1
|
Harsh S, Liu HY, Bhaskar PK, Rushlow C, Bach EA. The pioneer factor Zelda induces male-to-female somatic sex reversal in adult tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645575. [PMID: 40236223 PMCID: PMC11996320 DOI: 10.1101/2025.03.26.645575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Somatic sex identity must be maintained throughout adulthood for tissue function. Adult somatic stem cells in the Drosophila testis (i.e., CySCs) lacking the transcription factor Chinmo are reprogrammed to their ovarian counterparts by induction of female-specific Tra F , but this is not mechanistically understood. Pioneer factors play central roles in direct reprogramming, and many upregulated genes in chinmo -/- CySCs contain binding sites for the pioneer factor Zelda (Zld). microRNAs repress zld mRNA in wild type CySCs, but they are downregulated after Chinmo loss, allowing for zld mRNA translation. Zld depletion from chinmo -/- CySCs suppresses feminization, and ectopic Zld induces Tra F and feminizes wild-type CySCs. qkr58E-2 and ecdysone receptor ( EcR ), direct Zld targets in the embryo, are female-biased in adult gonads and upregulated in chinmo -/- CySCs. The RNA-binding protein Qkr58E-2 produces Tra F , while EcR promotes female-biased gene expression. Ectopic Zld feminizes adult male adipose tissue, demonstrating that Zld can instruct female and override male identity in adult XY tissues. Highlights zld mRNA is repressed by microRNAs in XY somatic gonadal cells Zld is upregulated in and required for sex reversal of XY chinmo -/- cells Zld induces Qkr58E-2 and EcR, which cause Tra F and female-biased transcription Zld feminizes XY adipose cells by inducing Tra F and downregulating Chinmo.
Collapse
|
2
|
Delandre C, McMullen JPD, Marshall OJ. Dynamic changes in neuronal and glial GAL4 driver expression during Drosophila aging. Genetics 2025; 229:iyaf014. [PMID: 39950543 PMCID: PMC11912842 DOI: 10.1093/genetics/iyaf014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025] Open
Abstract
Understanding how diverse cell types come together to form a functioning brain relies on the ability to specifically target these cells. This is often done using genetic tools such as the GAL4/UAS system in Drosophila melanogaster. Surprisingly, despite its extensive usage during studies of the aging brain, detailed spatiotemporal characterization of GAL4 driver lines in adult flies has been lacking. Here, we show that 3 commonly used neuronal drivers (elav[C155]-GAL4, nSyb[R57C10]-GAL4, and ChAT-GAL4) and the commonly used glial driver repo-GAL4 all show rapid and pronounced decreases in activity over the first 1.5 weeks of adult life, with activity becoming undetectable in some regions after 30 days (at 18°C). In addition to an overall decrease in GAL4 activity over time, we found notable differences in spatial patterns, mostly occurring soon after eclosion. Although all lines showed these changes, the nSyb-GAL4 line exhibited the most consistent and stable expression patterns over aging. Our findings suggest that gene transcription of key loci decreases in the aged brain, a finding broadly similar to previous work in mammalian brains. Our results also raise questions over past work on long-term expression of disease models in the brain and stress the need to find better genetic tools for ageing studies.
Collapse
Affiliation(s)
- Caroline Delandre
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart 7000, Australia
| | - John P D McMullen
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart 7000, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart 7000, Australia
| |
Collapse
|
3
|
Grmai L, Mychalczuk M, Arkalgud A, Vasudevan D. Sexually dimorphic ATF4 expression in the fat confers female stress tolerance in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630478. [PMID: 39763862 PMCID: PMC11703189 DOI: 10.1101/2024.12.27.630478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metabolic differences between males and females have been well documented across many species. However, the molecular basis of these differences and how they impact tolerance to nutrient deprivation is still under investigation. In this work, we use Drosophila melanogaster to demonstrate that sex-specific differences in fat tissue metabolism are driven, in part, by dimorphic expression of the Integrated Stress Response (ISR) transcription factor, ATF4. We found that female fat tissues have higher ATF4 activity than their male counter parts under homeostatic conditions. This dimorphism was partly due to a female bias in transcript abundance of specific ATF4 splice isoforms. We found that the canonical sex determinants transformer (tra) and doublesex (dsx) drive such dimorphic ATF4 transcript abundance. These differences persist in a genetic model of nutrient deprivation, where female animals showed greater resistance to lethality than males in an ATF4-dependent manner. These results suggest that higher ATF4 activity confers higher tolerance to stress in females. Together, our data describe a previously unknown facet of ISR signaling wherein sexual identity of adipose tissue confers differential stress tolerance in males and females. Since energy storage mechanisms are known to be dimorphic and have been linked to ATF4 regulation, our studies provide a mechanistic starting point for understanding how sexual identity influences metabolic disease outcomes.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Present Address: Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Mychalczuk
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Present Address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Aditya Arkalgud
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Forbes Beadle L, Sutcliffe C, Ashe HL. A simple MiMIC-based approach for tagging endogenous genes to visualise live transcription in Drosophila. Development 2024; 151:dev204294. [PMID: 39584418 DOI: 10.1242/dev.204294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Live imaging of transcription in the Drosophila embryo using the MS2 or PP7 systems is transforming our understanding of transcriptional regulation. However, insertion of MS2/PP7 stem-loops into endogenous genes requires laborious CRISPR genome editing. Here, we exploit the previously described Minos-mediated integration cassette (MiMIC) transposon system in Drosophila to establish a method for simply and rapidly inserting MS2/PP7 cassettes into any of the thousands of genes carrying a MiMIC insertion. In addition to generating a variety of stem-loop donor fly stocks, we have made new stocks expressing the complementary coat proteins fused to different fluorescent proteins. We show the utility of this MiMIC-based approach by MS2/PP7 tagging of endogenous genes and the long non-coding RNA roX1, then imaging their transcription in living embryos. We also present live transcription data from larval brains, the wing disc and ovary, thereby extending the tissues that can be studied using the MS2/PP7 system. Overall, this first high-throughput method for tagging mRNAs in Drosophila will facilitate the study of transcription dynamics of thousands of endogenous genes in a range of Drosophila tissues.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Sadanandappa MK, Bosco G. Olfactory inputs regulate Drosophila melanogaster oogenesis. J Exp Biol 2024; 227:jeb247234. [PMID: 39660407 DOI: 10.1242/jeb.247234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Drosophila female germline development and maintenance require both local stem cell niche signaling and systemic regulation. Here, we show the indispensable function of the Drosophila melanogaster olfactory circuit in normal oogenesis and fecundity. Lack of olfactory inputs during development causes a reduction in germline stem cells. Although germline stem cells proliferate normally, the germline cysts undergo caspase-mediated apoptosis, leading to decreased follicle production and egg-laying in flies with defective olfaction. Strikingly, activation of olfactory circuits is sufficient to boost egg production, demonstrating that chemosensory-activated brain-derived inputs promote gamete development. Given the energy demands of oogenesis and its direct consequence on fitness, we propose that olfactory-stimulated systemic regulation evolved tightly with downstream diet-responsive pathways to control germline physiology in response to nutritional status. Additionally, these findings raise the possibility that sensory-mediated stem cell maintenance is a generalizable mechanism spanning a myriad of neuronal circuits, systems and species.
Collapse
Affiliation(s)
- Madhumala K Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Zhang X, Sun D, Wong K, Salkini A, Najafi H, Kim WJ. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Fly (Austin) 2024; 18:2368336. [PMID: 38884422 PMCID: PMC11185185 DOI: 10.1080/19336934.2024.2368336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.
Collapse
Affiliation(s)
- Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Kyle Wong
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ammar Salkini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hadi Najafi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Brunßen D, Suter B. Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2. Fly (Austin) 2024; 18:2308737. [PMID: 38374657 PMCID: PMC10880493 DOI: 10.1080/19336934.2024.2308737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α2β2 tetramer that is needed for charging the tRNAPhe for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in Drosophila that overexpressing the β-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2+ and Pros+ cells. Simultaneous expression of β-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this β-PheRS activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive β-PheRS points to β-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human β-PheRS (FARSB) can lead to problems in gaining weight, Drosophila β-PheRS can also serve as a model for the human phenotype and possibly also for obesity.
Collapse
Affiliation(s)
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
McDonald JMC, Reed RD. Beyond modular enhancers: new questions in cis-regulatory evolution. Trends Ecol Evol 2024; 39:1035-1046. [PMID: 39266441 DOI: 10.1016/j.tree.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
Our understanding of how cis-regulatory elements work has advanced rapidly, outpacing our evolutionary models. In this review, we consider the implications of new mechanistic findings for evolutionary developmental biology. We focus on three different debates: whether evolutionary innovation occurs more often via the modification of old cis-regulatory elements or the emergence of new ones; the extent to which individual elements are specific and autonomous or multifunctional and interdependent; and how the robustness of cis-regulatory architectures influences the rate of trait evolution. These discussions lead us to propose new questions for the evo-devo of cis-regulation.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Mahmoudzadeh NH, Heidarian Y, Tourigny JP, Fitt AJ, Beebe K, Li H, Luhur A, Buddika K, Mungcal L, Kundu A, Policastro RA, Brinkley GJ, Zentner GE, Nemkov T, Pepin R, Chawla G, Sudarshan S, Rodan AR, D'Alessandro A, Tennessen JM. Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster. Mol Metab 2024; 89:102013. [PMID: 39182840 PMCID: PMC11408159 DOI: 10.1016/j.molmet.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVES The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh. METHODS L2hgdh mutant adult male flies were analyzed under normoxic and hypoxic conditions using a combination of semi-targeted metabolomics and RNA-seq. These multi-omic analyses were complemented by tissue-specific genetic studies that examined the effects of L2hgdh mutations on the Drosophila renal system (Malpighian tubules; MTs). RESULTS Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation. CONCLUSIONS These findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.
Collapse
Affiliation(s)
| | - Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Alexander J Fitt
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Katherine Beebe
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Anirban Kundu
- Department of Urology, University of Arizona in Tucson, AZ, USA
| | | | - Garrett J Brinkley
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Travis Nemkov
- University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Geetanjali Chawla
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence, Dadri, Uttar Pradesh, 201314, India
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | | | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA; Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Moraes RCM, Roth JR, Mao H, Crawley SR, Xu BP, Watson JC, Melkani GC. Apolipoprotein E Induces Lipid Accumulation Through Dgat2 That Is Prevented with Time-Restricted Feeding in Drosophila. Genes (Basel) 2024; 15:1376. [PMID: 39596576 PMCID: PMC11594465 DOI: 10.3390/genes15111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Apolipoprotein E (ApoE) is the leading genetic risk factor for late-onset Alzheimer's disease (AD), which is the leading cause of dementia worldwide. Most people have two ApoE-ε3 (ApoE3) alleles, while ApoE-ε2 (ApoE2) is protective from AD, and ApoE-ε4 (ApoE4) confers AD risk. How these alleles modulate AD risk is not clearly defined, and ApoE's role in lipid metabolism is also not fully known. Lipid droplets increase in AD. However, how ApoE contributes to lipid accumulation in the brain remains unknown. Methods: Here, we use Drosophila to study the effects of ApoE alleles on lipid accumulation in the brain and muscle in a cell-autonomous and non-cell-autonomous manner. Results: We report that pan-neuronal expression of each ApoE allele induces lipid accumulation specifically in the brain, but not in the muscle. However, this was not the case when expressed with muscle-specific drivers. ApoE2- and ApoE3-induced lipid accumulation is dependent on the expression of Dgat2, a key regulator of triacylglycerol production, while ApoE4 still induces lipid accumulation even with knock-down of Dgat2. Additionally, we find that implementation of time-restricted feeding (TRF), a dietary intervention in which food access only occurs in the active period (day), prevents ApoE-induced lipid accumulation in the brain of flies and modulates lipid metabolism genes. Conclusions: Altogether, our results demonstrate that ApoE induces lipid accumulation in the brain, that ApoE4 is unique in causing lipid accumulation independent of Dgat2, and that TRF prevents ApoE-induced lipid accumulation. These results support the idea that lipid metabolism is critical in AD, and that TRF could be a promising therapeutic approach to prevent ApoE-associated dysfunction in lipid metabolism.
Collapse
Affiliation(s)
- Ruan C. M. Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Mao
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Savannah R. Crawley
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brittney P. Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C. Watson
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, 1300 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Kwok SH, Liu Y, Bilder D, Kim J. Paraneoplastic renal dysfunction in fly cancer models driven by inflammatory activation of stem cells. Proc Natl Acad Sci U S A 2024; 121:e2405860121. [PMID: 39392665 PMCID: PMC11494367 DOI: 10.1073/pnas.2405860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Tumors can induce systemic disturbances in distant organs, leading to physiological changes that enhance host morbidity. In Drosophila cancer models, tumors have been known for decades to cause hypervolemic "bloating" of the abdominal cavity. Here we use allograft and transgenic tumors to show that hosts display fluid retention associated with autonomously defective secretory capacity of fly renal tubules, which function analogous to those of the human kidney. Excretion from these organs is blocked by abnormal cells that originate from inappropriate activation of normally quiescent renal stem cells (RSCs). Blockage is initiated by IL-6-like oncokines that perturb renal water-transporting cells and trigger a damage response in RSCs that proceeds pathologically. Thus, a chronic inflammatory state produced by the tumor causes paraneoplastic fluid dysregulation by altering cellular homeostasis of host renal units.
Collapse
Affiliation(s)
- Sze Hang Kwok
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuejiang Liu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - Jung Kim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
12
|
Raicu AM, Castanheira P, Arnosti DN. Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs. G3 (BETHESDA, MD.) 2024; 14:jkae238. [PMID: 39365155 PMCID: PMC11631494 DOI: 10.1093/g3journal/jkae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Retinoblastoma tumor suppressor proteins (Rb) are highly conserved metazoan transcriptional corepressors involved in regulating the expression of thousands of genes. The vertebrate lineage and the Drosophila genus independently experienced an Rb gene duplication event, leading to the expression of several Rb paralogs whose unique and redundant roles in gene regulation remain to be fully explored. Here, we used a novel CRISPRi system in Drosophila to identify the significance of paralogy in the Rb family. We engineered dCas9 fusions to the fly Rbf1 and Rbf2 paralogs and deployed them to gene promoters in vivo, studying them in their native chromatin context. By directly querying the in vivo response of dozens of genes to Rbf1 and Rbf2 targeting, using both transcriptional as well as sensitive developmental readouts, we find that Rb paralogs function as "soft repressors" and have highly context-specific activities. Our comparison of targeting endogenous genes to reporter genes in cell culture identified striking differences in activity, underlining the importance of using CRISPRi effectors in a physiologically relevant context to identify paralog-specific activities. Our study uncovers the complexity of Rb-mediated transcriptional regulation in a living organism, and serves as a stepping stone for future CRISPRi development in Drosophila.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Patricia Castanheira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Agard MA, Zandawala M, Paluzzi JPV. Another fly diuretic hormone: tachykinins increase fluid and ion transport by adult Drosophila melanogaster Malpighian 'renal' tubules. J Exp Biol 2024; 227:jeb247668. [PMID: 39319454 DOI: 10.1242/jeb.247668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Insects such as the model organism Drosophila melanogaster must modulate their internal physiology to withstand changes in temperature and availability of water and food. Regulation of the excretory system by peptidergic hormones is one mechanism by which insects maintain their internal homeostasis. Tachykinins are a family of neuropeptides that have been shown to stimulate fluid secretion from the Malpighian 'renal' tubules (MTs) in some insect species, but it is unclear if that is the case in the fruit fly, D. melanogaster. A central objective of the current study was to examine the physiological role of tachykinin signaling in the MTs of adult D. melanogaster. Using the genetic toolbox available in this model organism along with in vitro and whole-animal bioassays, our results indicate that Drosophila tachykinins (DTKs) function as diuretic hormones by binding to the DTK receptor (DTKR) localized in stellate cells of the MTs. Specifically, DTK activates cation and anion transport across the stimulated MTs, which impairs their survival in response to desiccation because of their inability to conserve water. Thus, besides their previously described roles in neuromodulation of pathways controlling locomotion and food search, olfactory processing, aggression, lipid metabolism and metabolic stress, processing of noxious stimuli and hormone release, DTKs also appear to function as bona fide endocrine factors regulating the excretory system and appear essential for the maintenance of hydromineral balance.
Collapse
Affiliation(s)
- Marishia A Agard
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Meet Zandawala
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno 89557, NV, USA
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
14
|
Kim SJ, Lee KM, Park SH, Yang T, Song I, Rai F, Hoshino R, Yun M, Zhang C, Kim JI, Lee S, Suh GSB, Niwa R, Park ZY, Kim YJ. A sexually transmitted sugar orchestrates reproductive responses to nutritional stress. Nat Commun 2024; 15:8477. [PMID: 39353950 PMCID: PMC11445483 DOI: 10.1038/s41467-024-52807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.
Collapse
Affiliation(s)
- Seong-Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Si Hyung Park
- School of Horticulture and Forestry, College of Bio and Medical Sciences, Mokpo National University, Muan, 58554, Republic of Korea
| | - Taekyun Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ingyu Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Fumika Rai
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Hoshino
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chen Zhang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
15
|
Liu M, Hemba-Waduge RUS, Li X, Huang X, Liu TH, Han X, Wang Y, Ji JY. Wnt/Wingless signaling promotes lipid mobilization through signal-induced transcriptional repression. Proc Natl Acad Sci U S A 2024; 121:e2322066121. [PMID: 38968125 PMCID: PMC11252803 DOI: 10.1073/pnas.2322066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid β-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid β-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid β-oxidation.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | | | - Xiao Li
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ08540
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Department of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA70112
| |
Collapse
|
16
|
Kurogi Y, Mizuno Y, Kamiyama T, Niwa R. The intestinal stem cell/enteroblast-GAL4 driver, escargot-GAL4, also manipulates gene expression in the juvenile hormone-synthesizing organ of Drosophila melanogaster. Sci Rep 2024; 14:9631. [PMID: 38671036 PMCID: PMC11053112 DOI: 10.1038/s41598-024-60269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
Intestinal stem cells (ISCs) of the fruit fly, Drosophila melanogaster, offer an excellent genetic model to explore homeostatic roles of ISCs in animal physiology. Among available genetic tools, the escargot (esg)-GAL4 driver, expressing the yeast transcription factor gene, GAL4, under control of the esg gene promoter, has contributed significantly to ISC studies. This driver facilitates activation of genes of interest in proximity to a GAL4-binding element, Upstream Activating Sequence, in ISCs and progenitor enteroblasts (EBs). While esg-GAL4 has been considered an ISC/EB-specific driver, recent studies have shown that esg-GAL4 is also active in other tissues, such as neurons and ovaries. Therefore, the ISC/EB specificity of esg-GAL4 is questionable. In this study, we reveal esg-GAL4 expression in the corpus allatum (CA), responsible for juvenile hormone (JH) production. When driving the oncogenic gene, RasV12, esg-GAL4 induces overgrowth in ISCs/EBs as reported, but also increases CA cell number and size. Consistent with this observation, animals alter expression of JH-response genes. Our data show that esg-GAL4-driven gene manipulation can systemically influence JH-mediated animal physiology, arguing for cautious use of esg-GAL4 as a "specific" ISC/EB driver to examine ISC/EB-mediated animal physiology.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
17
|
Herriage HC, Calvi BR. Premature endocycling of Drosophila follicle cells causes pleiotropic defects in oogenesis. Genetics 2024; 226:iyae009. [PMID: 38302115 PMCID: PMC10990429 DOI: 10.1093/genetics/iyae009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in the lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Winant M, Buhler K, Callaerts P. Ectopic expression in commonly used transgenic Drosophila GAL4 driver lines. Genesis 2024; 62:e23600. [PMID: 38665068 DOI: 10.1002/dvg.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Transgenic tools such as the GAL4/UAS system in Drosophila have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used dilp2-GAL4 line in tracheal tissue which significantly impacted growth phenotypes. We realized that few GAL4 lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific GAL4 lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 GAL4 lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.
Collapse
Affiliation(s)
- Mattias Winant
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kurt Buhler
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Fleck SA, Biswas P, DeWitt ED, Knuteson RL, Eisman RC, Nemkov T, D'Alessandro A, Tennessen JM, Rideout E, Weaver LN. Auxin exposure disrupts feeding behavior and fatty acid metabolism in adult Drosophila. eLife 2024; 12:RP91953. [PMID: 38240746 PMCID: PMC10945601 DOI: 10.7554/elife.91953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The ease of genetic manipulation in Drosophila melanogaster using the Gal4/UAS system has been beneficial in addressing key biological questions. Current modifications of this methodology to temporally induce transgene expression require temperature changes or exposure to exogenous compounds, both of which have been shown to have detrimental effects on physiological processes. The recently described auxin-inducible gene expression system (AGES) utilizes the plant hormone auxin to induce transgene expression and is proposed to be the least toxic compound for genetic manipulation, with no obvious effects on Drosophila development and survival in one wild-type strain. Here, we show that auxin delays larval development in another widely used fly strain, and that short- and long-term auxin exposure in adult Drosophila induces observable changes in physiology and feeding behavior. We further reveal a dosage response to adult survival upon auxin exposure, and that the recommended auxin concentration for AGES alters feeding activity. Furthermore, auxin-fed male and female flies exhibit a significant decrease in triglyceride levels and display altered transcription of fatty acid metabolism genes. Although fatty acid metabolism is disrupted, auxin does not significantly impact adult female fecundity or progeny survival, suggesting AGES may be an ideal methodology for studying limited biological processes. These results emphasize that experiments using temporal binary systems must be carefully designed and controlled to avoid confounding effects and misinterpretation of results.
Collapse
Affiliation(s)
- Sophie A Fleck
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Emily D DeWitt
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | | | - Robert C Eisman
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of MedicineAuroraUnited States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of MedicineAuroraUnited States
| | | | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lesley N Weaver
- Department of Biology, Indiana UniversityBloomingtonUnited States
| |
Collapse
|
20
|
Wang Y, Tamori Y. Polyploid Cancer Cell Models in Drosophila. Genes (Basel) 2024; 15:96. [PMID: 38254985 PMCID: PMC10815460 DOI: 10.3390/genes15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote merotelic spindle attachments and chromosomal instability, which produces a variety of aneuploid daughter cells. Polyploid cells have been found highly resistant to various stress and anticancer therapies, such as radiation and mitogenic inhibitors. In other words, common cancer therapies kill proliferative diploid cells, which make up the majority of cancer tissues, while polyploid cells, which lurk in smaller numbers, may survive. The surviving polyploid cells, prompted by acute environmental changes, begin to mitose with chromosomal instability, leading to an explosion of genetic heterogeneity and a concomitant cell competition and adaptive evolution. The result is a recurrence of the cancer during which the tenacious cells that survived treatment express malignant traits. Although the presence of polyploid cells in cancer tissues has been observed for more than 150 years, the function and exact role of these cells in cancer progression has remained elusive. For this reason, there is currently no effective therapeutic treatment directed against polyploid cells. This is due in part to the lack of suitable experimental models, but recently several models have become available to study polyploid cells in vivo. We propose that the experimental models in Drosophila, for which genetic techniques are highly developed, could be very useful in deciphering mechanisms of polyploidy and its role in cancer progression.
Collapse
Affiliation(s)
| | - Yoichiro Tamori
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Herriage HC, Calvi BR. Premature endocycling of Drosophila follicle cells causes pleiotropic defects in oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.10.561736. [PMID: 37873193 PMCID: PMC10592765 DOI: 10.1101/2023.10.10.561736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.
Collapse
Affiliation(s)
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
- Melvin and Bren Simon Cancer Center, Indianapolis, IN
- Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
22
|
Suyama R, Cetraro N, Yew JY, Kai T. Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun Biol 2023; 6:1287. [PMID: 38123715 PMCID: PMC10733356 DOI: 10.1038/s42003-023-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Fleck SA, Biswas P, DeWitt ED, Knuteson RL, Eisman RC, Nemkov T, D’Alessandro A, Tennessen JM, Rideout EJ, Weaver LN. Auxin Exposure Disrupts Feeding Behavior and Fatty Acid Metabolism in Adult Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553385. [PMID: 37645868 PMCID: PMC10462055 DOI: 10.1101/2023.08.15.553385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The ease of genetic manipulation in Drosophila melanogaster using the Gal4/UAS system has been beneficial in addressing key biological questions. Current modifications of this methodology to temporally induce transgene expression require temperature changes or exposure to exogenous compounds, both of which have been shown to have detrimental effects on physiological processes. The recently described auxin-inducible gene expression system (AGES) utilizes the plant hormone auxin to induce transgene expression and is proposed to be the least toxic compound for genetic manipulation, with no obvious effects on Drosophila development and survival in one wild-type strain. Here we show that auxin delays larval development in another widely-used fly strain, and that short- and long-term auxin exposure in adult Drosophila induces observable changes in physiology and feeding behavior. We further reveal a dosage response to adult survival upon auxin exposure, and that the recommended auxin concentration for AGES alters feeding activity. Furthermore, auxin fed male and female flies exhibit a significant decrease in triglyceride levels and display altered transcription of fatty acid metabolism genes. Although fatty acid metabolism is disrupted, auxin does not significantly impact adult female fecundity or progeny survival, suggesting AGES may be an ideal methodology for studying limited biological processes. These results emphasize that experiments using temporal binary systems must be carefully designed and controlled to avoid confounding effects and misinterpretation of results.
Collapse
Affiliation(s)
- Sophie A. Fleck
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Emily D. DeWitt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Robert C. Eisman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | | | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lesley N. Weaver
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Melamed D, Choi A, Reilein A, Tavaré S, Kalderon D. Spatial regulation of Drosophila ovarian Follicle Stem Cell division rates and cell cycle transitions. PLoS Genet 2023; 19:e1010965. [PMID: 37747936 PMCID: PMC10553835 DOI: 10.1371/journal.pgen.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/05/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Drosophila ovarian Follicle Stem Cells (FSCs) present a favorable paradigm for understanding how stem cell division and differentiation are balanced in communities where those activities are independent. FSCs also allow exploration of how this balance is integrated with spatial stem cell heterogeneity. Posterior FSCs become proliferative Follicle Cells (FCs), while anterior FSCs become quiescent Escort Cells (ECs) at about one fourth the frequency. A single stem cell can nevertheless produce both FCs and ECs because it can move between anterior and posterior locations. Studies based on EdU incorporation to approximate division rates suggested that posterior FSCs divide faster than anterior FSCs. However, direct measures of cell cycle times are required to ascertain whether FC output requires a net flow of FSCs from anterior to posterior. Here, by using live imaging and FUCCI cell-cycle reporters, we measured absolute division rates. We found that posterior FSCs cycle more than three times faster than anterior FSCs and produced sufficient new cells to match FC production. H2B-RFP dilution studies supported different cycling rates according to A/P location and facilitated live imaging, showing A/P exchange of FSCs in both directions, consistent with the dynamic equilibrium inferred from division rate measurements. Inversely graded Wnt and JAK-STAT pathway signals regulate FSC differentiation to ECs and FCs. JAK-STAT promotes both differentiation to FCs and FSC cycling, affording some coordination of these activities. When JAK-STAT signaling was manipulated to be spatially uniform, the ratio of posterior to anterior division rates was reduced but remained substantial, showing that graded JAK-STAT signaling only partly explains the graded cycling of FSCs. By using FUCCI markers, we found a prominent G2/M cycling restriction of posterior FSCs together with an A/P graded G1/S restriction, that JAK-STAT signaling promotes both G1/S and G2/M transitions, and that PI3 kinase signaling principally stimulates the G2/M transition.
Collapse
Affiliation(s)
- David Melamed
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Aaron Choi
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Simon Tavaré
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
- Irving Institute for Cancer Dynamics & Department of Statistics, Columbia University, New York, New York State, United States of America
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| |
Collapse
|
25
|
Hsi TC, Ong KL, Sepers JJ, Kim J, Bilder D. Systemic coagulopathy promotes host lethality in a new Drosophila tumor model. Curr Biol 2023; 33:3002-3010.e6. [PMID: 37354901 PMCID: PMC11365082 DOI: 10.1016/j.cub.2023.05.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
Malignant tumors trigger a complex network of inflammatory and wound repair responses, prompting Dvorak's characterization of tumors as "wounds that never heal."1 Some of these responses lead to profound defects in blood clotting, such as disseminated intravascular coagulopathy (DIC), which correlate with poor prognoses.2,3,4 Here, we demonstrate that a new tumor model in Drosophila provokes phenotypes that resemble coagulopathies observed in patients. Fly ovarian tumors overproduce multiple secreted components of the clotting cascade and trigger hypercoagulation of fly blood (hemolymph). Hypercoagulation occurs shortly after tumor induction and is transient; it is followed by a hypocoagulative state that is defective in wound healing. Cellular clotting regulators accumulate on the tumor over time and are depleted from the body, suggesting that hypocoagulation is caused by exhaustion of host clotting components. We show that rescuing coagulopathy by depleting a tumor-produced clotting factor improves survival of tumor-bearing flies, despite the fact that flies have an open (non-vascular) circulatory system. As clinical studies suggest that lethality in patients with high serum levels of clotting components can be independent of thrombotic events,5,6 our work establishes a platform for identifying alternative mechanisms by which tumor-driven coagulopathy triggers early mortality. Moreover, it opens up exploration of other conserved mechanisms of host responses to chronic wounds.
Collapse
Affiliation(s)
- Tsai-Ching Hsi
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Katy L Ong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jorian J Sepers
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jung Kim
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Hawley HR, Roberts CJ, Fitzsimons HL. Comparison of neuronal GAL4 drivers along with the AGES (auxin-inducible gene expression system) and TARGET (temporal and regional gene expression targeting) systems for fine tuning of neuronal gene expression in Drosophila. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000885. [PMID: 37396791 PMCID: PMC10314298 DOI: 10.17912/micropub.biology.000885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Spatial and temporal control of gene expression in Drosophila is essential in elucidating gene function. Spatial control is facilitated by the UAS/GAL4 system, and this can be coupled with additional adaptations for precise temporal control and fine tuning of gene expression levels. Here we directly compare the level of pan-neuronal transgene expression governed by nSyb-GAL4 and elav-GAL4, as well as mushroom body-specific expression alongside OK107-GAL4. We also compare the temporal modulation of gene expression in neurons with the auxin-inducible gene expression system (AGES) and temporal and regional gene expression targeting (TARGET) systems.
Collapse
Affiliation(s)
- Hannah R Hawley
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - Celestine J Roberts
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - Helen L Fitzsimons
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| |
Collapse
|
27
|
Popovic R, Mukherjee A, Leal NS, Morris L, Yu Y, Loh SHY, Miguel Martins L. Blocking dPerk in the intestine suppresses neurodegeneration in a Drosophila model of Parkinson's disease. Cell Death Dis 2023; 14:206. [PMID: 36949073 PMCID: PMC10033872 DOI: 10.1038/s41419-023-05729-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
Parkinson's disease (PD) is characterised by selective death of dopaminergic (DA) neurons in the midbrain and motor function impairment. Gastrointestinal issues often precede motor deficits in PD, indicating that the gut-brain axis is involved in the pathogenesis of this disease. The features of PD include both mitochondrial dysfunction and activation of the unfolded protein response (UPR) in the endoplasmic reticulum (ER). PINK1 is a mitochondrial kinase involved in the recycling of defective mitochondria, and PINK1 mutations cause early-onset PD. Like PD patients, pink1 mutant Drosophila show degeneration of DA neurons and intestinal dysfunction. These mutant flies also lack vital proteins due to sustained activation of the kinase R-like endoplasmic reticulum kinase (dPerk), a kinase that induces the UPR. Here, we investigated the role of dPerk in intestinal dysfunction. We showed that intestinal expression of dPerk impairs mitochondrial function, induces cell death, and decreases lifespan. We found that suppressing dPerk in the intestine of pink1-mutant flies rescues intestinal cell death and is neuroprotective. We conclude that in a fly model of PD, blocking gut-brain transmission of UPR-mediated toxicity, is neuroprotective.
Collapse
Affiliation(s)
- Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | | | - Lydia Morris
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
28
|
Phipps DN, Powell AM, Ables ET. Utilizing the FLP-Out System for Clonal RNAi Analysis in the Adult Drosophila Ovary. Methods Mol Biol 2023; 2626:69-87. [PMID: 36715900 PMCID: PMC10044525 DOI: 10.1007/978-1-0716-2970-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability to conduct spatially controlled RNA interference (RNAi) for gene knockdown using the UAS/Gal4 system is among the most appealing techniques available for analysis of gene function in the Drosophila ovary. While gene knockdown experiments in somatic cells in the developing organism (i.e., embryos and larvae) are effectively and commonly performed, the use of RNAi in adult ovarian cells can be hampered by the unintended deleterious effects of Gal4 expression in "off-target" developing tissues. Mosaic analysis overcomes these problems by imparting temporal and spatial control over gene manipulation, providing a useful tool to compare manipulated cells with wild-type cells in the same tissue. Here, we provide a method to utilize the UAS/Gal4 system in combination with the Flippase (FLP)-Flippase Recognition Target (FRT) system to generate positively labeled "FLP-Out" clones expressing a chosen RNAi in both the germline and the soma in the Drosophila ovary. This protocol outlines each step of the generation of clones and the selection of appropriate fly stocks and reagents, providing a guide to this powerful tool in the Drosophila genetic toolbox. These techniques allow for RNAi analysis within a specific cell type, providing an opportunity to study a variety of unique aspects of cell function that would not be possible in more traditional RNAi-based experiments.
Collapse
Affiliation(s)
- Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, USA
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Amanda M Powell
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
29
|
Weaver LN. Analysis of Physiological Control of Adult Drosophila Oogenesis by Interorgan Communication. Methods Mol Biol 2023; 2626:89-107. [PMID: 36715901 DOI: 10.1007/978-1-0716-2970-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tissue homeostasis is dependent on the interaction between various organs within an organism in response to physiological inputs. The adult Drosophila melanogaster ovary is sensitive to environmental challenges and has recently been shown to be regulated by signaling from peripheral organs. To dissect the intricate coordination between overall organism health and reproduction, it is necessary to meticulously characterize both experimental tools and oogenesis processes. This chapter provides a guide for the careful analysis of interorgan communication in regulating oogenesis in adult Drosophila melanogaster.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
30
|
Hedgehog-mediated gut-taste neuron axis controls sweet perception in Drosophila. Nat Commun 2022; 13:7810. [PMID: 36535958 PMCID: PMC9763350 DOI: 10.1038/s41467-022-35527-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary composition affects food preference in animals. High sugar intake suppresses sweet sensation from insects to humans, but the molecular basis of this suppression is largely unknown. Here, we reveal that sugar intake in Drosophila induces the gut to express and secrete Hedgehog (Hh) into the circulation. We show that the midgut secreted Hh localize to taste sensilla and suppresses sweet sensation, perception, and preference. We further find that the midgut Hh inhibits Hh signalling in the sweet taste neurons. Our electrophysiology studies demonstrate that the midgut Hh signal also suppresses bitter taste and some odour responses, affecting overall food perception and preference. We further show that the level of sugar intake during a critical window early in life, sets the adult gut Hh expression and sugar perception. Our results together reveal a bottom-up feedback mechanism involving a "gut-taste neuron axis" that regulates food sensation and preference.
Collapse
|
31
|
Regan JC, Lu YX, Ureña E, Meilenbrock RL, Catterson JH, Kißler D, Fröhlich J, Funk E, Partridge L. Sexual identity of enterocytes regulates autophagy to determine intestinal health, lifespan and responses to rapamycin. NATURE AGING 2022; 2:1145-1158. [PMID: 37118538 PMCID: PMC10154239 DOI: 10.1038/s43587-022-00308-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/04/2022] [Indexed: 04/30/2023]
Abstract
Pharmacological attenuation of mTOR presents a promising route for delay of age-related disease. Here we show that treatment of Drosophila with the mTOR inhibitor rapamycin extends lifespan in females, but not in males. Female-specific, age-related gut pathology is markedly slowed by rapamycin treatment, mediated by increased autophagy. Treatment increases enterocyte autophagy in females, via the H3/H4 histone-Bchs axis, whereas males show high basal levels of enterocyte autophagy that are not increased by rapamycin feeding. Enterocyte sexual identity, determined by transformerFemale expression, dictates sexually dimorphic cell size, H3/H4-Bchs expression, basal rates of autophagy, fecundity, intestinal homeostasis and lifespan extension in response to rapamycin. Dimorphism in autophagy is conserved in mice, where intestine, brown adipose tissue and muscle exhibit sex differences in autophagy and response to rapamycin. This study highlights tissue sex as a determining factor in the regulation of metabolic processes by mTOR and the efficacy of mTOR-targeted, anti-aging drug treatments.
Collapse
Affiliation(s)
- Jennifer C Regan
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Enric Ureña
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - James H Catterson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Disna Kißler
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jenny Fröhlich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Emilie Funk
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
32
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
33
|
Laws KM, Bashaw GJ. Diverse roles for axon guidance pathways in adult tissue architecture and function. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220021. [PMID: 37456985 PMCID: PMC10346896 DOI: 10.1002/ntls.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue-intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue-specific mechanisms of guidance receptor signaling in adult tissues.
Collapse
Affiliation(s)
- Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Shore T, Levi T, Kalifa R, Dreifuss A, Rekler D, Weinberg-Shukron A, Nevo Y, Bialistoky T, Moyal V, Gold MY, Leebhoff S, Zangen D, Deshpande G, Gerlitz O. Nucleoporin107 mediates female sexual differentiation via Dsx. eLife 2022; 11:72632. [PMID: 35311642 PMCID: PMC8975549 DOI: 10.7554/elife.72632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of BMP signaling hyperactivation. Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex and tissue specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.
Collapse
Affiliation(s)
- Tikva Shore
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Tgst Levi
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Rachel Kalifa
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Amatzia Dreifuss
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Dina Rekler
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | | | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Victoria Moyal
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Merav Yaffa Gold
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Shira Leebhoff
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
35
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
36
|
Mohr SE, Tattikota SG, Xu J, Zirin J, Hu Y, Perrimon N. Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila. Genetics 2021; 217:6156631. [PMID: 33713129 DOI: 10.1093/genetics/iyab019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 01/26/2023] Open
Abstract
Single-cell RNA sequencing (scRNAseq) experiments provide a powerful means to identify clusters of cells that share common gene expression signatures. A major challenge in scRNAseq studies is to map the clusters to specific anatomical regions along the body and within tissues. Existing data, such as information obtained from large-scale in situ RNA hybridization studies, cell type specific transcriptomics, gene expression reporters, antibody stainings, and fluorescent tagged proteins, can help to map clusters to anatomy. However, in many cases, additional validation is needed to precisely map the spatial location of cells in clusters. Several approaches are available for spatial resolution in Drosophila, including mining of existing datasets, and use of existing or new tools for direct or indirect detection of RNA, or direct detection of proteins. Here, we review available resources and emerging technologies that will facilitate spatial mapping of scRNAseq clusters at high resolution in Drosophila. Importantly, we discuss the need, available approaches, and reagents for multiplexing gene expression detection in situ, as in most cases scRNAseq clusters are defined by the unique coexpression of sets of genes.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sudhir Gopal Tattikota
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
37
|
Weaver LN, Drummond-Barbosa D. Hormone receptor 4 is required in muscles and distinct ovarian cell types to regulate specific steps of Drosophila oogenesis. Development 2021; 148:dev.198663. [PMID: 33547134 DOI: 10.1242/dev.198663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The conserved nuclear receptor superfamily has crucial roles in many processes, including reproduction. Nuclear receptors with known roles in oogenesis have been studied mostly in the context of their ovary-intrinsic requirement. Recent studies in Drosophila, however, have begun to reveal new roles of nuclear receptor signaling in peripheral tissues in controlling reproduction. Here, we identified Hormone receptor 4 (Hr4) as an oogenesis regulator required in the ovary and muscles. Global Hr4 knockdown leads to increased germline stem cell (GSC) loss, reduced GSC proliferation, early germline cyst death, slowed follicle growth and vitellogenic follicle degeneration. Tissue-specific knockdown experiments uncovered ovary-intrinsic and peripheral tissue requirements for Hr4 In the ovary, Hr4 is required in the niche for GSC proliferation and in the germline for GSC maintenance. Hr4 functions in muscles to promote GSC maintenance and follicle growth. The specific tissues that require Hr4 for survival of early germline cysts and vitellogenic follicles remain unidentified. These results add to the few examples of muscles controlling gametogenesis and expand our understanding of the complexity of nuclear receptor regulation of various aspects of oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS One 2020; 15:e0243756. [PMID: 33307547 PMCID: PMC7732368 DOI: 10.1371/journal.pone.0243756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
Reproduction is highly sensitive to changes in physiology and the external environment. Neuropeptides are evolutionarily conserved signaling molecules that regulate multiple physiological processes. However, the potential reproductive roles of many neuropeptide signaling pathways remain underexplored. Here, we describe the results of RNAi-based screens in Drosophila melanogaster to identify neuropeptides/neuropeptide receptors with potential roles in oogenesis. The screen read-outs were either the number of eggs laid per female per day over time or fluorescence microscopy analysis of dissected ovaries. We found that the orphan neuropeptide receptor encoded by moody (homologous to mammalian melatonin receptors) is likely required in somatic cells for normal egg production and proper germline stem cell maintenance. However, the egg laying screens had low signal-to-noise ratio and did not lead to the identification of additional candidates. Thus, although egg count assays might be useful for large-scale screens to identify oogenesis regulators that result in dramatic changes in oogenesis, more labor-intensive microscopy-based screen are better applicable for identifying new physiological regulators of oogenesis with more subtle phenotypes.
Collapse
|