1
|
Collins JB, Dilks CM, Hahnel SR, Rodriguez B, Fox BW, Redman E, Yu J, Cooke B, Sihuta K, Zamanian M, Roy PJ, Schroeder FC, Gilleard JS, Andersen EC. Naturally occurring variation in a cytochrome P450 modifies thiabendazole responses independently of beta-tubulin. PLoS Pathog 2025; 21:e1012602. [PMID: 39808673 PMCID: PMC11771912 DOI: 10.1371/journal.ppat.1012602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance. We performed a genome-wide association study using a genetically diverse panel of Caenorhabditis elegans strains to identify loci that contribute to resistance to the BZ drug thiabendazole (TBZ). We identified a quantitative trait locus (QTL) on chromosome V independent of all beta-tubulin genes and overlapping with two promising candidate genes, the cytochrome P450 gene cyp-35D1 and the nuclear hormone receptor nhr-176. Both genes were previously demonstrated to play a role in TBZ metabolism. NHR-176 binds TBZ and induces the expression of CYP-35D1, which metabolizes TBZ. We generated single gene deletions of cyp-35D1 and nhr-176 and found that both genes play a role in TBZ response. A predicted high-impact lysine-to-glutamate substitution at position 267 (K267E) in CYP-35D1 was identified in a sensitive strain, and reciprocal allele replacement strains in different genetic backgrounds were used to show that the lysine allele conferred increased TBZ resistance. Using competitive fitness assays, we found that neither allele was deleterious, but the lysine allele was selected in the presence of TBZ. Additionally, we found that the lysine allele significantly increased the rate of TBZ metabolism compared to the glutamate allele. Moreover, yeast expression assays showed that the lysine version of CYP-35D1 had twice the enzymatic activity of the glutamate allele. To connect our results to parasitic nematodes, we analyzed four Haemonchus contortus cytochrome P450 orthologs but did not find variation at the 267 position in fenbendazole-resistant populations. Overall, we confirmed that variation in this cytochrome P450 gene is the first locus independent of beta-tubulin to play a role in BZ resistance.
Collapse
Affiliation(s)
- J. B. Collins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Steffen R. Hahnel
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Briana Rodriguez
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Brittany Cooke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Kateryna Sihuta
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Bell AD, Valencia F, Paaby AB. Stabilizing selection and adaptation shape cis and trans gene expression variation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618466. [PMID: 39464158 PMCID: PMC11507773 DOI: 10.1101/2024.10.15.618466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An outstanding question in the evolution of gene expression is the relative influence of neutral processes versus natural selection, including adaptive change driven by directional selection as well as stabilizing selection, which may include compensatory dynamics. These forces shape patterns of gene expression variation within and between species, including the regulatory mechanisms governing expression in cis and trans. In this study, we interrogate intraspecific gene expression variation among seven wild C. elegans strains, with varying degrees of genomic divergence from the reference strain N2, leveraging this system's unique advantages to comprehensively evaluate gene expression evolution. By capturing allele-specific and between-strain changes in expression, we characterize the regulatory architecture and inheritance mode of gene expression variation within C. elegans and assess their relationship to nucleotide diversity, genome evolutionary history, gene essentiality, and other biological factors. We conclude that stabilizing selection is a dominant influence in maintaining expression phenotypes within the species, and the discovery that genes with higher overall expression tend to exhibit fewer expression differences supports this conclusion, as do widespread instances of cis differences compensated in trans. Moreover, analyses of human expression data replicate our finding that higher expression genes have less variable expression. We also observe evidence for directional selection driving expression divergence, and that expression divergence accelerates with increasing genomic divergence. To provide community access to the data from this first analysis of allele-specific expression in C. elegans, we introduce an interactive web application, where users can submit gene-specific queries to view expression, regulatory pattern, inheritance mode, and other information: https://wildworm.biosci.gatech.edu/ase/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
3
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Wit J, Dilks CM, Zhang G, Guisbert KSK, Zdraljevic S, Guisbert E, Andersen EC. Praziquantel inhibits Caenorhabditis elegans development and species-wide differences might be cct-8-dependent. PLoS One 2023; 18:e0286473. [PMID: 37561720 PMCID: PMC10414639 DOI: 10.1371/journal.pone.0286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Gaotian Zhang
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Karen S. Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
5
|
Bell AD, Chou HT, Valencia F, Paaby AB. Beyond the reference: gene expression variation and transcriptional response to RNA interference in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkad112. [PMID: 37221008 PMCID: PMC10411595 DOI: 10.1093/g3journal/jkad112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Zhang G, Andersen EC. Interplay Between Polymorphic Short Tandem Repeats and Gene Expression Variation in Caenorhabditis elegans. Mol Biol Evol 2023; 40:msad067. [PMID: 36999565 PMCID: PMC10075192 DOI: 10.1093/molbev/msad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Short tandem repeats (STRs) have orders of magnitude higher mutation rates than single nucleotide variants (SNVs) and have been proposed to accelerate evolution in many organisms. However, only few studies have addressed the impact of STR variation on phenotypic variation at both the organismal and molecular levels. Potential driving forces underlying the high mutation rates of STRs also remain largely unknown. Here, we leverage the recently generated expression and STR variation data among wild Caenorhabditis elegans strains to conduct a genome-wide analysis of how STRs affect gene expression variation. We identify thousands of expression STRs (eSTRs) showing regulatory effects and demonstrate that they explain missing heritability beyond SNV-based expression quantitative trait loci. We illustrate specific regulatory mechanisms such as how eSTRs affect splicing sites and alternative splicing efficiency. We also show that differential expression of antioxidant genes and oxidative stresses might affect STR mutations systematically using both wild strains and mutation accumulation lines. Overall, we reveal the interplay between STRs and gene expression variation by providing novel insights into regulatory mechanisms of STRs and highlighting that oxidative stress could lead to higher STR mutation rates.
Collapse
Affiliation(s)
- Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
7
|
Bell AD, Chou HT, Paaby AB. Beyond the reference: gene expression variation and transcriptional response to RNAi in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533964. [PMID: 36993640 PMCID: PMC10055391 DOI: 10.1101/2023.03.24.533964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A universal feature of living systems is that natural variation in genotype underpins variation in phenotype. Yet, research in model organisms is often constrained to a single genetic background, the reference strain. Further, genomic studies that do evaluate wild strains typically rely on the reference strain genome for read alignment, leading to the possibility of biased inferences based on incomplete or inaccurate mapping; the extent of reference bias can be difficult to quantify. As an intermediary between genome and organismal traits, gene expression is well positioned to describe natural variability across genotypes generally and in the context of environmental responses, which can represent complex adaptive phenotypes. C. elegans sits at the forefront of investigation into small-RNA gene regulatory mechanisms, or RNA interference (RNAi), and wild strains exhibit natural variation in RNAi competency following environmental triggers. Here, we examine how genetic differences among five wild strains affect the C. elegans transcriptome in general and after inducing RNAi responses to two germline target genes. Approximately 34% of genes were differentially expressed across strains; 411 genes were not expressed at all in at least one strain despite robust expression in others, including 49 genes not expressed in reference strain N2. Despite the presence of hyper-diverse hotspots throughout the C. elegans genome, reference mapping bias was of limited concern: over 92% of variably expressed genes were robust to mapping issues. Overall, the transcriptional response to RNAi was strongly strain-specific and highly specific to the target gene, and the laboratory strain N2 was not representative of the other strains. Moreover, the transcriptional response to RNAi was not correlated with RNAi phenotypic penetrance; the two germline RNAi incompetent strains exhibited substantial differential gene expression following RNAi treatment, indicating an RNAi response despite failure to reduce expression of the target gene. We conclude that gene expression, both generally and in response to RNAi, differs across C. elegans strains such that choice of strain may meaningfully influence scientific conclusions. To provide a public, easily accessible resource for querying gene expression variation in this dataset, we introduce an interactive website at https://wildworm.biosci.gatech.edu/rnai/ .
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
8
|
Gibson SB, Ness-Cohn E, Andersen EC. Benzimidazoles cause lethality by inhibiting the function of Caenorhabditis elegans neuronal beta-tubulin. Int J Parasitol Drugs Drug Resist 2022; 20:89-96. [PMID: 36332489 PMCID: PMC9771835 DOI: 10.1016/j.ijpddr.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Parasitic nematode infections cause an enormous global burden to both humans and livestock. Resistance to the limited arsenal of anthelmintic drugs used to combat these infections is widespread, including benzimidazole (BZ) compounds. Previous studies using the free-living nematode Caenorhabditis elegans to model parasitic nematode resistance have shown that loss-of-function mutations in the beta-tubulin gene ben-1 confer resistance to BZ drugs. However, the mechanism of resistance and the tissue-specific susceptibility are not well known in any nematode species. To identify in which tissue(s) ben-1 function underlies BZ susceptibility, transgenic strains that express ben-1 in different tissues, including hypodermis, muscles, neurons, intestine, and ubiquitous expression were generated. High-throughput fitness assays were performed to measure and compare the quantitative responses to BZ compounds among different transgenic lines. Significant BZ susceptibility was observed in animals expressing ben-1 in neurons, comparable to expression using the ben-1 promoter. This result suggests that ben-1 function in neurons underlies susceptibility to BZ. Subsetting neuronal expression of ben-1 based on the neurotransmitter system further restricted ben-1 function in cholinergic neurons to cause BZ susceptibility. These results better inform our current understanding of the cellular mode of action of BZs and also suggest additional treatments that might potentiate the effects of BZs in neurons.
Collapse
Affiliation(s)
- Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Elan Ness-Cohn
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA; Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
9
|
Nyaanga J, Andersen EC. Linkage mapping reveals loci that underlie differences in Caenorhabditis elegans growth. G3 GENES|GENOMES|GENETICS 2022; 12:6663991. [PMID: 35961034 PMCID: PMC9526057 DOI: 10.1093/g3journal/jkac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured postembryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856) and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body growth. We further examined these growth-associated quantitative trait loci using chromosome substitution strains and near-isogenic lines and validated the chromosome X quantitative trait loci. In addition, we generated a list of candidate genes for the chromosome X quantitative trait loci. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of growth in Caenorhabditis elegans natural populations.
Collapse
Affiliation(s)
- Joy Nyaanga
- Department of Molecular Biosciences, Northwestern University , Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University , Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University , Evanston, IL 60208, USA
| |
Collapse
|
10
|
Widmayer SJ, Evans KS, Zdraljevic S, Andersen EC. Evaluating the power and limitations of genome-wide association studies in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac114. [PMID: 35536194 PMCID: PMC9258552 DOI: 10.1093/g3journal/jkac114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Quantitative genetics in Caenorhabditis elegans seeks to identify naturally segregating genetic variants that underlie complex traits. Genome-wide association studies scan the genome for individual genetic variants that are significantly correlated with phenotypic variation in a population, or quantitative trait loci. Genome-wide association studies are a popular choice for quantitative genetic analyses because the quantitative trait loci that are discovered segregate in natural populations. Despite numerous successful mapping experiments, the empirical performance of genome-wide association study has not, to date, been formally evaluated in C. elegans. We developed an open-source genome-wide association study pipeline called NemaScan and used a simulation-based approach to provide benchmarks of mapping performance in collections of wild C. elegans strains. Simulated trait heritability and complexity determined the spectrum of quantitative trait loci detected by genome-wide association studies. Power to detect smaller-effect quantitative trait loci increased with the number of strains sampled from the C. elegans Natural Diversity Resource. Population structure was a major driver of variation in mapping performance, with populations shaped by recent selection exhibiting significantly lower false discovery rates than populations composed of more divergent strains. We also recapitulated previous genome-wide association studies of experimentally validated quantitative trait variants. Our simulation-based evaluation of performance provides the community with critical context to pursue quantitative genetic studies using the C. elegans Natural Diversity Resource to elucidate the genetic basis of complex traits in C. elegans natural populations.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Stefan Zdraljevic
- Department of Biological Chemistry, University of California—Los Angeles, Los Angeles, CA 90095, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits. Nat Commun 2022; 13:3462. [PMID: 35710766 PMCID: PMC9203580 DOI: 10.1038/s41467-022-31208-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Phenotypic variation in organism-level traits has been studied in Caenorhabditis elegans wild strains, but the impacts of differences in gene expression and the underlying regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal-level traits, including drug and toxicant responses. We perform transcriptomic analyses on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of gene expression. Using this massive dataset, we perform genome-wide association mappings to investigate the genetic basis underlying gene expression variation and reveal complex genetic architectures. We find a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further use mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of using gene expression variation to understand how phenotypic diversity is generated.
Collapse
|
12
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
13
|
Nyaanga J, Crombie TA, Widmayer SJ, Andersen EC. easyXpress: An R package to analyze and visualize high-throughput C. elegans microscopy data generated using CellProfiler. PLoS One 2021; 16:e0252000. [PMID: 34383778 PMCID: PMC8360505 DOI: 10.1371/journal.pone.0252000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
High-throughput imaging techniques have become widespread in many fields of biology. These powerful platforms generate large quantities of data that can be difficult to process and visualize efficiently using existing tools. We developed easyXpress to process and review C. elegans high-throughput microscopy data in the R environment. The package provides a logical workflow for the reading, analysis, and visualization of data generated using CellProfiler's WormToolbox. We equipped easyXpress with powerful functions to customize the filtering of noise in data, specifically by identifying and removing objects that deviate from expected animal measurements. This flexibility in data filtering allows users to optimize their analysis pipeline to match their needs. In addition, easyXpress includes tools for generating detailed visualizations, allowing the user to interactively compare summary statistics across wells and plates with ease. Researchers studying C. elegans benefit from this streamlined and extensible package as it is complementary to CellProfiler and leverages the R environment to rapidly process and analyze large high-throughput imaging datasets.
Collapse
Affiliation(s)
- Joy Nyaanga
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Timothy A. Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Samuel J. Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
14
|
Zhang G, Mostad JD, Andersen EC. Natural variation in fecundity is correlated with species-wide levels of divergence in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkab168. [PMID: 33983439 PMCID: PMC8496234 DOI: 10.1093/g3journal/jkab168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g., a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. In addition, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.
Collapse
Affiliation(s)
- Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jake D Mostad
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Evans KS, van Wijk MH, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 2021; 37:933-947. [PMID: 34229867 DOI: 10.1016/j.tig.2021.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
Although many studies have examined quantitative trait variation across many species, only a small number of genes and thereby molecular mechanisms have been discovered. Without these data, we can only speculate about evolutionary processes that underlie trait variation. Here, we review how quantitative and molecular genetics in the nematode Caenorhabditis elegans led to the discovery and validation of 37 quantitative trait genes over the past 15 years. Using these data, we can start to make inferences about evolution from these quantitative trait genes, including the roles that coding versus noncoding variation, gene family expansion, common versus rare variants, pleiotropy, and epistasis play in trait variation across this species.
Collapse
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Evans KS, Wit J, Stevens L, Hahnel SR, Rodriguez B, Park G, Zamanian M, Brady SC, Chao E, Introcaso K, Tanny RE, Andersen EC. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses. PLoS Pathog 2021; 17:e1009297. [PMID: 33720993 PMCID: PMC7993787 DOI: 10.1371/journal.ppat.1009297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Steffen R. Hahnel
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Briana Rodriguez
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Grace Park
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Mostafa Zamanian
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Shannon C. Brady
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Ellen Chao
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Katherine Introcaso
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Dilks CM, Hahnel SR, Sheng Q, Long L, McGrath PT, Andersen EC. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. Int J Parasitol Drugs Drug Resist 2020; 14:28-36. [PMID: 32858477 PMCID: PMC7473882 DOI: 10.1016/j.ijpddr.2020.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
Infections by parasitic nematodes inflict a huge burden on the health of humans and livestock throughout the world. Anthelmintic drugs are the first line of defense against these infections. Unfortunately, resistance to these drugs is rampant and continues to spread. To improve treatment strategies, we must understand the genetics and molecular mechanisms that underlie resistance. Studies of the fungus Aspergillus nidulans and the free-living nematode Caenorhabditis elegans discovered that a beta-tubulin gene is mutated in benzimidazole (BZ) resistant strains. In parasitic nematode populations, three beta-tubulin alleles, F167Y, E198A, and F200Y, have long been correlated with resistance. Additionally, improvements in sequencing technologies have identified new alleles - E198V, E198L, E198K, E198I, and E198Stop - also correlated with BZ resistance. However, none of these alleles have been proven to cause resistance. To empirically demonstrate this point, we independently introduced the F167Y, E198A, and F200Y alleles as well as two of the newly identified alleles, E198V and E198L, into the BZ susceptible C. elegans N2 genetic background using the CRISPR-Cas9 system. These genome-edited strains were exposed to both albendazole and fenbendazole to quantitatively measure animal responses to BZs. We used a range of concentrations for each BZ compound to define response curves and found that all five of the alleles conferred resistance to BZ compounds equal to a loss of the entire beta-tubulin gene. These results prove that the parasite beta-tubulin alleles cause resistance. The E198V allele is found at low frequencies along with the E198L allele in natural parasite populations, suggesting that it could affect fitness. We performed competitive fitness assays and demonstrated that the E198V allele reduces animal health, supporting the hypothesis that this allele might be less fit in field populations. Overall, we present a powerful platform to quantitatively assess anthelmintic resistance and effects of specific resistance alleles on organismal fitness in the presence or absence of the drug.
Collapse
Affiliation(s)
- Clayton M Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Steffen R Hahnel
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Qicong Sheng
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Lijiang Long
- Center for Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick T McGrath
- Center for Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
19
|
Evans KS, Zdraljevic S, Stevens L, Collins K, Tanny RE, Andersen EC. Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008986. [PMID: 33175833 PMCID: PMC7682890 DOI: 10.1371/journal.pgen.1008986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kimberly Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Evans KS, Andersen EC. The cadmium-responsive gene, cdr-6, does not influence Caenorhabditis elegans responses to exogenous zinc. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000305. [PMID: 33005884 PMCID: PMC7520126 DOI: 10.17912/micropub.biology.000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/22/2022]
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| |
Collapse
|