1
|
Christensen KA, Flores AM, Sakhrani D, Biagi CA, Devlin RH, Sutherland BJG, Withler RE, Rondeau EB, Koop BF. Revealing the evolutionary history and contemporary population structure of Pacific salmon in the Fraser River through genome resequencing. G3 (BETHESDA, MD.) 2024; 14:jkae169. [PMID: 39041834 PMCID: PMC11457079 DOI: 10.1093/g3journal/jkae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
The Fraser River once supported massive salmon returns. However, over the last century, the largest returns have consistently been less than half of the recorded historical maximum. There is substantial interest from surrounding communities and governments to increase salmon returns for both human use and functional ecosystems. To generate resources for this endeavor, we resequenced genomes of Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch), and sockeye salmon (Oncorhynchus nerka) from the Fraser River at moderate coverage (∼16×). A total of 954 resequenced genomes were analyzed, with 681 collected specifically for this study from tissues sampled between 1997 and 2021. An additional 273 were collected from previous studies. At the species level, Chinook salmon appeared to have 1.6-2.1× more SNPs than coho or sockeye salmon, respectively. This difference may be attributable to large historical declines of coho and sockeye salmon. At the population level, 3 Fraser River genetic groups were identified for each species using principal component and admixture analyses. These were consistent with previous research and supports the continued use of these groups in conservation and management efforts. Environmental factors and a migration barrier were identified as major factors influencing the boundaries of these genetic groups. Additionally, 20 potentially adaptive loci were identified among the genetic groups. This information may be valuable in new management and conservation efforts. Furthermore, the resequenced genomes are an important resource for contemporary genomics research on Fraser River salmon and have been made publicly available.
Collapse
Affiliation(s)
- Kris A Christensen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Anne-Marie Flores
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1H2, Canada
| | - Carlo A Biagi
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1H2, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1H2, Canada
| | - Ben J G Sutherland
- Sutherland Bioinformatics, Lantzville, BC V0R 2H0, Canada
- Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | - Ruth E Withler
- Pacific Salmon Foundation, Vancouver, BC V6H 3V9, Canada
| | - Eric B Rondeau
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
2
|
Dittman AH, May D, Johnson MA, Baldwin DH, Scholz NL. Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch). J Exp Biol 2024; 227:jeb247786. [PMID: 39238479 DOI: 10.1242/jeb.247786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc A Johnson
- Oregon Department of Fish and Wildlife Corvallis Research Laboratory, 28655 Highway 34, Corvallis, OR 97333, USA
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| |
Collapse
|
3
|
Fuentes‐Pardo AP, Farrell ED, Pettersson ME, Sprehn CG, Andersson L. The genomic basis and environmental correlates of local adaptation in the Atlantic horse mackerel ( Trachurus trachurus). Evol Appl 2023; 16:1201-1219. [PMID: 37360028 PMCID: PMC10286234 DOI: 10.1111/eva.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding how populations adapt to their environment is increasingly important to prevent biodiversity loss due to overexploitation and climate change. Here we studied the population structure and genetic basis of local adaptation of Atlantic horse mackerel, a commercially and ecologically important marine fish that has one of the widest distributions in the eastern Atlantic. We analyzed whole-genome sequencing and environmental data of samples collected from the North Sea to North Africa and the western Mediterranean Sea. Our genomic approach indicated low population structure with a major split between the Mediterranean Sea and the Atlantic Ocean and between locations north and south of mid-Portugal. Populations from the North Sea are the most genetically distinct in the Atlantic. We discovered that most population structure patterns are driven by a few highly differentiated putatively adaptive loci. Seven loci discriminate the North Sea, two the Mediterranean Sea, and a large putative inversion (9.9 Mb) on chromosome 21 underlines the north-south divide and distinguishes North Africa. A genome-environment association analysis indicates that mean seawater temperature and temperature range, or factors correlated to them, are likely the main environmental drivers of local adaptation. Our genomic data broadly support the current stock divisions, but highlight areas of potential mixing, which require further investigation. Moreover, we demonstrate that as few as 17 highly informative SNPs can genetically discriminate the North Sea and North African samples from neighboring populations. Our study highlights the importance of both, life history and climate-related selective pressures in shaping population structure patterns in marine fish. It also supports that chromosomal rearrangements play a key role in local adaptation with gene flow. This study provides the basis for more accurate delineation of the horse mackerel stocks and paves the way for improving stock assessments.
Collapse
Affiliation(s)
| | - Edward D. Farrell
- EDF Scientific LimitedCorkIreland
- Killybegs Fishermen's OrganisationDonegalIreland
| | - Mats E. Pettersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - C. Grace Sprehn
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
4
|
Dieris M, Kowatschew D, Korsching SI. Olfactory function in the trace amine-associated receptor family (TAARs) evolved twice independently. Sci Rep 2021; 11:7807. [PMID: 33833329 PMCID: PMC8032801 DOI: 10.1038/s41598-021-87236-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.
Collapse
Affiliation(s)
- Milan Dieris
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Daniel Kowatschew
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
5
|
Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio). Gene 2021; 777:145468. [PMID: 33539942 DOI: 10.1016/j.gene.2021.145468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
The environment contains a large extent of chemical information, which could be detected as olfactory sense. Olfactory in vertebrates plays important roles on many aspects during life time, including localizing prey or food, avoiding predators, mating behavior and social communication. Considering the essential role of olfactory receptors in the specific recognition of diverse stimuli, understanding the evolutionary dynamics of olfactory receptors in teleost means a lot, especially in the allotetraploid common carp, who has undergone the fourth whole-genome duplication event. Here, we identified the whole set of olfactory receptor genes in representative teleosts and found a significant contraction in common carp when compared with other teleosts. Odorant receptor genes (OR) occupy the most among four groups of olfactory receptors, including 33 functional genes and 16 pseudogenes. Furthermore, 6 trace amine-associated receptor (TAAR) genes (including 1 pseudogene), 7 odorant-related-A receptor genes, and 10 olfactory C family receptor genes (including 3 pseudogenes) were identified in common carp. Phylogenetic and motif analysis were performed to illustrate the phylogenetic relationship and structural conservation of teleost olfactory receptors. Selection pressure analysis suggested that olfactory receptor groups in common carp were all under relaxed purifying-selection. Additionally, gene expression divergences for olfactory receptor genes were investigated during embryonic development stages of common carp. We aim to determine the abundance of common carp olfactory receptor genes, explore the evolutionary fate and expression dynamics, and provide some genomic clues for the evolution of polyploid olfactory after whole-genome duplication and for future studies of teleost olfactory.
Collapse
|
6
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
7
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
8
|
Madsen SS, Winther SST, Bollinger RJ, Steiner U, Larsen MH. Differential expression of olfactory genes in Atlantic salmon ( Salmo salar) during the parr-smolt transformation. Ecol Evol 2019; 9:14085-14100. [PMID: 31938505 PMCID: PMC6953650 DOI: 10.1002/ece3.5845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
The anadromous salmon life cycle includes two migratory events, downstream smolt migration and adult homing migration, during which they must navigate with high precision. During homing migration, olfactory cues are used for navigation in coastal and freshwater areas, and studies have suggested that the parr-smolt transformation has a sensitive period for imprinting. Accordingly, we hypothesized that there would be significant changes in gene expression in the olfactory epithelium specifically related to smoltification and sampled olfactory rosettes from hatchery-reared upper growth modal juvenile Atlantic salmon at 3-week intervals from January to June, using lower growth modal nonsmolting siblings as controls. A suite of olfactory receptors and receptor-specific proteins involved in functional aspects of olfaction and peripheral odor memorization was analyzed by qPCR. Gene expression in juveniles was compared with mature adult salmon of the same genetic strain caught in the river Gudenaa. All mRNAs displayed significant variation over time in both modal groups. Furthermore, five receptor genes (olfc13.1, olfc15.1, sorb, ora2, and asor1) and four olfactory-specific genes (soig, ependymin, gst, and omp2) were differentially regulated between modal groups, suggesting altered olfactory function during smoltification. Several genes were differentially regulated in mature salmon compared with juveniles, suggesting that homing and odor recollection involve a different set of genes than during imprinting. Thyroid hormone receptors thrα and thrβ mRNAs were elevated during smolting, suggesting increased sensitivity to thyroid hormones. Treatment of presmolts with triiodothyronine in vivo and ex vivo had, however, only subtle effects on the investigated olfactory targets, questioning the hypothesis that thyroid hormones directly regulate gene expression in the olfactory epithelium.
Collapse
Affiliation(s)
| | | | | | - Ulrich Steiner
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | | |
Collapse
|
9
|
Jiang H, Du K, Gan X, Yang L, He S. Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish ( Pseudoliparis swirei). Genes (Basel) 2019; 10:E910. [PMID: 31717379 PMCID: PMC6895882 DOI: 10.3390/genes10110910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Olfactory receptor repertoires show highly dynamic evolution associated with ecological adaptations in different species. The Mariana snailfish (Pseudoliparis swirei) living below a depth of 6000 m in the Mariana Trench evolved degraded vision and occupies a specific feeding habitat in a dark, low-food environment. However, whether such adaptations involve adaptive changes in the chemosensory receptor repertoire is not known. Here, we conducted a comparative analysis of the olfactory receptor (OR) and trace amine-associated receptor (TAAR) gene repertoires in nine teleosts with a focus on the evolutionary divergence between the Mariana snailfish and its shallow-sea relative, Tanaka's snailfish (Liparis tanakae). We found many fewer functional OR genes and a significantly higher fraction of pseudogenes in the Mariana snailfish, but the numbers of functional TAAR genes in the two species were comparable. Phylogenetic analysis showed that the expansion patterns of the gene families were shared by the two species, but that Mariana snailfish underwent massive gene losses in its OR repertoire. Despite an overall decreased size in OR subfamilies and a reduced number of TAAR subfamilies in the Mariana snailfish, expansion of certain subfamilies was observed. Selective pressure analysis indicated greatly relaxed selective strength in ORs but a slightly enhanced selective strength in TAARs of Mariana snailfish. Overall, our study reveals simplified but specific OR and TAAR repertoires in the Mariana snailfish shaped by natural selection with respect to ecological adaptations in the hadal environment. This is the first study on the chemosensation evolution in vertebrates living in the hadal zone, which could provide new insights into evolutionary adaptation to the hadal environment.
Collapse
Affiliation(s)
- Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Kang Du
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
| | - Xiaoni Gan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
| | - Shunping He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
10
|
Olivares J, Schmachtenberg O. An update on anatomy and function of the teleost olfactory system. PeerJ 2019; 7:e7808. [PMID: 31579633 PMCID: PMC6768218 DOI: 10.7717/peerj.7808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022] Open
Abstract
About half of all extant vertebrates are teleost fishes. Although our knowledge about anatomy and function of their olfactory systems still lags behind that of mammals, recent advances in cellular and molecular biology have provided us with a wealth of novel information about the sense of smell in this important animal group. Its paired olfactory organs contain up to five types of olfactory receptor neurons expressing OR, TAAR, VR1- and VR2-class odorant receptors associated with individual transduction machineries. The different types of receptor neurons are preferentially tuned towards particular classes of odorants, that are associated with specific behaviors, such as feeding, mating or migration. We discuss the connections of the receptor neurons in the olfactory bulb, the differences in bulbar circuitry compared to mammals, and the characteristics of second order projections to telencephalic olfactory areas, considering the everted ontogeny of the teleost telencephalon. The review concludes with a brief overview of current theories about odor coding and the prominent neural oscillations observed in the teleost olfactory system.
Collapse
Affiliation(s)
- Jesús Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Universidad de Valparaíso, PhD Program in Neuroscience, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
11
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
12
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L, Bergseth S, Davidson WS, Gallardo-Escárate C, Goldammer T, Guiguen Y, Iturra P, Kijas JW, Koop BF, Lien S, Maass A, Martin SAM, McGinnity P, Montecino M, Naish KA, Nichols KM, Ólafsson K, Omholt SW, Palti Y, Plastow GS, Rexroad CE, Rise ML, Ritchie RJ, Sandve SR, Schulte PM, Tello A, Vidal R, Vik JO, Wargelius A, Yáñez JM. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 2017; 18:484. [PMID: 28655320 PMCID: PMC5488370 DOI: 10.1186/s12864-017-3862-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.
Collapse
Affiliation(s)
- Daniel J. Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Craig R. Primmer
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS Australia
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6 Canada
| | - Steinar Bergseth
- The Research Council of Norway, Drammensveien 288, P.O. Box 564, NO-1327 Lysaker, Norway
| | - William S. Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, 4030000 Concepción, Chile
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Patricia Iturra
- Human Genetics Program ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Alejandro Maass
- Center for Mathematical Modelling, Department of Mathematical Engineering, University of Chile, 8370456 Santiago, Chile
- Center for Genome Regulation, University of Chile, 8370456 Santiago, Chile
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, 8370146 Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146 Santiago, Chile
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195 USA
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112 USA
| | | | - Stig W. Omholt
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA ARS, 11861 Leetown Road, Kearneysville, WV 25430 USA
| | - Graham S. Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Caird E. Rexroad
- Office of National Programs, USDA ARS, 5601 Sunnyside Avenue, Beltsville, MD 20705-5148 USA
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John’s, NL A1C 5S7 Canada
| | - Rachael J. Ritchie
- Genome British Columbia, Suite 400 – 575, West 8th Avenue, Vancouver, BC V5Z 0C4 Canada
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4 Canada
| | - Alfredo Tello
- Instituto Tecnológico del Salmón S.A., INTESAL de SalmonChile, Puerto Montt, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics, and Evolutionary Studies, Department of Biology, University of Santiago, 9170022 Santiago, Chile
| | - Jon Olav Vik
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - José Manuel Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Av. Santa Rosa 11735, Santiago, Chile & Aquainnovo, Cardonal s/n, Puerto Montt, Chile
| |
Collapse
|
14
|
Zhu G, Wang L, Tang W, Wang X, Wang C. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus. Genes Genomics 2017; 39:521-532. [PMID: 28458780 PMCID: PMC5387026 DOI: 10.1007/s13258-017-0517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Abstract
Olfaction is essential for fish to detect odorant elements in the environment and plays a critical role in navigating, locating food and detecting predators. Olfactory function is produced by the olfactory transduction pathway and is activated by olfactory receptors (ORs) through the binding of odorant elements. Recently, four types of olfactory receptors have been identified in vertebrate olfactory epithelium, including main odorant receptors (MORs), vomeronasal type receptors (VRs), trace-amine associated receptors (TAARs) and formyl peptide receptors (FPRs). It has been hypothesized that migratory fish, which have the ability to perform spawning migration, use olfactory cues to return to natal rivers. Therefore, obtaining OR genes from migratory fish will provide a resource for the study of molecular mechanisms that underlie fish spawning migration behaviors. Previous studies of OR genes have mainly focused on genomic data, however little information has been gained at the transcript level. In this study, we identified the OR genes of an economically important commercial fish Coilia nasus through searching for olfactory epithelium transcriptomes. A total of 142 candidate MOR, 52 V2R/OlfC, 32 TAAR and two FPR putative genes were identified. In addition, through genomic analysis we identified several MOR genes containing introns, which is unusual for vertebrate MOR genes. The transcriptome-scale mining strategy proved to be fruitful in identifying large sets of OR genes from species whose genome information is unavailable. Our findings lay the foundation for further research into the possible molecular mechanisms underlying the spawning migration behavior in C. nasus.
Collapse
Affiliation(s)
- Guoli Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC USA
| | - Wenqiao Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaomei Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Cong Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Gao S, Liu S, Yao J, Li N, Yuan Z, Zhou T, Li Q, Liu Z. Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus. Biochim Biophys Acta Gen Subj 2016; 1861:644-651. [PMID: 27773705 DOI: 10.1016/j.bbagen.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Channel catfish (Ictalurus punctatus) live in turbid waters with limited visibility to chase prey within a certain distance. This can be compensated through detecting specific water-soluble substances by the olfactory receptors (ORs) and trace amine associated receptors (TAARs) expressed on the olfactory epithelium. METHODS We identified the OR and TAAR repertoires in channel catfish, and characterized the genomic organizations of these two gene families by data mining available genomic resources. RESULTS A total of 47 putative OR genes and 36 putative TAAR genes were identified in the channel catfish genome, including 27 functional OR genes and 28 functional TAAR genes. Phylogenetic and orthogroup analyses were conducted to illustrate the evolutionary dynamics of the vertebrate ORs and TAARs. Collinear analysis revealed the presence of two conserved orthologous blocks that contain OR genes between the catfish genome and zebrafish genome. The complete loss of a conserved motif in fish OR family H may contribute to the divergence of family H from other families. The dN/dS analysis indicated that the highest degree of selection pressure was imposed on TAAR subfamily 14 among all fish ORs and TAARs. CONCLUSIONS The present study provides understanding of the evolutionary dynamics of the two gene families (OR and TAAR) associated with olfaction in channel catfish. GENERAL SIGNIFICANCE This is the first systematic study of ORs and TAARs in catfish, which could provide valuable genomic resources for further investigation of olfactory mechanisms in teleost fish.
Collapse
Affiliation(s)
- Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
16
|
Williams CR, MacDonald JW, Bammler TK, Paulsen MH, Simpson CD, Gallagher EP. From the Cover: Cadmium Exposure Differentially Alters Odorant-Driven Behaviors and Expression of Olfactory Receptors in Juvenile Coho Salmon (Oncorhynchus kisutch). Toxicol Sci 2016; 154:267-277. [PMID: 27621283 DOI: 10.1093/toxsci/kfw172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 μg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.
Collapse
Affiliation(s)
- Chase R Williams
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Michael H Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
17
|
Eyun SI, Moriyama H, Hoffmann FG, Moriyama EN. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors. PLoS One 2016; 11:e0151023. [PMID: 26963722 PMCID: PMC4786312 DOI: 10.1371/journal.pone.0151023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.
Collapse
Affiliation(s)
- Seong-il Eyun
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
| | - Federico G. Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology and Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Etsuko N. Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
- * E-mail:
| |
Collapse
|
18
|
Li Q, Tachie-Baffour Y, Liu Z, Baldwin MW, Kruse AC, Liberles SD. Non-classical amine recognition evolved in a large clade of olfactory receptors. eLife 2015; 4:e10441. [PMID: 26519734 PMCID: PMC4695389 DOI: 10.7554/elife.10441] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines are important signaling molecules, and the structural basis for their recognition by G Protein-Coupled Receptors (GPCRs) is well understood. Amines are also potent odors, with some activating olfactory trace amine-associated receptors (TAARs). Here, we report that teleost TAARs evolved a new way to recognize amines in a non-classical orientation. Chemical screens de-orphaned eleven zebrafish TAARs, with agonists including serotonin, histamine, tryptamine, 2-phenylethylamine, putrescine, and agmatine. Receptors from different clades contact ligands through aspartates on transmembrane α-helices III (canonical Asp3.32) or V (non-canonical Asp5.42), and diamine receptors contain both aspartates. Non-classical monoamine recognition evolved in two steps: an ancestral TAAR acquired Asp5.42, gaining diamine sensitivity, and subsequently lost Asp3.32. Through this transformation, the fish olfactory system dramatically expanded its capacity to detect amines, ecologically significant aquatic odors. The evolution of a second, alternative solution for amine detection by olfactory receptors highlights the tremendous structural versatility intrinsic to GPCRs. DOI:http://dx.doi.org/10.7554/eLife.10441.001 Many organisms make molecules called biogenic amines. These molecules, which include the human hormones adrenaline and histamine, have important roles in regulating the biology and behaviour of many animals. Some biogenic amines bind to receptor proteins called GPCRs on the surface of cells. Many drugs can affect the activity of GPCRs, so understanding how different GPCRs work is an important goal of the pharmaceutical industry. Like all proteins, GPCRs are made of chains of molecules called amino acids. The GPCRs that can detect biogenic amines use a particular amino acid named Asp3.32, and when this amino acid is mutated, these GPCRs become unable to bind to their target amine. Trace amine-associated receptors (TAARs) are a type of GPCR that are found in many animals to detect odors. Most TAARs in mammals contain the Asp3.32 residue, and recognize amine odors. However, many fish TAARs do not contain Asp3.32, and it was not clear what molecules these fish receptors detect. Here Li et al. find that these fish TAARs also recognize amines, and use a different amino acid called Asp5.42. Also, some TAARs contain both Asp3.32 and Asp5.42, and recognize chemicals with two amines named diamines. Some diamines that bind to TAARs are foul smelling odors; for example, cadaverine and putrescine are repulsive smells emitted by decomposing flesh. In total, the experiments identified amines that can bind to eleven zebrafish TAARs that previously had no odor partner. Li et al. propose that some fish TAARs lost the Asp3.32 during the course of evolution to leave the Asp5.42 as the main interaction site for amines. This change dramatically altered how these TAARs interact with amines, which probably expanded the number of different amines that fish can detect. These findings open up new ways to study how the fish brain processes information about its surroundings. DOI:http://dx.doi.org/10.7554/eLife.10441.002
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yaw Tachie-Baffour
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Zhikai Liu
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Maude W Baldwin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
19
|
Cöster M, Biebermann H, Schöneberg T, Stäubert C. Evolutionary Conservation of 3-Iodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1. Eur Thyroid J 2015; 4:9-20. [PMID: 26601069 PMCID: PMC4640299 DOI: 10.1159/000430839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The trace amine-associated receptor 1 (Taar1) is a Gs protein-coupled receptor activated by trace amines, such as β-phenylethylamine (β-PEA) and 3-iodothyronamine (T1AM). T1AM is an endogenous biogenic amine and thyroid hormone derivative that exerts several biological functions. However, the physiological relevance of T1AM acting via Taar1 is still under discussion. Therefore, we studied the structural and functional evolution of Taar1 in vertebrates to provide evidence for a conserved Taar1-mediated T1AM function. STUDY DESIGN We searched public sequence databases to retrieve Taar1 sequence information from vertebrates. We cloned and functionally characterized Taar1 from selected vertebrate species using cAMP assays to determine the evolutionary conservation of T1AM action at Taar1. RESULTS We found intact open reading frames of Taar1 in more than 100 vertebrate species, including mammals, sauropsids and amphibians. Evolutionary conservation analyses of Taar1 protein sequences revealed a high variation in amino acid residues proposed to be involved in agonist binding, especially in rodent Taar1 orthologs. Functional characterization showed that T1AM, β-PEA and p-tyramine (p-Tyr) act as agonists at all tested orthologs, but EC50 values of T1AM at rat Taar1 differed significantly when compared to all other tested vertebrate Taar1. CONCLUSIONS The high structural conservation of Taar1 throughout vertebrate evolution highlights the physiological relevance of Taar1, but species-specific differences in T1AM potency at Taar1 orthologs suggest a specialization of rat Taar1 for T1AM recognition. In contrast, β-PEA and p-Tyr potencies were rather conserved throughout all tested Taar1 orthologs. We provide evidence that the observed differences in potency are related to differences in constraint during Taar1 evolution.
Collapse
Affiliation(s)
- Maxi Cöster
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Heike Biebermann
- Institut für Experimenelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Schöneberg
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Claudia Stäubert
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- *Claudia Stäubert, Institute of Biochemistry, Molecular Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, DE-04103 Leipzig (Germany), E-Mail
| |
Collapse
|
20
|
Azzouzi N, Barloy-Hubler F, Galibert F. Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires. BMC Genomics 2015; 16:335. [PMID: 25900688 PMCID: PMC4415300 DOI: 10.1186/s12864-015-1478-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TAARs (trace amine-associated receptors) are among the principal receptors expressed by the olfactory epithelium. We used the recent BROAD Institute release of the genome sequences of five representative fishes of the cichlid family to establish the complete TAAR repertoires of these species and to compare them with five other fish TAAR repertoires. RESULTS The genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were analyzed by exhaustive TBLASTN searches with a set of published TAAR gene sequences used as positive bait. A second TBLASTN analysis was then performed on the candidate genes, with a set of non-TAAR class A GPCR (G protein-coupled receptors) used as negative bait. The resulting cichlid repertoire contained 44 complete TAAR genes from O. niloticus, 18 from P. nyererei, 23 from H. burtoni, 12 from N. brichardi and 20 from M. zebra, plus a number of pseudogenes, edge genes and fragments. A large proportion of these sequences (80%) consisted of two coding exons, separated in all but two cases by an intron in the interloop 1 coding sequence. We constructed phylogenetic trees. These trees indicated that TAARs constitute a distinct clade, well separated from ORs (olfactory receptors) and other class A GPCRs. Also these repertoires consist of several families and subfamilies, a number of which are common to fugu, tetraodon, stickleback and medaka. Like all other TAARs identified to date, cichlid TAARs have a characteristic two-dimensional structure and contain a number of amino-acid motifs or amino acids, such cysteine, in particular conserved positions. CONCLUSIONS Little is known about the functions of TAARs: in most cases their ligands have yet to be identified, partly because appropriate methods for such investigations have not been developed. Sequences analyses and comparisons of TAARs in several animal species, here fishes living in the same environment, should help reveal their roles and whether they are complementary to that of ORs.
Collapse
Affiliation(s)
- Naoual Azzouzi
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| | - Frederique Barloy-Hubler
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| | - Francis Galibert
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| |
Collapse
|
21
|
Liberles SD. Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr Opin Neurobiol 2015; 34:1-7. [PMID: 25616211 DOI: 10.1016/j.conb.2015.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
Trace amine-associated receptors (TAARs) are G Protein-Coupled Receptors that function as vertebrate olfactory receptors. Like odorant receptors, TAARs constitute an ever-evolving sensory subsystem, with individual TAARs recognizing particular chemicals and some evoking stereotyped behaviors. Several TAARs mediate aversion or attraction towards volatile amines that include the mouse odor trimethylamine, the predator odor 2-phenylethylamine, and the death-associated odor cadaverine. TAAR-expressing sensory neurons achieve monoallelic receptor expression, use canonical olfactory signaling molecules, and target a dedicated olfactory bulb region. In mouse, TAAR4 and TAAR5 are encoded by adjacent genes and localize to adjacent glomeruli, yet mediate opposing behaviors. Future studies are needed to understand how TAAR-expressing sensory neurons engage higher-order neural circuits to encode odor valence.
Collapse
Affiliation(s)
- Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Mühlhaus J, Dinter J, Nürnberg D, Rehders M, Depke M, Golchert J, Homuth G, Yi CX, Morin S, Köhrle J, Brix K, Tschöp M, Kleinau G, Biebermann H. Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile. Int J Mol Sci 2014; 15:20638-55. [PMID: 25391046 PMCID: PMC4264187 DOI: 10.3390/ijms151120638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/25/2014] [Accepted: 11/04/2014] [Indexed: 12/04/2022] Open
Abstract
The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs.
Collapse
Affiliation(s)
- Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Juliane Dinter
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Daniela Nürnberg
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Maren Rehders
- School of Engineering and Science, Research Center MOLIFE-Molecular Life Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Fr iedrich-Ludwig-Jahn-Str. 15a, 17487 Greifswald, Germany.
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Fr iedrich-Ludwig-Jahn-Str. 15a, 17487 Greifswald, Germany.
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Fr iedrich-Ludwig-Jahn-Str. 15a, 17487 Greifswald, Germany.
| | - Chun-Xia Yi
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Business Campus Garching, Parkring 13, 85748 Garching, Germany.
| | - Silke Morin
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Business Campus Garching, Parkring 13, 85748 Garching, Germany.
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Klaudia Brix
- School of Engineering and Science, Research Center MOLIFE-Molecular Life Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Matthias Tschöp
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Business Campus Garching, Parkring 13, 85748 Garching, Germany.
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|