1
|
Wang J, Zheng L, Peng Y, Lu Z, Zheng M, Wang Z, Liu J, He Y, Luo J. ZmKTF1 promotes salt tolerance by mediating RNA-directed DNA methylation in maize. THE NEW PHYTOLOGIST 2025; 245:200-214. [PMID: 39456131 DOI: 10.1111/nph.20225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
The epigenetic process of RNA-directed DNA methylation (RdDM) regulates the expression of genes and transposons. However, little is known about the involvement of RdDM in the response of maize (Zea mays) to salt stress. Here, we isolated a salt-sensitive maize mutant and cloned the underlying gene, which encodes KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR1 (KTF1), an essential component of the RdDM pathway. Evolutionary analysis identified two homologs of KTF1 (ZmKTF1A and ZmKTF1B) with highly similar expression patterns. Whole-genome bisulfite sequencing revealed that mutations in ZmKTF1 substantially decrease genome-wide CHH (H = A, C, or T) methylation levels. Moreover, our findings suggest that ZmKTF1-mediated DNA methylation regulates the expression of multiple key genes involved in oxidoreductase activity upon exposure to salt, concomitant with increased levels of reactive oxygen species. In addition, insertion-deletion mutations (InDels) in the promoter of ZmKTF1 affect its expression, thereby altering Na+ concentrations in seedlings in a natural maize population. Therefore, ZmKTF1 might represent an untapped epigenetic resource for improving salt tolerance in maize. Overall, our work demonstrates the critical role of ZmKTF1 involved in the RdDM pathway in maize salt tolerance.
Collapse
Affiliation(s)
- Jinyu Wang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Leiming Zheng
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Yexiang Peng
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Zizheng Lu
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Minghui Zheng
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Zi Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan He
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinhong Luo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Takei T, Tsukada M, Tamura K, Hara-Nishimura I, Fukao Y, Kurihara Y, Matsui M, Saze H, Tsuzuki M, Watanabe Y, Hamada T. ARGONAUTE1-binding Tudor domain proteins function in small interfering RNA production for RNA-directed DNA methylation. PLANT PHYSIOLOGY 2024; 195:1333-1346. [PMID: 38446745 DOI: 10.1093/plphys/kiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.
Collapse
Affiliation(s)
- Takahito Takei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Michio Tsukada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Kurihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Nanobioscience, Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takahiro Hamada
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
3
|
Griess O, Domb K, Katz A, Harris KD, Heskiau KG, Ohad N, Zemach A. Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development. PLoS One 2023; 18:e0279688. [PMID: 36888585 PMCID: PMC9994747 DOI: 10.1371/journal.pone.0279688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/13/2022] [Indexed: 03/09/2023] Open
Abstract
The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss, Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 in P. patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated in Ppddm1. Finally, Ppddm1 was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a non-flowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent.
Collapse
Affiliation(s)
- Ofir Griess
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Aviva Katz
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Keith D. Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Karina G. Heskiau
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
- * E-mail: (AZ); (NO)
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
- * E-mail: (AZ); (NO)
| |
Collapse
|
4
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
5
|
Stitzer MC, Anderson SN, Springer NM, Ross-Ibarra J. The genomic ecosystem of transposable elements in maize. PLoS Genet 2021; 17:e1009768. [PMID: 34648488 PMCID: PMC8547701 DOI: 10.1371/journal.pgen.1009768] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/26/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. Genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between attributes of the genomic environment and the survival of TE copies and families. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences reveal a diversity of survival strategies of TE families. Together these generate a rich ecology of the genome, with each TE family representing the evolution of a distinct ecological niche. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.
Collapse
Affiliation(s)
- Michelle C. Stitzer
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Sarah N. Anderson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jeffrey Ross-Ibarra
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Noshay JM, Liang Z, Zhou P, Crisp PA, Marand AP, Hirsch CN, Schmitz RJ, Springer NM. Stability of DNA methylation and chromatin accessibility in structurally diverse maize genomes. G3 (BETHESDA, MD.) 2021; 11:6288454. [PMID: 34849810 PMCID: PMC8496265 DOI: 10.1093/g3journal/jkab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peter A Crisp
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
7
|
Gimenez MD, Vazquez DV, Trepat F, Cambiaso V, Rodríguez GR. Fruit quality and DNA methylation are affected by parental order in reciprocal crosses of tomato. PLANT CELL REPORTS 2021; 40:171-186. [PMID: 33079280 DOI: 10.1007/s00299-020-02624-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Reciprocal effects were found for tomato fruit quality and DNA methylation. The epigenetic identity of reciprocal hybrids indicates that DNA methylation might be one of the mechanisms involved in POEs. Crosses between different genotypes and even between different species are commonly used in plant breeding programs. Reciprocal hybrids are obtained by changing the cross direction (or the sexual role) of parental genotypes in a cross. Phenotypic differences between these hybrids constitute reciprocal effects (REs). The aim of this study was to evaluate phenotypic differences in tomato fruit traits and DNA methylation profiles in three inter- and intraspecific reciprocal crosses. REs were detected for 13 of the 16 fruit traits analyzed. The number of traits with REs was the lowest in the interspecific cross, whereas the highest was found in the cross between recombinant inbred lines (RILs) derived from the same interspecific cross. An extension of gene action analysis was proposed to incorporate parent-of-origin effects (POEs). Maternal and paternal dominance were found in four fruit traits. REs and paternal inheritance were found for epiloci located at coding and non-coding regions. The epigenetic identity displayed by the reciprocal hybrids accounts for the phenotypic differences among them, indicating that DNA methylation might be one of the mechanisms involved in POEs.
Collapse
Affiliation(s)
- Magalí Diana Gimenez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
- CIGEOBIO, (CONICET-UNSJ), Complejo Universitario "Islas Malvinas", FCEFN, Universidad de San Juan, Av. Ignacio de la Roza 590, J5402DCS, Rivadavia, San Juan, Argentina
| | - Dana Valeria Vazquez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Felipe Trepat
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Gustavo Rubén Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina.
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA, Zavalla, Santa Fe, Argentina.
| |
Collapse
|
8
|
DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc Natl Acad Sci U S A 2020; 117:33700-33710. [PMID: 33376225 DOI: 10.1073/pnas.2011361117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytosine (DNA) methylation in plants regulates the expression of genes and transposons. While methylation in plant genomes occurs at CG, CHG, and CHH sequence contexts, the comparative roles of the individual methylation contexts remain elusive. Here, we present Physcomitrella patens as the second plant system, besides Arabidopsis thaliana, with viable mutants with an essentially complete loss of methylation in the CG and non-CG contexts. In contrast to A. thaliana, P. patens has more robust CHH methylation, similar CG and CHG methylation levels, and minimal cross-talk between CG and non-CG methylation, making it possible to study context-specific effects independently. Our data found CHH methylation to act in redundancy with symmetric methylation in silencing transposons and to regulate the expression of CG/CHG-depleted transposons. Specific elimination of CG methylation did not dysregulate transposons or genes. In contrast, exclusive removal of non-CG methylation massively up-regulated transposons and genes. In addition, comparing two exclusively but equally CG- or CHG-methylated genomes, we show that CHG methylation acts as a greater transcriptional regulator than CG methylation. These results disentangle the transcriptional roles of CG and non-CG, as well as symmetric and asymmetric methylation in a plant genome, and point to the crucial role of non-CG methylation in genome regulation.
Collapse
|
9
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Anderson SN, Stitzer MC, Brohammer AB, Zhou P, Noshay JM, O'Connor CH, Hirsch CD, Ross-Ibarra J, Hirsch CN, Springer NM. Transposable elements contribute to dynamic genome content in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1052-1065. [PMID: 31381222 DOI: 10.1111/tpj.14489] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are ubiquitous components of eukaryotic genomes and can create variation in genome organization and content. Most maize genomes are composed of TEs. We developed an approach to define shared and variable TE insertions across genome assemblies and applied this method to four maize genomes (B73, W22, Mo17 and PH207) with uniform structural annotations of TEs. Among these genomes we identified approximately 400 000 TEs that are polymorphic, encompassing 1.6 Gb of variable TE sequence. These polymorphic TEs include a combination of recent transposition events as well as deletions of older TEs. There are examples of polymorphic TEs within each of the superfamilies of TEs and they are found distributed across the genome, including in regions of recent shared ancestry among individuals. There are many examples of polymorphic TEs within or near maize genes. In addition, there are 2380 gene annotations in the B73 genome that are located within variable TEs, providing evidence for the role of TEs in contributing to the substantial differences in annotated gene content among these genotypes. TEs are highly variable in our survey of four temperate maize genomes, highlighting the major contribution of TEs in driving variation in genome organization and gene content. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://github.com/SNAnderson/maizeTE_variation; https://mcstitzer.github.io/maize_TEs.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michelle C Stitzer
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
11
|
Xu J, Chen G, Hermanson PJ, Xu Q, Sun C, Chen W, Kan Q, Li M, Crisp PA, Yan J, Li L, Springer NM, Li Q. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol 2019; 20:243. [PMID: 31744513 PMCID: PMC6862797 DOI: 10.1186/s13059-019-1859-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and biological functions of DNA methylation at a population scale in maize. RESULTS We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986 metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some traits that only show significant associations with DMRs and not with SNPs. CONCLUSIONS These results suggest that DNA methylation can provide unique information to explain phenotypic variation in maize.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Peter J. Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changshuo Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenqing Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiuxin Kan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Peter A. Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
12
|
Anderson SN, Stitzer MC, Zhou P, Ross-Ibarra J, Hirsch CD, Springer NM. Dynamic Patterns of Transcript Abundance of Transposable Element Families in Maize. G3 (BETHESDA, MD.) 2019; 9:3673-3682. [PMID: 31506319 PMCID: PMC6829137 DOI: 10.1534/g3.119.400431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
Abstract
Transposable Elements (TEs) are mobile elements that contribute the majority of DNA sequences in the maize genome. Due to their repetitive nature, genomic studies of TEs are complicated by the difficulty of properly attributing multi-mapped short reads to specific genomic loci. Here, we utilize a method to attribute RNA-seq reads to TE families rather than particular loci in order to characterize transcript abundance for TE families in the maize genome. We applied this method to assess per-family expression of transposable elements in >800 published RNA-seq libraries representing a range of maize development, genotypes, and hybrids. While a relatively small proportion of TE families are transcribed, expression is highly dynamic with most families exhibiting tissue-specific expression. A large number of TE families were specifically detected in pollen and endosperm, consistent with reproductive dynamics that maintain silencing of TEs in the germ line. We find that B73 transcript abundance is a poor predictor of TE expression in other genotypes and that transcript levels can differ even for shared TEs. Finally, by assessing recombinant inbred line and hybrid transcriptomes, complex patterns of TE transcript abundance across genotypes emerged. Taken together, this study reveals a dynamic contribution of TEs to maize transcriptomes.
Collapse
Affiliation(s)
| | - Michelle C Stitzer
- Department of Evolution and Ecology and Center for Population Biology and
| | - Peng Zhou
- Department of Plant and Microbial Biology and
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology and Center for Population Biology and
- Genome Center, University of California, Davis, California 95616
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, and
| | | |
Collapse
|
13
|
Xue W, Anderson SN, Wang X, Yang L, Crisp PA, Li Q, Noshay J, Albert PS, Birchler JA, Bilinski P, Stitzer MC, Ross-Ibarra J, Flint-Garcia S, Chen X, Springer NM, Doebley JF. Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics 2019; 213:143-160. [PMID: 31320409 PMCID: PMC6727801 DOI: 10.1534/genetics.119.302378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it.
Collapse
Affiliation(s)
- Wei Xue
- College of Agronomy, Shenyang Agricultural University, 110866 Liaoning Province, China
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
| | - Liyan Yang
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Life Science College, Shanxi Normal University, 041004 Shanxi Province, China
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Qing Li
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Paul Bilinski
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Michelle C Stitzer
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
14
|
Noshay JM, Anderson SN, Zhou P, Ji L, Ricci W, Lu Z, Stitzer MC, Crisp PA, Hirsch CN, Zhang X, Schmitz RJ, Springer NM. Monitoring the interplay between transposable element families and DNA methylation in maize. PLoS Genet 2019; 15:e1008291. [PMID: 31498837 PMCID: PMC6752859 DOI: 10.1371/journal.pgen.1008291] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/19/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and epigenetic silencing play important roles in the regulation of transposable elements (TEs) in many eukaryotic genomes. A majority of the maize genome is derived from TEs that can be classified into different orders and families based on their mechanism of transposition and sequence similarity, respectively. TEs themselves are highly methylated and it can be tempting to view them as a single uniform group. However, the analysis of DNA methylation profiles in flanking regions provides evidence for distinct groups of chromatin properties at different TE families. These differences among TE families are reproducible in different tissues and different inbred lines. TE families with varying levels of DNA methylation in flanking regions also show distinct patterns of chromatin accessibility and modifications within the TEs. The differences in the patterns of DNA methylation flanking TE families arise from a combination of non-random insertion preferences of TE families, changes in DNA methylation triggered by the insertion of the TE and subsequent selection pressure. A set of nearly 70,000 TE polymorphisms among four assembled maize genomes were used to monitor the level of DNA methylation at haplotypes with and without the TE insertions. In many cases, TE families with high levels of DNA methylation in flanking sequence are enriched for insertions into highly methylated regions. The majority of the >2,500 TE insertions into unmethylated regions result in changes in DNA methylation in haplotypes with the TE, suggesting the widespread potential for TE insertions to condition altered methylation in conserved regions of the genome. This study highlights the interplay between TEs and the methylome of a major crop species.
Collapse
Affiliation(s)
- Jaclyn M. Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Sarah N. Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens GA, United States of America
| | - William Ricci
- Department of Plant Biology, University of Georgia, Athens GA, United States of America
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens GA, United States of America
| | - Michelle C. Stitzer
- Department of Plant Sciences, University of California Davis, Davis CA, United States of America
| | - Peter A. Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul MN, United States of America
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens GA, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens GA, United States of America
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| |
Collapse
|
15
|
RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nat Commun 2019; 10:1613. [PMID: 30962443 PMCID: PMC6453930 DOI: 10.1038/s41467-019-09496-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
To properly regulate the genome, cytosine methylation is established by animal DNA methyltransferase 3 s (DNMT3s). While altered DNMT3 homologs, Domains rearranged methyltransferases (DRMs), have been shown to establish methylation via the RNA directed DNA methylation (RdDM) pathway, the role of true-plant DNMT3 orthologs remains elusive. Here, we profile de novo (RPS transgene) and genomic methylation in the basal plant, Physcomitrella patens, mutated in each of its PpDNMTs. We show that PpDNMT3b mediates CG and CHH de novo methylation, independently of PpDRMs. Complementary de novo CHG methylation is specifically mediated by the CHROMOMETHYLASE, PpCMT. Intragenomically, PpDNMT3b functions preferentially within heterochromatin and is affected by PpCMT. In comparison, PpDRMs target active-euchromatic transposons. Overall, our data resolve how DNA methylation in plants can be established in heterochromatin independently of RdDM; suggest that DRMs have emerged to target euchromatin; and link DNMT3 loss in angiosperms to the initiation of heterochromatic CHH methylation by CMT2. Whether plants have true DNMT3 orthologs and their role in establishing DNA methylation are still unclear. Here, the authors show that DNMT3s are persistent through plant evolution and mediates both de novo and heterochromatin DNA methylation in the early divergent land plant Physcomitrella patens.
Collapse
|
16
|
Heritable Epigenomic Changes to the Maize Methylome Resulting from Tissue Culture. Genetics 2018; 209:983-995. [PMID: 29848487 DOI: 10.1534/genetics.118.300987] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022] Open
Abstract
DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. To investigate heritable epigenetic changes as a consequence of tissue culture, a sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ∼15 Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines, suggesting that some loci are either targeted or hotspots for epigenetic variation. The consistent changes inherited following tissue culture include both gains and losses of DNA methylation and can affect CG, CHG, or both contexts within a region. Only a subset of the tissue culture changes observed in callus plants are observed in the primary regenerants, but the majority of DNA methylation changes present in primary regenerants are passed onto offspring. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species.
Collapse
|