1
|
King CP, Chitre AS, Leal‐Gutiérrez JD, Tripi JA, Netzley AH, Horvath AP, Lamparelli AC, George A, Martin C, St. Pierre CL, Missfeldt Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen K, Holl KL, Polesskaya O, Ishiwari K, Chen H, Robinson TE, Flagel SB, Solberg Woods LC, Palmer AA, Meyer PJ. Genetic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70018. [PMID: 40049657 PMCID: PMC11884905 DOI: 10.1111/gbb.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues. Both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1596 heterogeneous stock (HS) rats. Rats underwent a Pavlovian conditioned approach task that characterized the responses to food-associated stimuli ("cues"). Responses ranged from cue-directed "sign-tracking" behavior to food-cup directed "goal-tracking" behavior (12 measures, SNP heritability: 0.051-0.215). Next, rats performed novel operant responses for unrewarded presentations of the cue using the conditioned reinforcement procedure. GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits across both tasks. Interval sizes of these QTLs varied widely. Seven traits shared a QTL on chromosome 1 that contained a few genes (e.g., Tenm4, Mir708) that have been associated with substance use disorders and other psychiatric disorders in humans. Other candidate genes (e.g., Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on addiction-related behaviors in HS rats and found that the QTL on chromosome 1 was also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive motivational processes and provide further support for a relationship between the attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | - Apurva S. Chitre
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Jordan A. Tripi
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Alesa H. Netzley
- Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Aidan P. Horvath
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Anthony George
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | - Connor Martin
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | | | | | | | - Jianjun Gao
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Riyan Cheng
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Khai‐Minh Nguyen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Katie L. Holl
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Oksana Polesskaya
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Keita Ishiwari
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
- Department of Pharmacology and ToxicologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and ToxicologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Shelly B. Flagel
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience Institute, University of MichiganAnn ArborMichiganUSA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and MetabolismWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute for Genomic Medicine, University of California San DiegoLa JollaCaliforniaUSA
| | - Paul J. Meyer
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
2
|
Santhanam N, Sanchez-Roige S, Mi S, Liang Y, Chitre AS, Munro D, Chen D, Gao J, Garcia-Martinez A, George AM, Gileta AF, Han W, Holl K, Hughson A, King CP, Lamparelli AC, Martin CD, Nyasimi F, St Pierre CL, Sumner S, Tripi J, Wang T, Chen H, Flagel S, Ishiwari K, Meyer P, Polesskaya O, Saba L, Solberg Woods LC, Palmer AA, Im HK. RatXcan: A framework for cross-species integration of genome-wide association and gene expression data. PLoS Genet 2025; 21:e1011583. [PMID: 40163524 DOI: 10.1371/journal.pgen.1011583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Genome-wide association studies (GWAS) have implicated specific alleles and genes as risk factors for numerous complex traits. However, translating GWAS results into biologically and therapeutically meaningful discoveries remains extremely challenging. Most GWAS results identify noncoding regions of the genome, suggesting that differences in gene regulation are the major driver of trait variability. To better integrate GWAS results with gene regulatory polymorphisms, we previously developed PrediXcan (also known as "transcriptome-wide association studies" or TWAS), which maps SNPs to predicted gene expression using GWAS data. In this study, we developed RatXcan, a framework that extends this methodology to outbred heterogeneous stock (HS) rats. RatXcan accounts for the close familial relationships among HS rats by modeling the relatedness with a random effect that encodes the genetic relatedness. RatXcan also corrects for polygenic-driven inflation because of the equivalence between a relatedness random effect and the infinitesimal polygenic model. To develop RatXcan, we trained transcript predictors for 8,934 genes using reference genotype and expression data from five rat brain regions. We found that the cis genetic architecture of gene expression in both rats and humans was sparse and similar across brain tissues. We tested the association between predicted expression in rats and two example traits (body length and BMI) using phenotype and genotype data from 5,401 densely genotyped HS rats and identified a significant enrichment between the genes associated with rat and human body length and BMI. Thus, RatXcan represents a valuable tool for identifying the relationship between gene expression and phenotypes across species and paves the way to explore shared biological mechanisms of complex traits.
Collapse
Affiliation(s)
- Natasha Santhanam
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sabrina Mi
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Yanyu Liang
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Angel Garcia-Martinez
- University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science and Toxicology, Memphis, Tennessee, United States of America
| | - Anthony M George
- University at Buffalo, Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, United States of America
| | - Alexander F Gileta
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Wenyan Han
- University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science and Toxicology, Memphis, Tennessee, United States of America
| | - Katie Holl
- Medical College of Wisconsin, Department of Pediatrics, Milwaukee, Wisconsin, United States of America
| | - Alesa Hughson
- University of Michigan, Department of Psychiatry, Ann Arbor, Michigan, United States of America
| | - Christopher P King
- University at Buffalo, Department of Psychology, Buffalo, New York, United States of America
| | - Alexander C Lamparelli
- University at Buffalo, Department of Psychology, Buffalo, New York, United States of America
| | - Connor D Martin
- University at Buffalo, Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, United States of America
| | - Festus Nyasimi
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Celine L St Pierre
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sarah Sumner
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Jordan Tripi
- University at Buffalo, Department of Psychology, Buffalo, New York, United States of America
| | - Tengfei Wang
- University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science and Toxicology, Memphis, Tennessee, United States of America
| | - Hao Chen
- University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science and Toxicology, Memphis, Tennessee, United States of America
| | - Shelly Flagel
- University of Michigan, Department of Psychiatry, Ann Arbor, Michigan, United States of America
| | - Keita Ishiwari
- University at Buffalo, Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, United States of America
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, New York, United States of America
| | - Paul Meyer
- University at Buffalo, Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, United States of America
- University at Buffalo, Department of Psychology, Buffalo, New York, United States of America
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Laura Saba
- University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Leah C Solberg Woods
- Wake Forest University School of Medicine, Department of Internal Medicine, Winston-Salem, North Carolina, United States of America
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hae Kyung Im
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Tonnele H, Chen D, Morillo F, Garcia-Calleja J, Chitre AS, Johnson BB, Sanches TM, Bonder MJ, Gonzalez A, Kosciolek T, George AM, Han W, Holl K, Horvath A, Ishiwari K, King CP, Lamparelli AC, Martin CD, Martinez AG, Netzley AH, Tripi JA, Wang T, Bosch E, Doris PA, Stegle O, Chen H, Flagel SB, Meyer PJ, Richards JB, Robinson TE, Woods LCS, Polesskaya O, Knight R, Palmer AA, Baud A. Novel insights into the genetic architecture and mechanisms of host/microbiome interactions from a multi-cohort analysis of outbred laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644349. [PMID: 40166210 PMCID: PMC11957159 DOI: 10.1101/2025.03.20.644349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The intestinal microbiome influences health and disease. Its composition is affected by host genetics and environmental exposures. Understanding host genetic effects is critical but challenging in humans, due to the difficulty of detecting, mapping and interpreting them. To address this, we analysed host genetic effects in four cohorts of outbred laboratory rats exposed to distinct but controlled environments. We found that polygenic host genetic effects were consistent across environments. We identified three replicated microbiome-associated loci. One involved a sialyltransferase gene and Paraprevotella and we found a similar association, between ST6GAL1 and Paraprevotella, in a human cohort. Given Paraprevotella's known immunity-potentiating functions, this suggests ST6GAL1's effects on IgA nephropathy and COVID-19 breakthrough infections may be mediated by Paraprevotella. Moreover, we found evidence of indirect genetic effects on microbiome phenotypes, which substantially increased their total genetic variance. Finally, we identified a novel mechanism whereby indirect genetic effects can contribute to "missing heritability".
Collapse
Affiliation(s)
- Helene Tonnele
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Felipe Morillo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jorge Garcia-Calleja
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
| | - Wenyan Han
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aidan Horvath
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | | | | | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alesa H Netzley
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, NY, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Elena Bosch
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, McGovern Medical School, University of Texas at Houston, TX, USA
| | - Oliver Stegle
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, NY, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Terry E. Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, La Jolla, CA, San Diego, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amelie Baud
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Kuhn BN, Cannella N, Chitre AS, Nguyen KMH, Cohen K, Chen D, Peng B, Ziegler KS, Lin B, Johnson BB, Missfeldt Sanches T, Crow AD, Lunerti V, Gupta A, Dereschewitz E, Soverchia L, Hopkins JL, Roberts AT, Ubaldi M, Abdulmalek S, Kinen A, Hardiman G, Chung D, Polesskaya O, Solberg Woods LC, Ciccocioppo R, Kalivas PW, Palmer AA. Genome-wide association study reveals multiple loci for nociception and opioid consumption behaviors associated with heroin vulnerability in outbred rats. Mol Psychiatry 2025:10.1038/s41380-025-02922-4. [PMID: 40000848 DOI: 10.1038/s41380-025-02922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing to vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1, a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1, Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
Collapse
Affiliation(s)
- Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Nazzareno Cannella
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Katarina Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Beverly Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Ayteria D Crow
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Veronica Lunerti
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Arkobrato Gupta
- The Interdisciplinary Ph.D. Program in Biostatistics, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Eric Dereschewitz
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Soverchia
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Jordan L Hopkins
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Analyse T Roberts
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Massimo Ubaldi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sarah Abdulmalek
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Analia Kinen
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Gary Hardiman
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Dongjun Chung
- The Interdisciplinary Ph.D. Program in Biostatistics, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Chen D, Chitre AS, Nguyen KMH, Cohen KA, Peng BF, Ziegler KS, Okamoto F, Lin B, Johnson BB, Sanches TM, Cheng R, Polesskaya O, Palmer AA. A cost-effective, high-throughput, highly accurate genotyping method for outbred populations. G3 (BETHESDA, MD.) 2025; 15:jkae291. [PMID: 39670731 PMCID: PMC11797033 DOI: 10.1093/g3journal/jkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Affordable sequencing and genotyping methods are essential for large-scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, nonhuman model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping by sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping by sequencing and more recently generated by low-coverage whole-genome sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21× coverage) and low-coverage whole-genome sequencing data from 8,760 heterogeneous stock rats (mean 0.27× coverage), we can impute 7.32 million biallelic single-nucleotide polymorphisms with a concordance rate > 99.76% compared to high-coverage (mean 33.26× coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping by sequencing or low-coverage whole-genome sequencing for accurate genotyping and demonstrate techniques that may also be useful for other genetic studies in nonhuman subjects.
Collapse
Affiliation(s)
- Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Katerina A Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Beverly F Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Faith Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Thiago M Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Mowlaei ME, Li C, Jamialahmadi O, Dias R, Chen J, Jamialahmadi B, Rebbeck TR, Carnevale V, Kumar S, Shi X. STICI: Split-Transformer with integrated convolutions for genotype imputation. Nat Commun 2025; 16:1218. [PMID: 39890780 PMCID: PMC11785734 DOI: 10.1038/s41467-025-56273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
Despite advances in sequencing technologies, genome-scale datasets often contain missing bases and genomic segments, hindering downstream analyses. Genotype imputation addresses this issue and has been a cornerstone pre-processing step in genetic and genomic studies. Although various methods have been widely adopted for genotype imputation, it remains challenging to impute certain genomic regions and large structural variants. Here, we present a transformer-based framework, named STICI, for accurate genotype imputation. STICI models automatically learn genome-wide patterns of linkage disequilibrium, evidenced by much higher imputation accuracy in regions with highly linked variants. Our imputation results on the human 1000 Genomes Project and non-human genomes show that STICI can achieve high imputation accuracy comparable to the state-of-the-art genotype imputation methods, with the additional capability to impute multi-allelic variants and various types of genetic variants. STICI can be trained for any collection of genomes automatically using self-supervision. Moreover, STICI shows excellent performance without needing any special presuppositions about the underlying patterns in collections of non-human genomes, pointing to adaptability and applications of STICI to impute missing genotypes in any species.
Collapse
Affiliation(s)
- Mohammad Erfan Mowlaei
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Chong Li
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Junjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Benyamin Jamialahmadi
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Timothy Richard Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Vincenzo Carnevale
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
| | - Sudhir Kumar
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Xinghua Shi
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA.
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Kuhn BN, Cannella NN, Chitre A, Nguyen KMH, Cohen K, Chen D, Peng B, Ziegler KS, Lin B, Johnson B, Missfeldt Sanchez T, Crow AD, Lunerti V, Gupta A, Dereschewitz E, Soverchia L, Hopkins JL, Roberts AT, Ubaldi M, Abdulmalek S, Kinen A, Hardiman G, Chung D, Polesskaya O, Solberg-Woods L, Ciccocioppo R, Kalivas P, Palmer AA. Genome-wide association study reveals multiple loci for nociception and opioid consumption behaviors associated with heroin vulnerability in outbred rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582340. [PMID: 38712202 PMCID: PMC11071306 DOI: 10.1101/2024.02.27.582340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1, a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1, Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
Collapse
|
8
|
Okamoto F, Chitre AS, Missfeldt Sanches T, Chen D, Munro D, Aron AT, Beeson A, Bimschleger HV, Eid M, Garcia Martinez AG, Han W, Holl K, Jackson T, Johnson BB, King CP, Kuhn BN, Lamparelli AC, Netzley AH, Nguyen KMH, Peng BF, Tripi JA, Wang T, Ziegler KS, Adams DJ, Baud A, Carrette LLG, Chen H, de Guglielmo G, Dorrestein P, George O, Ishiwari K, Jablonski MM, Jhou TC, Kallupi M, Knight R, Meyer PJ, Solberg Woods LC, Polesskaya O, Palmer AA. Y and mitochondrial chromosomes in the heterogeneous stock rat population. G3 (BETHESDA, MD.) 2024; 14:jkae213. [PMID: 39250761 PMCID: PMC11540319 DOI: 10.1093/g3journal/jkae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial (MT) Chromosomes. We genotyped the Y and MT Chromosomes in heterogeneous stock (HS) rats (Rattus norvegicus), an outbred population created from 8 inbred strains. We identified 8 distinct Y and 4 distinct MT Chromosomes among the 8 founders. However, only 2 types of each nonrecombinant chromosome were observed in our modern HS rat population (generations 81-97). Despite the relatively large sample size, there were virtually no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and MT Chromosomes were strongly associated with the expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern HS rats there are no Y and MT Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and MT Chromosomes that do not appear in modern HS rats, nor do they address effects that may exist in other rat populations, or in other species.
Collapse
Affiliation(s)
- Faith Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Angela Beeson
- Department of Internal Medicine, Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hannah V Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angel G Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wenyan Han
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tyler Jackson
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander C Lamparelli
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alesa H Netzley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Beverly F Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amelie Baud
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14203, USA
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Monica M Jablonski
- Department of Ophthalmology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Thomas C Jhou
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Chen D, Chitre AS, Nguyen KMH, Cohen K, Peng B, Ziegler KS, Okamoto F, Lin B, Johnson BB, Sanches TM, Cheng R, Polesskaya O, Palmer AA. A Cost-effective, High-throughput, Highly Accurate Genotyping Method for Outbred Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603984. [PMID: 39071405 PMCID: PMC11275765 DOI: 10.1101/2024.07.17.603984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Affordable sequencing and genotyping methods are essential for large scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, non-human model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping-by-sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping-by-sequencing and more recently generated by low-coverage whole-genome-sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21x coverage) and low-coverage whole-genome-sequencing data from 8,760 heterogeneous stock rats (mean 0.27x coverage), we can impute 7.32 million bi-allelic single-nucleotide polymorphisms with a concordance rate >99.76% compared to high-coverage (mean 33.26x coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping-by-sequencing or low-coverage whole-genome-sequencing for accurate genotyping, and demonstrate techniques that may also be useful for other genetic studies in non-human subjects.
Collapse
Affiliation(s)
- Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Apurva S. Chitre
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Khai-Minh H. Nguyen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Katarina Cohen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Beverly Peng
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Kendra S. Ziegler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Faith Okamoto
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Benjamin B. Johnson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Thiago M. Sanches
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
10
|
de Jong TV, Pan Y, Rastas P, Munro D, Tutaj M, Akil H, Benner C, Chen D, Chitre AS, Chow W, Colonna V, Dalgard CL, Demos WM, Doris PA, Garrison E, Geurts AM, Gunturkun HM, Guryev V, Hourlier T, Howe K, Huang J, Kalbfleisch T, Kim P, Li L, Mahaffey S, Martin FJ, Mohammadi P, Ozel AB, Polesskaya O, Pravenec M, Prins P, Sebat J, Smith JR, Solberg Woods LC, Tabakoff B, Tracey A, Uliano-Silva M, Villani F, Wang H, Sharp BM, Telese F, Jiang Z, Saba L, Wang X, Murphy TD, Palmer AA, Kwitek AE, Dwinell MR, Williams RW, Li JZ, Chen H. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. CELL GENOMICS 2024; 4:100527. [PMID: 38537634 PMCID: PMC11019364 DOI: 10.1016/j.xgen.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Collapse
Affiliation(s)
- Tristan V de Jong
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy; Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Doris
- The Brown Foundation Institute of Molecular Medicine, Center for Human Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hakan M Gunturkun
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- Genome Structure and Ageing, University of Groningen, UMC, Groningen, the Netherlands
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Jun Huang
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Louisville, KY, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Burt M Sharp
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
King CP, Chitre AS, Leal-Gutiérrez JD, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, George A, Martin C, Pierre CLS, Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen KM, Holl KL, Polesskaya O, Ishiwari K, Chen H, Woods LCS, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Genomic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584852. [PMID: 38559127 PMCID: PMC10980002 DOI: 10.1101/2024.03.13.584852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of Psychology, University at Buffalo, Buffalo, USA
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, USA
| | - Alesa R. Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P. Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Anthony George
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Connor Martin
- Clinical and Research Institute on Addictions, Buffalo, USA
| | | | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | | | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, USA
| |
Collapse
|
12
|
Borja Lozano MV, Vigil Santillán B, More Montoya MJ, Morón Barraza JA, García-Serquén AL, Gutiérrez Reynoso G, Yalta-Macedo CE. Genotyping-by-sequencing reveals a high number and quality of single nucleotide polymorphisms in guinea pigs (Cavia porcellus) from the Peruvian Andes. Anim Genet 2023; 54:792-797. [PMID: 37796666 DOI: 10.1111/age.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Guinea pigs are a major source of animal protein for Peruvian Andean families. Despite the economic and cultural relevance of guinea pigs, their genomic characterization has been scarcely addressed. Genotyping-by-sequencing (GBS) has emerged as an affordable alternative to genotyping of livestock and native animals. Here, we report the use of GBS for single nucleotide polymorphism (SNP) discovery of traditionally raised guinea pigs from six regions of the Peruvian Andes and one group of breeding animals. The paired-end (2 × 150 bp) sequencing of 40 guinea pig DNA samples generated a mean of 6.4 million high-quality sequencing reads per sample. We obtained an average sequencing depth of 10× with an 88.5% mapping rate to the Cavia porcellus reference genome. A total of 279 965 SNPs (102 SNPs/Mbp) were identified after variant calling and quality filtering. Based on this SNP set, we assessed the genetic diversity and distance within our selected guinea pig populations. An overall average minor allele frequency of 0.13, an observed heterozygosity of 0.31, an expected heterozygosity of 0.35, and an F-value of 0.1 were obtained, while the SNP-based neighbor-joining tree suggests a closer genetic relationship between individuals from geographically close locations. We showed that GBS is a cost-effective tool for SNP discovery and genetic characterization of Peruvian guinea pig populations. Therefore, it may be considered as a suitable and affordable tool for genomic characterization of poorly studied native animal species.
Collapse
Affiliation(s)
- María Victoria Borja Lozano
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Lima, Peru
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Bianca Vigil Santillán
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Lima, Peru
| | - Manuel J More Montoya
- Facultad de Ciencias Agrarias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Aura Liz García-Serquén
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Lima, Peru
| | | | - Claudia E Yalta-Macedo
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Lima, Peru
| |
Collapse
|
13
|
Okamoto F, Chitre AS, Missfeldt Sanches T, Chen D, Munro D, Polesskaya O, Palmer AA. Y and Mitochondrial Chromosomes in the Heterogeneous Stock Rat Population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.566473. [PMID: 38076923 PMCID: PMC10705385 DOI: 10.1101/2023.11.29.566473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial Chromosomes. We genotyped the Y and mitochondrial chromosomes in heterogeneous stock rats (Rattus norvegicus), which were created in 1984 by intercrossing eight inbred strains and have subsequently been maintained as an outbred population for 100 generations. As the Y and mitochondrial Chromosomes do not recombine, we determined which founder had contributed these chromosomes for each rat, and then performed association analysis for all complex traits (n=12,055; intersection of 12,116 phenotyped and 15,042 haplotyped rats). We found the eight founders had 8 distinct Y and 4 distinct mitochondrial Chromosomes, however only two of each were observed in our modern heterogeneous stock rat population (Generations 81-97). Despite the unusually large sample size, the p-value distribution did not deviate from expectations; there were no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and mitochondrial Chromosomes were strongly associated with expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern heterogeneous stock rats there are no Y and mitochondrial Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and mitochondrial Chromosomes that do not appear in modern heterogeneous stock rats, nor do they address effects that may exist in other rat populations, or in other species.
Collapse
Affiliation(s)
- Faith Okamoto
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Thiago Missfeldt Sanches
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
14
|
Wright SN, Leger BS, Rosenthal SB, Liu SN, Jia T, Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Garcia Martinez A, George A, Gileta AF, Han W, Netzley AH, King CP, Lamparelli A, Martin C, St Pierre CL, Wang T, Bimschleger H, Richards J, Ishiwari K, Chen H, Flagel SB, Meyer P, Robinson TE, Solberg Woods LC, Kreisberg JF, Ideker T, Palmer AA. Genome-wide association studies of human and rat BMI converge on synapse, epigenome, and hormone signaling networks. Cell Rep 2023; 42:112873. [PMID: 37527041 PMCID: PMC10546330 DOI: 10.1016/j.celrep.2023.112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.
Collapse
Affiliation(s)
- Sarah N Wright
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Program in Biomedical Sciences, University of California San Diego, La Jolla, CA 93093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tongqiu Jia
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anthony George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Alesa H Netzley
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Connor Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Jerry Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14203, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shelly B Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Fowler S, Wang T, Munro D, Kumar A, Chitre AS, Hollingsworth TJ, Garcia Martinez A, St. Pierre CL, Bimschleger H, Gao J, Cheng R, Mohammadi P, Chen H, Palmer AA, Polesskaya O, Jablonski MM. Genome-wide association study finds multiple loci associated with intraocular pressure in HS rats. Front Genet 2023; 13:1029058. [PMID: 36793389 PMCID: PMC9922724 DOI: 10.3389/fgene.2022.1029058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Elevated intraocular pressure (IOP) is influenced by environmental and genetic factors. Increased IOP is a major risk factor for most types of glaucoma, including primary open angle glaucoma (POAG). Investigating the genetic basis of IOP may lead to a better understanding of the molecular mechanisms of POAG. The goal of this study was to identify genetic loci involved in regulating IOP using outbred heterogeneous stock (HS) rats. HS rats are a multigenerational outbred population derived from eight inbred strains that have been fully sequenced. This population is ideal for a genome-wide association study (GWAS) owing to the accumulated recombinations among well-defined haplotypes, the relatively high allele frequencies, the accessibility to a large collection of tissue samples, and the large allelic effect size compared to human studies. Both male and female HS rats (N = 1,812) were used in the study. Genotyping-by-sequencing was used to obtain ∼3.5 million single nucleotide polymorphisms (SNP) from each individual. SNP heritability for IOP in HS rats was 0.32, which agrees with other studies. We performed a GWAS for the IOP phenotype using a linear mixed model and used permutation to determine a genome-wide significance threshold. We identified three genome-wide significant loci for IOP on chromosomes 1, 5, and 16. Next, we sequenced the mRNA of 51 whole eye samples to find cis-eQTLs to aid in identification of candidate genes. We report 5 candidate genes within those loci: Tyr, Ctsc, Plekhf2, Ndufaf6 and Angpt2. Tyr, Ndufaf6 and Angpt2 genes have been previously implicated by human GWAS of IOP-related conditions. Ctsc and Plekhf2 genes represent novel findings that may provide new insight into the molecular basis of IOP. This study highlights the efficacy of HS rats for investigating the genetics of elevated IOP and identifying potential candidate genes for future functional testing.
Collapse
Affiliation(s)
- Samuel Fowler
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, California, United states
| | - Aman Kumar
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - T. J. Hollingsworth
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Celine L. St. Pierre
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, California, United states
- Scripps Research Translational Institute, Scripps Research, San Diego, California, United states
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
- Institute for Genomic Medicine, University of California, San Diego, San Diego, California, United states
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, San Diego, California, United states
| | - Monica M. Jablonski
- Hamilton Eye Institute Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United states
| |
Collapse
|
16
|
Munro D, Wang T, Chitre AS, Polesskaya O, Ehsan N, Gao J, Gusev A, Woods LS, Saba L, Chen H, Palmer A, Mohammadi P. The regulatory landscape of multiple brain regions in outbred heterogeneous stock rats. Nucleic Acids Res 2022; 50:10882-10895. [PMID: 36263809 PMCID: PMC9638908 DOI: 10.1093/nar/gkac912] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/14/2022] Open
Abstract
Heterogeneous Stock (HS) rats are a genetically diverse outbred rat population that is widely used for studying genetics of behavioral and physiological traits. Mapping Quantitative Trait Loci (QTL) associated with transcriptional changes would help to identify mechanisms underlying these traits. We generated genotype and transcriptome data for five brain regions from 88 HS rats. We identified 21 392 cis-QTLs associated with expression and splicing changes across all five brain regions and validated their effects using allele specific expression data. We identified 80 cases where eQTLs were colocalized with genome-wide association study (GWAS) results from nine physiological traits. Comparing our dataset to human data from the Genotype-Tissue Expression (GTEx) project, we found that the HS rat data yields twice as many significant eQTLs as a similarly sized human dataset. We also identified a modest but highly significant correlation between genetic regulatory variation among orthologous genes. Surprisingly, we found less genetic variation in gene regulation in HS rats relative to humans, though we still found eQTLs for the orthologs of many human genes for which eQTLs had not been found. These data are available from the RatGTEx data portal (RatGTEx.org) and will enable new discoveries of the genetic influences of complex traits.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Nava Ehsan
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Leah C Solberg Woods
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Abraham A Palmer
- Correspondence may also be addressed to Abraham A. Palmer. Tel: +1 858 534 2093;
| | - Pejman Mohammadi
- To whom correspondence should be addressed. Tel: +1 858 784 8746;
| |
Collapse
|
17
|
Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLoS Genet 2022; 18:e1010234. [PMID: 35639796 PMCID: PMC9187121 DOI: 10.1371/journal.pgen.1010234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/10/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
Sprague Dawley (SD) rats are among the most widely used outbred laboratory rat populations. Despite this, the genetic characteristics of SD rats have not been clearly described, and SD rats are rarely used for experiments aimed at exploring genotype-phenotype relationships. In order to use SD rats to perform a genome-wide association study (GWAS), we collected behavioral data from 4,625 SD rats that were predominantly obtained from two commercial vendors, Charles River Laboratories and Harlan Sprague Dawley Inc. Using double-digest genotyping-by-sequencing (ddGBS), we obtained dense, high-quality genotypes at 291,438 SNPs across 4,061 rats. This genetic data allowed us to characterize the variation present in Charles River vs. Harlan SD rats. We found that the two populations are highly diverged (FST > 0.4). Furthermore, even for rats obtained from the same vendor, there was strong population structure across breeding facilities and even between rooms at the same facility. We performed multiple separate GWAS by fitting a linear mixed model that accounted for population structure and using meta-analysis to jointly analyze all cohorts. Our study examined Pavlovian conditioned approach (PavCA) behavior, which assesses the propensity for rats to attribute incentive salience to reward-associated cues. We identified 46 significant associations for the various metrics used to define PavCA. The surprising degree of population structure among SD rats from different sources has important implications for their use in both genetic and non-genetic studies. Outbred Sprague Dawley rats are among the most commonly used rats for neuroscience, physiology and pharmacological research; in the year 2020, 4,188 publications contained the keyword “Sprague Dawley”. Rats identified as “Sprague Dawley” are sold by several commercial vendors, including Charles River Laboratories and Harlan Sprague Dawley Inc. (now Envigo). Despite their widespread use, little is known about the genetic diversity of SD. We genotyped more than 4,000 SD rats, which we used for a genome-wide association study (GWAS) and to characterize genetic differences between SD rats from Charles River Laboratories and Harlan. Our analysis revealed extensive population structure both between and within vendors. The GWAS for Pavlovian conditioned approach (PavCA) identified a number of genome-wide significant loci for that complex behavioral trait. Our results demonstrate that, despite sharing an identical name, SD rats that are obtained from different vendors are very different. Future studies should carefully define the exact source of SD rats being used and may exploit their genetic diversity for genetic studies of complex traits.
Collapse
|
18
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
Grzegorczyk J, Gurgul A, Oczkowicz M, Szmatoła T, Fornal A, Bugno-Poniewierska M. Single Nucleotide Polymorphism Discovery and Genetic Differentiation Analysis of Geese Bred in Poland, Using Genotyping-by-Sequencing (GBS). Genes (Basel) 2021; 12:genes12071074. [PMID: 34356090 PMCID: PMC8307914 DOI: 10.3390/genes12071074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Poland is the largest European producer of goose, while goose breeding has become an essential and still increasing branch of the poultry industry. The most frequently bred goose is the White Kołuda® breed, constituting 95% of the country’s population, whereas geese of regional varieties are bred in smaller, conservation flocks. However, a goose’s genetic diversity is inaccurately explored, mainly because the advantages of the most commonly used tools are strongly limited in non-model organisms. One of the most accurate used markers for population genetics is single nucleotide polymorphisms (SNP). A highly efficient strategy for genome-wide SNP detection is genotyping-by-sequencing (GBS), which has been already widely applied in many organisms. This study attempts to use GBS in 12 conservative goose breeds and the White Kołuda® breed maintained in Poland. The GBS method allowed for the detection of 3833 common raw SNPs. Nevertheless, after filtering for read depth and alleles characters, we obtained the final markers panel used for a differentiation analysis that comprised 791 SNPs. These variants were located within 11 different genes, and one of the most diversified variants was associated with the EDAR gene, which is especially interesting as it participates in the plumage development, which plays a crucial role in goose breeding.
Collapse
Affiliation(s)
- Joanna Grzegorczyk
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, Balice n., 32-083 Kraków, Poland; (J.G.); (T.S.); (A.F.)
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24-28, 30-059 Kraków, Poland;
| | - Maria Oczkowicz
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, Balice n., 32-083 Kraków, Poland; (J.G.); (T.S.); (A.F.)
- Correspondence:
| | - Tomasz Szmatoła
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, Balice n., 32-083 Kraków, Poland; (J.G.); (T.S.); (A.F.)
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24-28, 30-059 Kraków, Poland;
| | - Agnieszka Fornal
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, Balice n., 32-083 Kraków, Poland; (J.G.); (T.S.); (A.F.)
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Faculty Anatomy and Genomics of Animal Breeding and Biology, Agricultural University in Cracow, Al. Mickiewicza 24-28, 30-059 Kraków, Poland;
| |
Collapse
|
20
|
Heller R, Nursyifa C, Garcia-Erill G, Salmona J, Chikhi L, Meisner J, Korneliussen TS, Albrechtsen A. A reference-free approach to analyse RADseq data using standard next generation sequencing toolkits. Mol Ecol Resour 2021; 21:1085-1097. [PMID: 33434329 DOI: 10.1111/1755-0998.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Genotyping-by-sequencing methods such as RADseq are popular for generating genomic and population-scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference-free RADseq data processing that blends de novo elements from STACKS with the full suite of state-of-the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth-of-coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2-4x). We compared the RADseq SFS with medium-depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.
Collapse
Affiliation(s)
- Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Casia Nursyifa
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Lounes Chikhi
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
21
|
Torkamaneh D, Laroche J, Belzile F. Fast-GBS v2.0: an analysis toolkit for genotyping-by-sequencing data. Genome 2020; 63:577-581. [PMID: 33006480 DOI: 10.1139/gen-2020-0077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genotyping-by-sequencing (GBS) is a rapid, flexible, low-cost, and robust genotyping method that simultaneously discovers variants and calls genotypes within a broad range of samples. These characteristics make GBS an excellent tool for many applications and research questions from conservation biology to functional genomics in both model and non-model species. Continued improvement of GBS relies on a more comprehensive understanding of data analysis, development of fast and efficient bioinformatics pipelines, accurate missing data imputation, and active post-release support. Here, we present the second generation of Fast-GBS (v2.0) that offers several new options (e.g., processing paired-end reads and imputation of missing data) and features (e.g., summary statistics of genotypes) to improve the GBS data analysis process. The performance assessment analysis showed that Fast-GBS v2.0 outperformed other available analytical pipelines, such as GBS-SNP-CROP and Gb-eaSy. Fast-GBS v2.0 provides an analysis platform that can be run with different types of sequencing data, modest computational resources, and allows for missing-data imputation for various species in different contexts.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada.,Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| |
Collapse
|
22
|
Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, Garcia Martinez A, George T, Gileta AF, Han W, Horvath A, Hughson A, Ishiwari K, King CP, Lamparelli A, Versaggi CL, Martin C, St Pierre CL, Tripi JA, Wang T, Chen H, Flagel SB, Meyer P, Richards J, Robinson TE, Palmer AA, Solberg Woods LC. Genome-Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose. Obesity (Silver Spring) 2020; 28:1964-1973. [PMID: 32860487 PMCID: PMC7511439 DOI: 10.1002/oby.22927] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Obesity is influenced by genetic and environmental factors. Despite the success of human genome-wide association studies, the specific genes that confer obesity remain largely unknown. The objective of this study was to use outbred rats to identify the genetic loci underlying obesity and related morphometric and metabolic traits. METHODS This study measured obesity-relevant traits, including body weight, body length, BMI, fasting glucose, and retroperitoneal, epididymal, and parametrial fat pad weight in 3,173 male and female adult N/NIH heterogeneous stock (HS) rats across three institutions, providing data for the largest rat genome-wide association study to date. Genetic loci were identified using a linear mixed model to account for the complex family relationships of the HS and using covariates to account for differences among the three phenotyping centers. RESULTS This study identified 32 independent loci, several of which contained only a single gene (e.g., Epha5, Nrg1, Klhl14) or obvious candidate genes (e.g., Adcy3, Prlhr). There were strong phenotypic and genetic correlations among obesity-related traits, and there was extensive pleiotropy at individual loci. CONCLUSIONS This study demonstrates the utility of HS rats for investigating the genetics of obesity-related traits across institutions and identify several candidate genes for future functional testing.
Collapse
Affiliation(s)
- Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Katie Holl
- Human and Molecular Genetic Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tony George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Aidan Horvath
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alesa Hughson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | | | | | | | - Connor Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | | | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shelly B Flagel
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Meyer
- Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Jerry Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|