.55% of the total phenotypic variance, were identified. All estimated effects accounted for 53.26% of the total phenotypic variation. The taf1 detected in previous study was also located on the same marker interval on chromosome 2DS. These results enrich our understanding of the genetic basis of the female sterility.
Collapse
|
21
|
Zhao D. Control of anther cell differentiation: a teamwork of receptor-like kinases. ACTA ACUST UNITED AC 2009; 22:221-8. [DOI: 10.1007/s00497-009-0106-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/20/2009] [Indexed: 11/28/2022]
|
22
|
Dean PJ, Siwiec T, Waterworth WM, Schlögelhofer P, Armstrong SJ, West CE. A novel ATM-dependent X-ray-inducible gene is essential for both plant meiosis and gametogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:791-802. [PMID: 19187040 PMCID: PMC4143975 DOI: 10.1111/j.1365-313x.2009.03814.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA damage in Arabidopsis thaliana seedlings results in upregulation of hundreds of genes. One of the earliest and highest levels of induction is displayed by a previously uncharacterized gene that we have termed X-ray induced 1 (XRI1). Analysis of plants carrying a null xri1 allele revealed two distinct requirements for this gene in plant fertility. XRI1 was important for the post-meiotic stages of pollen development, leading to inviability of xri(-) pollen and abnormal segregation of the mutant allele in heterozygous xri1(+/-) plants. In addition, XRI1 was essential for male and female meiosis, as indicated by the complete sterility of homozygous xri1 mutants due to extensive chromosome fragmentation visible in meiocytes. Abolition of programmed DNA double-strand breaks in a spo11-1 mutant background failed to rescue the DNA fragmentation of xri1 mutants, suggesting that XRI1 functions at an earlier stage than SPO11-1 does. Yeast two-hybrid studies identified an interaction between XRI1 and a novel component of the Arabidopsis MND1/AHP2 complex, indicating possible requirements for XRI1 in meiotic DNA repair.
Collapse
Affiliation(s)
- Philip J Dean
- Centre for Plant Sciences, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Skinner DJ, Gasser CS. Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants. BMC PLANT BIOLOGY 2009; 9:29. [PMID: 19291320 PMCID: PMC2664812 DOI: 10.1186/1471-2229-9-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/16/2009] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arabidopsis ovules comprise four morphologically distinct parts: the nucellus, which contains the embryo sac, two integuments that become the seed coat, and the funiculus that anchors the ovule within the carpel. Analysis of developmental mutants has shown that ovule morphogenesis relies on tightly regulated genetic interactions that can serve as a model for developmental regulation. Redundancy, pleiotropic effects and subtle phenotypes may preclude identification of mutants affecting some processes in screens for phenotypic changes. Expression-based gene discovery can be used access such obscured genes. RESULTS Affymetrix microarrays were used for expression-based gene discovery to identify sets of genes expressed in either or both integuments. The genes were identified by comparison of pistil mRNA from wild type with mRNA from two mutants; inner no outer (ino, which lacks the outer integument), and aintegumenta (ant, which lacks both integuments). Pools of pistils representing early and late stages of ovule development were evaluated and data from the three genotypes were used to designate genes that were predominantly expressed in the integuments using pair-wise and cluster analyses. Approximately two hundred genes were found to have a high probability of preferential expression in these structures, and the predictive nature of the expression classes was confirmed with reverse transcriptase polymerase chain reaction and in situ hybridization. CONCLUSION The results showed that it was possible to use a mutant, ant, with broad effects on plant phenotype to identify genes expressed specifically in ovules, when coupled with predictions from known gene expression patterns, or in combination with a more specific mutant, ino. Robust microarray averaging (RMA) analysis of array data provided the most reliable comparisons, especially for weakly expressed genes. The studies yielded an over-abundance of transcriptional regulators in the identified genes, and these form a set of candidate genes for evaluation of roles in ovule development using reverse genetics.
Collapse
Affiliation(s)
- Debra J Skinner
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
- Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| | - Charles S Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
Borg M, Brownfield L, Twell D. Male gametophyte development: a molecular perspective. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1465-78. [PMID: 19213812 DOI: 10.1093/jxb/ern355] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pollen grains represent the highly reduced haploid male gametophyte generation in flowering plants, consisting of just two or three cells when released from the anthers. Their role is to deliver twin sperm cells to the embryo sac to undergo fusion with the egg and central cell. This double fertilization event along with the functional specialization of the male gametophyte, are considered to be key innovations in the evolutionary success of flowering plants. This review encompasses important recent advances in our understanding of the molecular mechanisms controlling male gametophyte development. A brief overview of pollen development is presented, followed by a discussion of genome-wide transcriptomic studies of haploid gene expression. The progress achieved through genetic analysis of landmark events of male gametogenesis is discussed, with a focus on sperm cell production, and an emerging model of the regulatory network governing male germline development is presented. The review concludes with a perspective of the impact these data will have on future research strategies to further develop our understanding of the gametophytic control of pollen development.
Collapse
Affiliation(s)
- Michael Borg
- Department of Biology, University of Leicester, UK
| | | | | |
Collapse
|
25
|
Dwivedi S, Perotti E, Ortiz R. Towards molecular breeding of reproductive traits in cereal crops. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:529-559. [PMID: 18507792 DOI: 10.1111/j.1467-7652.2008.00343.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transition from vegetative to reproductive phase, flowering per se, floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.
Collapse
Affiliation(s)
- Sangam Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | | | | |
Collapse
|
26
|
Coelho SM, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM. Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 2007; 406:152-70. [PMID: 17870254 DOI: 10.1016/j.gene.2007.07.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 01/01/2023]
Abstract
A wide variety of life cycles can be found in the different groups of multicellular eukaryotes. Here we provide an overview of this variety, and review some of the theoretical arguments that have been put forward to explain the evolutionary stability of different life cycle strategies. We also describe recent progress in the analysis of the haploid-diploid life cycle of the model angiosperm Arabidopsis thaliana and show how new molecular data are providing a means to test some of the theoretical predictions. Finally, we describe an emerging model organism from the brown algae, Ectocarpus siliculosus, and highlight the potential of this system for the investigation of the mechanisms that regulate complex life cycles.
Collapse
Affiliation(s)
- Susana M Coelho
- The Marine Plants and Biomolecules Laboratory, UMR 7139 Centre National de la Recherche Scientifique and Université Pierre et Marie Curie, Station Biologique de Roscoff, Place Georges Teissier, BP74, 29682 Roscoff Cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Tao J, Zhang L, Chong K, Wang T. OsRAD21-3, an orthologue of yeast RAD21, is required for pollen development in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:919-30. [PMID: 17617177 DOI: 10.1111/j.1365-313x.2007.03190.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In contrast to animals, in which products of meiosis differentiate directly into sperm, flowering plants employ a specific mechanism to give rise to functional sperm cells, the specifics of which remain largely unknown. A previous study revealed that, compared to yeast and vertebrates, which have two proteins (Rad21 and its meiosis-specific variant Rec8) that play a vital role in sister chromatid cohesion and segregation for mitosis and meiosis, respectively, the rice genome encodes four Rad21/Rec8 proteins (OsRad21s). In this paper, phylogenetic and immunostaining analyses reveal that OsRad21-3 is an orthologue of yeast Rad21. OsRAD21-3 transcript and protein accumulated preferentially in flowers, with low levels in vegetative tissues. In flowers, they persisted from the stamen and carpel primordia stages until the mature pollen stage. OsRAD21-3-deficient RNAi lines showed arrested pollen mitosis, aberrant pollen chromosome segregation and aborted pollen grains, which led to disrupted pollen viability. However, male meiosis in these RNAi lines did not appear to be severely disrupted, which suggests that the main involvement of OsRAD21-3 is in post-meiotic pollen development by affecting pollen mitosis. Furthermore, of the four OsRAD21 genes in the rice genome, only OsRAD21-3 was expressed in pollen grains. Given that the mechanism involving generation of sperm cells differs between flowering plants and metozoans, this study shows, in part, why flowering plants of rice and Arabidopsis have four Rad21/Rec8 proteins, as compared with two in yeast and metozoans, and gives some clues to the functional differentiation of Rad21/Rec8 proteins during evolution.
Collapse
Affiliation(s)
- Jiayi Tao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing, China
| | | | | | | |
Collapse
|
28
|
Ranganath RM. Asymmetric cell division--how flowering plant cells get their unique identity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:39-60. [PMID: 17585495 DOI: 10.1007/978-3-540-69161-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A central question in biology is how cell fate is specified during development of a multicellular organism. Flowering plants use two major pathways of asymmetric cell divisions in a spatio-temporal manner to achieve required cellular differentiation. In the 'one mother--two different daughters' pathway, a mother cell mitotically divides to produce two daughter cells of different size and fate. By contrast, the 'coenocyte-cellularization' pathway involves formation of a coenocyte, nuclear migration to specific locations of the coenocyte and cellularization of these nuclei by unique wall forming processes. Given that cell fate determinants play a key role in establishing cell identity, their allocation to daughter cells in the two pathways needs to be understood in terms of the unique cell cycle regulatory mechanisms involved. Most of the information available on cell fate determination in flowering plants is in the form of genes identified from mutant analysis. Novel techniques of interrogating individual plant cells in vivo are necessary to advance the extant knowledge from genetics to functional genomics data bases.
Collapse
Affiliation(s)
- R M Ranganath
- Department of Botany, Bangalore University, Jnanabharathi Campus, Bangalore 560056, India.
| |
Collapse
|
29
|
O'Brien M, Gray-Mitsumune M, Kapfer C, Bertrand C, Matton DP. The ScFRK2 MAP kinase kinase kinase from Solanum chacoense affects pollen development and viability. PLANTA 2007; 225:1221-31. [PMID: 17106684 DOI: 10.1007/s00425-006-0432-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 10/16/2006] [Indexed: 05/08/2023]
Abstract
We have previously described the FERTILIZATION-RELATED KINASE 2 (ScFRK2), a MAP kinase kinase kinase from Solanum chacoense that is predominantly expressed in reproductive tissues. Overexpression of the ScFRK2 gene modifies the cell fate of ovule initials and induces homeotic transformation of ovules into carpelloid structures. Since the ScFRK2 gene is normally expressed also in anthers, we now further our observations on the effect of ScFRK2 overexpression in male reproductive structures. Although ScFRK2 mRNA levels detected by RNA blot were relatively constant during early anther development, there was a dramatic change in tissue distribution of ScFRK2 mRNA when detected by in situ RNA hybridization. In the young anther, ScFRK2 mRNA accumulated mainly in microsporocytes and tapetum. By the time of anthesis, ScFRK2 mRNA was no longer found in degenerating tapetum or pollen grains but instead found abundantly on the anther wall, including epidermis and endothecium. Overexpression of ScFRK2 transcripts strongly disturbed pollen development. At maturity, almost two-thirds of pollen grains were severely affected and non-viable, while the remaining pollen grains were significantly smaller than wild type pollen. Cross with pollen from a ScFRK2 overexpression line into a wild type female plant produced an F1 population with 44% of the progeny having the transgene, suggesting that the pollen defect is caused by a sporophytic dysfunction, leading to major structural defects and incomplete pollen development.
Collapse
Affiliation(s)
- Martin O'Brien
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, H1X 2B2, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
30
|
Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. Pollen wall development in flowering plants. THE NEW PHYTOLOGIST 2007; 174:483-498. [PMID: 17447905 DOI: 10.1111/j.1469-8137.2007.02060.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The outer pollen wall, or exine, is more structurally complex than any other plant cell wall, comprising several distinct layers, each with its own organizational pattern. Since elucidation of the basic events of pollen wall ontogeny using electron microscopy in the 1970s, knowledge of their developmental genetics has increased enormously. However, self-assembly processes that are not under direct genetic control also play an important role in pollen wall patterning. This review integrates ultrastructural and developmental findings with recent models for self-assembly in an attempt to understand the origins of the morphological complexity and diversity that underpin the science of palynology.
Collapse
Affiliation(s)
- Stephen Blackmore
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | | | - John J Skvarla
- Department of Botany - Microbiology, University of Oklahoma, Norman, OK 73019-0245, USA
| | - John R Rowley
- Botany Department, University of Stockholm, SE-106 91, Stockholm, Sweden
| |
Collapse
|
31
|
Sweigart AL, Fishman L, Willis JH. A simple genetic incompatibility causes hybrid male sterility in mimulus. Genetics 2006; 172:2465-79. [PMID: 16415357 PMCID: PMC1456371 DOI: 10.1534/genetics.105.053686] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/10/2006] [Indexed: 11/18/2022] Open
Abstract
Much evidence has shown that postzygotic reproductive isolation (hybrid inviability or sterility) evolves by the accumulation of interlocus incompatibilities between diverging populations. Although in theory only a single pair of incompatible loci is needed to isolate species, empirical work in Drosophila has revealed that hybrid fertility problems often are highly polygenic and complex. In this article we investigate the genetic basis of hybrid sterility between two closely related species of monkeyflower, Mimulus guttatus and M. nasutus. In striking contrast to Drosophila systems, we demonstrate that nearly complete hybrid male sterility in Mimulus results from a simple genetic incompatibility between a single pair of heterospecific loci. We have genetically mapped this sterility effect: the M. guttatus allele at the hybrid male sterility 1 (hms1) locus acts dominantly in combination with recessive M. nasutus alleles at the hybrid male sterility 2 (hms2) locus to cause nearly complete hybrid male sterility. In a preliminary screen to find additional small-effect male sterility factors, we identified one additional locus that also contributes to some of the variation in hybrid male fertility. Interestingly, hms1 and hms2 also cause a significant reduction in hybrid female fertility, suggesting that sex-specific hybrid defects might share a common genetic basis. This possibility is supported by our discovery that recombination is reduced dramatically in a cross involving a parent with the hms1-hms2 incompatibility.
Collapse
Affiliation(s)
- Andrea L Sweigart
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
32
|
Abstract
Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.
Collapse
Affiliation(s)
- Nathaniel L Clark
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, USA
| | | | | |
Collapse
|
33
|
Abstract
Meiosis is a unique form of cellular division by which a diploid cell produces genetically distinct haploid gametes. Initiation and regulation of mammalian meiosis differs between the sexes. In females, meiosis is initiated during embryo development and arrested shortly after birth during prophase I. In males, spermatogonial stem cells initiate meiosis at puberty and proceed through gametogenesis with no cell cycle arrest. Mouse genes required for early meiotic cell cycle events are being identified by comparative analysis with other eukaryotic systems, by virtue of gene knockout technology and by mouse mutagenesis screens for reproductive defects. This review focuses on mouse reproductive biology and describes the available mouse mutants with defects in the early meiotic cell cycle and prophase I regulatory events. These research tools will permit rapid advances in such medically relevant research areas as infertility, embryo lethality and developmental abnormalities.
Collapse
Affiliation(s)
- Changanamkandath Rajesh
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo 43614, USA
| | | |
Collapse
|
34
|
Takeda S, Paszkowski J. DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 2005; 115:27-35. [PMID: 16249938 DOI: 10.1007/s00412-005-0031-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/17/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
In plants, newly acquired epigenetic states of transcriptional gene activity are readily transmitted to the progeny. This is in contrast to mammals, where only rare cases of transgenerational inheritance of new epigenetic traits have been reported (FASEB J 12:949-957, 1998; Nat Genet 23:314-318, 1999; Proc Natl Acad Sci U S A 100:2538-2543, 2003). Epigenetic inheritance in plants seems to rely on cytosine methylation maintained through meiosis and postmeiotic mitoses, giving rise to gametophytes. In particular, maintenance of CpG methylation ((m)CpG) appears to play a central role, guiding the distribution of other epigenetic signals such as histone H3 methylation and non-CpG DNA methylation. The evolutionarily conserved DNA methyltransferase MET1 is responsible for copying (m)CpG patterns through DNA replication in the gametophytic phase. The importance of gametophytic MET1 activity is illustrated by the phenotypes of met1 mutants that are severely compromised in the accuracy of epigenetic inheritance during gametogenesis. This includes elimination of imprinting at paternally silent loci such as FWA or MEDEA (MEA). The importance of DNA methylation in gametophytic imprinting has been reinforced by the discovery of DEMETER (DME), encoding putative DNA glycosylase involved in the removal of (m)C. DME opposes transcriptional silencing associated with imprinting activities of the MEA/FIE polycomb group complex.
Collapse
Affiliation(s)
- Shin Takeda
- Laboratory of Plant Genetics, University of Geneva, Science III, Switzerland.
| | | |
Collapse
|