1
|
Fortuna R, Acker P, Ugland CR, Burthe SJ, Harris MP, Newell MA, Gunn C, Morley TI, Haaland TR, Swann RL, Wanless S, Daunt F, Reid JM. Season-specific genetic variation underlies early-life migration in a partially migratory bird. Proc Biol Sci 2024; 291:20241660. [PMID: 39450599 PMCID: PMC11503479 DOI: 10.1098/rspb.2024.1660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 08/22/2024] [Indexed: 10/26/2024] Open
Abstract
Eco-evolutionary responses to environmentally induced selection fundamentally depend on magnitudes of genetic variation underlying traits that facilitate population persistence. Additive genetic variances and associated heritabilities can vary across environmental conditions, especially for labile phenotypic traits expressed through early life. However, short-term seasonal dynamics of genetic variances are rarely quantified in wild populations, precluding inference on eco-evolutionary outcomes in seasonally dynamic systems. This limitation applies to seasonal migration versus residence, constituting one key trait where rapid microevolution could rescue partially migratory populations from changing seasonal environments. We fitted novel quantitative genetic 'capture-recapture animal models' to multi-generational pedigree and year-round resighting data from 11 cohorts of European shags (Gulosus aristotelis), to estimate season-specific additive genetic variances in liabilities to migrate, and in resulting expression of migration, in juveniles' first autumn and winter. We demonstrate non-negligible genetic variation underlying early-life migration, with twice as large additive genetic variances and heritabilities in autumn than winter. Since early-life survival selection on migration typically occurs in winter, highest genetic variation and strongest selection are seasonally desynchronized. Our results reveal complex within- and among-year dynamics of early-life genetic and phenotypic variation, demonstrating that adequate inference of eco-evolutionary outcomes requires quantifying microevolutionary potential on appropriate scales and seasonal timeframes.
Collapse
Affiliation(s)
| | - Paul Acker
- Department of Biology, NTNU, Trondheim, Norway
| | | | | | | | | | - Carrie Gunn
- UK Centre for Ecology & Hydrology, Edinburgh, UK
| | | | | | | | | | | | - Jane M. Reid
- Department of Biology, NTNU, Trondheim, Norway
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Janhunen M, Eronen A, Kekäläinen J, Primmer CR, Donner I, Hyvärinen P, Huuskonen H, Kortet R. Selection among critically endangered landlocked salmon ( Salmo salar m. sebago) families in survival and growth traits across early life stages and in different environments. Evol Appl 2024; 17:e13692. [PMID: 38681511 PMCID: PMC11052761 DOI: 10.1111/eva.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Endangered wild fish populations are commonly supported by hatchery propagation. However, hatchery-reared fish experience very different selective pressures compared to their wild counterparts, potentially causing genotype-by-environment interactions (G × E) in essential fitness traits. We experimentally studied early selection in a critically endangered landlocked Atlantic salmon population, first from fertilization to the swim-up stage in a common hatchery setting, and thereafter until the age of 5 months in two contrasting rearing environments. Swim-up progeny were moved either to standard indoor hatchery tanks involving conventional husbandry or to seminatural outdoor channels providing only natural food. After the first summer, sampled survivors were assigned to their families by genotyping. Early survival until the swim-up stage was mostly determined by maternal effects, but also involved significant variation due to sires and full-sib families (potential genetic effects). High on-growing survival in hatchery tanks (88.7%) maintained a more even distribution among families (relative share 1.5%-4.2%) than the seminatural environment (0.0%-5.4%). This heterogeneity was mostly maternal, whereas no independent paternal effect occurred. Heritability estimates were high for body size traits in both environments (0.62-0.69). Genetic correlations between the environments were significantly positive for body size traits (0.67-0.69), and high body condition in hatchery was also genetically linked to rapid growth in the seminatural environment (0.54). Additive and phenotypic growth variation increased in the seminatural environment, but scaling effects probably played a less significant role for G × E, compared to re-ranking of genotypes. Our results suggest that not only maternal effects, but also genetic effects, direct selection according to the environmental conditions experienced. Consistently high genetic variation in growth implies that, despite its low overall genetic diversity and long history in captive rearing (>50 years), this landlocked Atlantic salmon population still possesses adaptive potential for response to change from hatchery rearing back to more natural conditions.
Collapse
Affiliation(s)
- Matti Janhunen
- Natural Resources Institute Finland (Luke)JoensuuFinland
| | - Aslak Eronen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Jukka Kekäläinen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Craig R. Primmer
- Faculty of Biological and Environmental Sciences|Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Iikki Donner
- Faculty of Biological and Environmental Sciences|Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | | | - Hannu Huuskonen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Raine Kortet
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
3
|
Houle C, Gossieaux P, Bernatchez L, Audet C, Garant D. Transgenerational effects on body size and survival in Brook charr ( Salvelinus fontinalis). Evol Appl 2023; 16:1061-1070. [PMID: 37216032 PMCID: PMC10197224 DOI: 10.1111/eva.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Higher temperatures are now observed in several ecosystems and act as new selective agents that shape traits and fitness of individuals. Transgenerational effects may be important in modulating adaptation of future generations and buffering negative impacts of temperature changes. The potential for these effects may be important in freshwater fish species, as temperature is a key abiotic component of their environment. Yet, still, relatively few studies have assessed the presence and importance of transgenerational effects under natural conditions. The purpose of this study was to test how parental thermal conditions influenced offspring growth and survival following stocking in Brook charr (Salvelinus fontinalis). To do so, part of the breeders were exposed to a "cold" treatment while others were exposed to a "warm" treatment during the final steps of gonad maturation (constant 2°C difference between treatments along the seasonal temperature decrease). The impact on offspring of a selection treatment targeting production traits of interest (absence of sexual maturation at 1+, combined with increased growth) in breeders was also evaluated. After 7-8 months of growth in captivity, offspring were stocked in natural lakes. Their growth and survival were assessed about a year later. Offspring from "cold" breeders showed lower survival than those from "warm" breeders and the selection treatment had no effect on survival. However, the selection treatment was linked to lower Fulton's condition index, which, in turn, was positively correlated to survival in lakes. This study highlights the importance of working in ecological/industrial context to fully assess the different impacts of transgenerational effects on traits and survival. Our results also have important implications for stocking practices used to support the sport fishing industry.
Collapse
Affiliation(s)
- Carolyne Houle
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | | | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQuébecCanada
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski (ISMER)Université du Québec à Rimouski (UQAR)RimouskiQuébecCanada
| | - Dany Garant
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
4
|
Crespel A, Miller T, Rácz A, Parsons K, Lindström J, Killen S. Density influences the heritability and genetic correlations of fish behaviour under trawling-associated selection. Evol Appl 2021; 14:2527-2540. [PMID: 34745341 PMCID: PMC8549612 DOI: 10.1111/eva.13279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022] Open
Abstract
Fishing-associated selection is one of the most important human-induced evolutionary pressures for natural populations. However, it is unclear whether fishing leads to heritable phenotypic changes in the targeted populations, as the heritability and genetic correlations of traits potentially under selection have received little attention. In addition, phenotypic changes could arise from fishing-associated environmental effects, such as reductions in population density. Using fish reared at baseline and reduced group density and repeatedly harvested by simulated trawling, we show that trawling can induce direct selection on fish social behaviour. As sociability has significant heritability and is also genetically correlated with activity and exploration, trawling has the potential to induce both direct selection and indirect selection on a variety of fish behaviours, potentially leading to evolution over time. However, while trawling selection was consistent between density conditions, the heritability and genetic correlations of behaviours changed according to the population density. Fishing-associated environmental effects can thus modify the evolutionary potential of fish behaviour, revealing the need to use a more integrative approach to address the evolutionary consequences of fishing.
Collapse
Affiliation(s)
- Amélie Crespel
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
- Department of Biology University of Turku Turku Finland
| | - Toby Miller
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Anita Rácz
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
- Department of Genetics Eötvös Loránd University Budapest Hungary
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Jan Lindström
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| |
Collapse
|
5
|
Ferchaud AL, Leitwein M, Laporte M, Boivin-Delisle D, Bougas B, Hernandez C, Normandeau É, Thibault I, Bernatchez L. Adaptive and maladaptive genetic diversity in small populations: Insights from the Brook Charr (Salvelinus fontinalis) case study. Mol Ecol 2020; 29:3429-3445. [PMID: 33463857 DOI: 10.1111/mec.15566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Investigating the relative importance of neutral versus selective processes governing the accumulation of genetic variants is a key goal in both evolutionary and conservation biology. This is particularly true in the context of small populations, where genetic drift can counteract the effect of selection. Using Brook Charr (Salvelinus fontinalis) from Québec, Canada, as a case study, we investigated the importance of demographic versus selective processes governing the accumulation of both adaptive and maladaptive mutations in closed versus open and connected populations to assess gene flow effect. This was achieved by using 14,779 high-quality filtered SNPs genotyped among 1,416 fish representing 50 populations from three life history types: lacustrine (closed populations), riverine and anadromous (connected populations). Using the PROVEAN algorithm, we observed a considerable accumulation of putative deleterious mutations across populations. The absence of correlation between the occurrence of putatively beneficial or deleterious mutations and local recombination rate supports the hypothesis that genetic drift might be the main driver of the accumulation of such variants. However, despite a lower genetic diversity observed in lacustrine than in riverine or anadromous populations, lacustrine populations do not exhibit more deleterious mutations than the two other history types, suggesting that the negative effect of genetic drift in lacustrine populations may be mitigated by that of relaxed purifying selection. Moreover, we also identified genomic regions associated with anadromy, as well as an overrepresentation of transposable elements associated with variation in environmental variables, thus supporting the importance of transposable elements in adaptation.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Maeva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Damien Boivin-Delisle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Bérénice Bougas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Cécilia Hernandez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise Sur la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Bourret V, Albert V, April J, Côté G, Morissette O. Past, present and future contributions of evolutionary biology to wildlife forensics, management and conservation. Evol Appl 2020; 13:1420-1434. [PMID: 32684967 PMCID: PMC7359848 DOI: 10.1111/eva.12977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Successfully implementing fundamental concepts into concrete applications is challenging in any given field. It requires communication, collaboration and shared will between researchers and practitioners. We argue that evolutionary biology, through research work linked to conservation, management and forensics, had a significant impact on wildlife agencies and department practices, where new frameworks and applications have been implemented over the last decades. The Quebec government's Wildlife Department (MFFP: Ministère des Forêts, de la Faune et des Parcs) has been proactive in reducing the “research–implementation” gap, thanks to prolific collaborations with many academic researchers. Among these associations, our department's outstanding partnership with Dr. Louis Bernatchez yielded significant contributions to harvest management, stocking programmes, definition of conservation units, recovery of threatened species, management of invasive species and forensic applications. We discuss key evolutionary biology concepts and resulting concrete examples of their successful implementation that derives directly or indirectly from this successful partnership. While old and new threats to wildlife are bringing new challenges, we expect recent developments in eDNA and genomics to provide innovative solutions as long as the research–implementation bridge remains open.
Collapse
Affiliation(s)
- Vincent Bourret
- Direction générale de la protection de la faune Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Vicky Albert
- Direction générale de la protection de la faune Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Julien April
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Guillaume Côté
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Olivier Morissette
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| |
Collapse
|
7
|
Effects of genetic origin on phenotypic divergence in Brook Trout populations stocked with domestic fish. Ecosphere 2020. [DOI: 10.1002/ecs2.3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Létourneau J, Ferchaud A, Le Luyer J, Laporte M, Garant D, Bernatchez L. Predicting the genetic impact of stocking in Brook Charr ( Salvelinus fontinalis) by combining RAD sequencing and modeling of explanatory variables. Evol Appl 2018; 11:577-592. [PMID: 29875804 PMCID: PMC5978948 DOI: 10.1111/eva.12566] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
In fisheries management, intensive stocking programs are commonly used to enhance population abundance and maintain stock productivity. However, such practices are increasingly raising concerns as multiple studies documented adverse genetic and evolutionary impacts of stocking on wild populations. Improvement of stocking management relies on a better understanding of the dynamic of introgressive hybridization between wild and domestic population and on assessment of the genetic state of wild populations after stocking cessation. In Québec, Canada, over five million captive-reared Brook Charr (Salvelinus fontinalis) are stocked every year to support recreational fishing activities. Here, we investigated how variation in stocking history and environmental variables, including water temperature, pH, and dissolved oxygen, may influence the impact of stocking practices on the genetic integrity of wild Brook Charr populations. We collected DNA samples (n = 862, average of 30 individuals per lake) from 29 lakes that underwent different stocking intensity through time and also collected environmental parameters for each sampled lake. An average of 4,580 high-quality filtered SNPs was obtained for each population using genotyping by sequencing (GBS), which were then used to quantify the mean domestic membership of each sampled population. An exhaustive process of model selection was conducted to obtain a best-fitted model that explained 56% of the variance observed in mean domestic genetic membership. The number of years since the mean year of stocking was the best explanatory variable to predict variation in mean domestic genetic membership whereas environmental characteristics had little influence on observed patterns of admixture. Our model predictions also revealed that each sampled wild population could potentially return to a wild genetic state (absence of domestic genetic background) after stocking cessation. Overall, our study provides new insights on factors determining level of introgressive hybridization and suggests that stocking impacts could be reversible with time.
Collapse
Affiliation(s)
- Justine Létourneau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Anne‐Laure Ferchaud
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Jérémy Le Luyer
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Martin Laporte
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Dany Garant
- Département de BiologieFaculté des SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| |
Collapse
|
9
|
Hollins J, Thambithurai D, Koeck B, Crespel A, Bailey DM, Cooke SJ, Lindström J, Parsons KJ, Killen SS. A physiological perspective on fisheries-induced evolution. Evol Appl 2018; 11:561-576. [PMID: 29875803 PMCID: PMC5978952 DOI: 10.1111/eva.12597] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size‐selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears—and therefore fisheries‐induced evolution (FIE)—but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species’ distributions and responses to environmental change.
Collapse
Affiliation(s)
- Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Davide Thambithurai
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Amelie Crespel
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - David M Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory Department of Biology and Institute of Environmental Science Carleton University Ottawa ON Canada
| | - Jan Lindström
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Kevin J Parsons
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| |
Collapse
|
10
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
11
|
Crespel A, Dupont-Prinet A, Bernatchez L, Claireaux G, Tremblay R, Audet C. Divergence in physiological factors affecting swimming performance between anadromous and resident populations of brook charr Salvelinus fontinalis. JOURNAL OF FISH BIOLOGY 2017; 90:2170-2193. [PMID: 28317121 DOI: 10.1111/jfb.13300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
In this study, an anadromous strain (L) and a freshwater-resident (R) strain of brook charr Salvelinus fontinalis as well as their reciprocal hybrids, were reared in a common environment and submitted to swimming tests combined with salinity challenges. The critical swimming speeds (Ucrit ) of the different crosses were measured in both fresh (FW) and salt water (SW) and the variations in several physiological traits (osmotic, energetic and metabolic capacities) that are predicted to influence swimming performance were documented. Anadromous and resident fish reached the same Ucrit in both FW and SW, with Ucrit being 14% lower in SW compared with FW. The strains, however, seemed to use different underlying strategies: the anadromous strain relied on its streamlined body shape and higher osmoregulatory capacity, while the resident strain had greater citrate synthase (FW) and lactate dehydrogenase (FW, SW) capacity and either greater initial stores or more efficient use of liver (FW, SW) and muscle (FW) glycogen during exercise. Compared with R♀ L♂ hybrids, L♀ R♂ hybrids had a 20% lower swimming speed, which was associated with a 24% smaller cardio-somatic index and higher physiological costs. Thus swimming performance depends on cross direction (i.e. which parental line was used as dam or sire). The study thus suggests that divergent physiological factors between anadromous and resident S. fontinalis may result in similar swimming capacities that are adapted to their respective lifestyles.
Collapse
Affiliation(s)
- A Crespel
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), 310 des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - A Dupont-Prinet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), 310 des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - L Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Local 1145, Université Laval, Québec, QC, G1V 0A6, Canada
| | - G Claireaux
- LEMAR UMR 6539 (UBO-CNRS-IRD-Ifremer), Institut Universitaire Européen de la Mer, Unité PFOM-ARN - Centre de Bretagne, 29280, Plouzané, France
| | - R Tremblay
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), 310 des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - C Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), 310 des Ursulines, Rimouski, QC, G5L 3A1, Canada
| |
Collapse
|
12
|
Clark ES, Wilkins LGE, Wedekind C. MHC class I expression dependent on bacterial infection and parental factors in whitefish embryos (Salmonidae). Mol Ecol 2013; 22:5256-69. [DOI: 10.1111/mec.12457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Emily S. Clark
- Department of Ecology and Evolution; University of Lausanne; Biophore 1015 Lausanne Switzerland
| | - Laetitia G. E. Wilkins
- Department of Ecology and Evolution; University of Lausanne; Biophore 1015 Lausanne Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution; University of Lausanne; Biophore 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Genetically based population divergence in overwintering energy mobilization in brook charr (Salvelinus fontinalis). Genetica 2013; 141:51-64. [PMID: 23412995 DOI: 10.1007/s10709-013-9705-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
Investigating the nature of physiological traits potentially related to fitness is important towards a better understanding of how species and/or populations may respond to selective pressures imposed by contrasting environments. In northern species in particular, the ability to mobilize energy reserves to compensate for the low external energy intake during winter is crucial. However, the phenotypic and genetic bases of energy reserve accumulation and mobilization have rarely been investigated, especially pertaining to variation in strategy adopted by different populations. In the present study, we documented variation in several energy reserve variables and estimated their quantitative genetic basis to test the null hypothesis of no difference in variation at those traits among three strains of brook charr (Salvelinus fontinalis) and their reciprocal hybrids. Our results indicate that the strategy of winter energy preparation and mobilization was specific to each strain, whereby (1) domestic fish accumulated a higher amount of energy reserves before winter and kept accumulating liver glycogen during winter despite lower feeding; (2) Laval fish used liver glycogen and lipids during winter and experienced a significant decrease in condition factor; (3) Rupert fish had relatively little energy reserves accumulated at the end of fall and preferentially mobilized visceral fat during winter. Significant heritability for traits related to the accumulation and use of energy reserves was found in the domestic and Laval but not in the Rupert strain. Genetic and phenotypic correlations also varied among strains, which suggested population-specific genetic architecture underlying the expression of these traits. Hybrids showed limited evidence of non-additive effects. Overall, this study provides the first evidence of a genetically based-and likely adaptive-population-specific strategy for energy mobilization related to overwinter survival.
Collapse
|