1
|
Hart R, Moran NA, Ochman H. Genomic divergence across the tree of life. Proc Natl Acad Sci U S A 2025; 122:e2319389122. [PMID: 40014554 PMCID: PMC11912424 DOI: 10.1073/pnas.2319389122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Nucleotide sequence data are being harnessed to identify species, even in cases in which organisms themselves are neither in hand nor witnessed. But how genome-wide sequence divergence maps to species status is far from clear. While gene sequence divergence is commonly used to delineate bacterial species, its correspondence to established species boundaries has yet to be explored across eukaryotic taxa. Because the processes underlying gene flow differ fundamentally between prokaryotes and eukaryotes, these domains are likely to differ in the relationship between reproductive isolation and genome-wide sequence divergence. In prokaryotes, homologous recombination, the basis of gene flow, depends directly on the degree of genomic sequence divergence, whereas in sexually reproducing eukaryotes, reproductive incompatibility can stem from changes in very few genes. Guided by measures of genome-wide sequence divergence in bacteria, we gauge how genomic criteria correspond to species boundaries in eukaryotes. In recognized species of eukaryotes, levels of gene sequence divergence within species are typically very small, averaging <1% across protein-coding regions in most animals, plants, and fungi. There are even instances in which divergence between sister species is the same or less than that among conspecifics. In contrast, bacterial species, defined as populations exchanging homologous genes, show levels of divergence both within and between species that are considerably higher. Although no single threshold delineates species, eukaryotic populations with >1% genome-wide sequence divergence are likely separate species, whereas prokaryotic populations with 1% divergence are still able to recombine and thus can be considered the same species.
Collapse
Affiliation(s)
- Rowan Hart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Booker WW, Schrider DR. The Genetic Consequences of Range Expansion and Its Influence on Diploidization in Polyploids. Am Nat 2025; 205:203-223. [PMID: 39913935 DOI: 10.1086/733334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractDespite newly formed polyploids being subjected to myriad fitness consequences, the relative prevalence of polyploidy, both contemporarily and in ancestral branches of the tree of life, suggests alternative advantages that outweigh these consequences. One proposed advantage is that polyploids may more easily colonize novel habitats, such as deglaciated areas. However, previous research conducted in diploids suggests that range expansion comes with a fitness cost, as deleterious mutations may fix rapidly on the expansion front. Here, we interrogate the potential consequences of expansion in polyploids by conducting spatially explicit forward-in-time simulations to investigate how ploidy and inheritance patterns impact the relative ability of polyploids to expand their range. We show that under realistic dominance models, autopolyploids suffer greater fitness reductions than diploids as a result of range expansion due to the fixation of increased mutational load that is masked in the range core. Alternatively, the disomic inheritance of allopolyploids provides a shield to this fixation, resulting in minimal fitness consequences. In light of this advantage provided by disomy, we investigate how range expansion may influence cytogenetic diploidization through the reversion to disomy in autotetraploids. We show that under a wide range of parameters investigated for two models of diploidization, disomy frequently evolves more rapidly on the expansion front than in the range core, and that this dynamic inheritance model has additional effects on fitness. Together our results point to a complex interaction among dominance, ploidy, inheritance, and recombination on fitness as a population spreads across a geographic range.
Collapse
|
3
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Calvez L, Dereeper A, Perdereau A, Mournet P, Miranda M, Bruyère S, Hufnagel B, Froelicher Y, Lemainque A, Morillon R, Ollitrault P. Meiotic Behaviors of Allotetraploid Citrus Drive the Interspecific Recombination Landscape, the Genetic Structures, and Traits Inheritance in Tetrazyg Progenies Aiming to Select New Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:1630. [PMID: 37111854 PMCID: PMC10146282 DOI: 10.3390/plants12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.
Collapse
Affiliation(s)
- Lény Calvez
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Alexis Dereeper
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Aude Perdereau
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Pierre Mournet
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Maëva Miranda
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Saturnin Bruyère
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Barbara Hufnagel
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Yann Froelicher
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-20230 San Giuliano, France
| | - Arnaud Lemainque
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Raphaël Morillon
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
5
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
6
|
Cheng H, Zhang Z, Wen J, Lenstra JA, Heller R, Cai Y, Guo Y, Li M, Li R, Li W, He S, Wang J, Shao J, Song Y, Zhang L, Billah M, Wang X, Liu M, Jiang Y. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet 2023; 19:e1010615. [PMID: 36821549 PMCID: PMC9949681 DOI: 10.1371/journal.pgen.1010615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenrong Li
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masum Billah
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
- * E-mail: (ML); (YJ)
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- * E-mail: (ML); (YJ)
| |
Collapse
|
7
|
Michelotti LA, Sun S, Heitman J, James TY. Clonal evolution in serially passaged Cryptococcus neoformans × deneoformans hybrids reveals a heterogenous landscape of genomic change. Genetics 2022; 220:iyab142. [PMID: 34849836 PMCID: PMC8733418 DOI: 10.1093/genetics/iyab142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans × deneoformans hybrids (also known as serotype AD hybrids) are basidiomycete yeasts that are common in a clinical setting. Like many hybrids, the AD hybrids are largely locked at the F1 stage and are mostly unable to undergo normal meiotic reproduction. However, these F1 hybrids, which display a high (∼10%) sequence divergence are known to genetically diversify through mitotic recombination and aneuploidy, and this diversification may be adaptive. In this study, we evolved a single AD hybrid genotype in six diverse environments by serial passaging and then used genome resequencing of evolved clones to determine evolutionary mechanisms of adaptation. The evolved clones generally increased fitness after passaging, accompanied by an average of 3.3 point mutations, 2.9 loss of heterozygosity (LOH) events, and 0.7 trisomic chromosomes per clone. LOH occurred through nondisjunction of chromosomes, crossing over consistent with break-induced replication, and gene conversion, in that order of prevalence. The breakpoints of these recombination events were significantly associated with regions of the genome with lower sequence divergence between the parents and clustered in sub-telomeric regions, notably in regions that had undergone introgression between the two parental species. Parallel evolution was observed, particularly through repeated homozygosity via nondisjunction, yet there was little evidence of environment-specific parallel change for either LOH, aneuploidy, or mutations. These data show that AD hybrids have both a remarkable genomic plasticity and yet are challenged in the ability to recombine through sequence divergence and chromosomal rearrangements, a scenario likely limiting the precision of adaptive evolution to novel environments.
Collapse
Affiliation(s)
- Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Genetic and Phenotypic Diversities in Experimental Populations of Diploid Inter-Lineage Hybrids in the Human Pathogenic Cryptococcus. Microorganisms 2021; 9:microorganisms9081579. [PMID: 34442658 PMCID: PMC8398696 DOI: 10.3390/microorganisms9081579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
To better understand the potential factors contributing to genome instability and phenotypic diversity, we conducted mutation accumulation (MA) experiments for 120 days for 7 diploid cryptococcal hybrids under fluconazole (10 MA lines each) and non-fluconazole conditions (10 MA lines each). The genomic DNA content, loss of heterozygosity (LOH) rate, growth ability, and fluconazole susceptibility were determined for all 140 evolved cultures. Compared to that of their ancestral clones, the evolved clones showed: (i) genomic DNA content changes ranging from ~22% less to ~27% more, and (ii) reduced, similar, and increased phenotypic values for each tested trait, with most evolved clones displaying increased growth at 40 °C and increased fluconazole resistance. Aside from the ancestral multi-locus genotypes (MLGs) and heterozygosity patterns (MHPs), 77 unique MLGs and 70 unique MPHs were identified among the 140 evolved cultures at day 120. The average LOH rates of the MA lines in the absence and presence of fluconazole were similar at 1.27 × 10−4 and 1.38 × 10−4 LOH events per MA line per mitotic division, respectively. While LOH rates varied among MA lines from different ancestors, there was no apparent correlation between the genetic divergence of the parental haploid genomes within ancestral clones and LOH rates. Together, our results suggest that hybrids between diverse lineages of the human pathogenic Cryptococcus can generate significant genotypic and phenotypic diversities during asexual reproduction.
Collapse
|
9
|
Braz GT, Yu F, Zhao H, Deng Z, Birchler JA, Jiang J. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. THE NEW PHYTOLOGIST 2021; 229:3294-3302. [PMID: 33222183 DOI: 10.1111/nph.17098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Meiotic chromosome pairing between homoeologous chromosomes was reported in many nascent allopolyploids. Homoeologous pairing is gradually eliminated and replaced by exclusive homologous pairing in well-established allopolyploids, an evolutionary process referred to as the diploidization of allopolyploids. A fundamental question of the diploidization of allopolyploids is whether and to what extent the DNA sequence variation among homoeologous chromosomes contribute to the establishment of exclusive homologous chromosome pairing. We developed aneuploid tetraploid maize lines that contain three copies of chromosome 10 derived from inbred lines B73 and H99. We were able to identify the parental origin of each copy of chromosome 10 in the materials using oligonucleotide-based haplotype-specific chromosome painting. We demonstrate that the two identical copies of chromosome 10 from H99 pair preferentially over chromosome 10 from B73 in different stages of prophase I and metaphase I during meiosis. Thus, homologous chromosome pairing is favored to partners with the most similar DNA sequences and can be discriminated based on cryptic sequence variation. We propose that innate preference of homologous chromosome pairing exists in nascent allopolyploids and serves as the first layer that would eventually block all homoeologous chromosome pairing in allopolyploids.
Collapse
Affiliation(s)
- Guilherme T Braz
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fan Yu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
10
|
Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative. G3-GENES GENOMES GENETICS 2020; 10:3651-3661. [PMID: 32737066 PMCID: PMC7534432 DOI: 10.1534/g3.120.401479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Collapse
|
11
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:939. [PMID: 32670332 PMCID: PMC7330052 DOI: 10.3389/fpls.2020.00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/09/2020] [Indexed: 05/14/2023]
Abstract
The triploid 'Tahiti' lime (C. x latifolia (Yu. Tanaka) Tanaka) naturally originated from a merger between a haploid ovule of lemon (C. x limon (L.) Burm) and a diploid pollen from a 'Mexican' lime (C. x aurantiifolia (Christm.) Swing). The very limited natural inter-varietal diversity and gametic sterility of C. latifolia requires a phylogenomic based reconstruction breeding strategy to insure its diversification. We developed a strategy based on interploid hybridization between diploid lemon and the doubled diploid 'Giant Key' lime. This lime is a doubled diploid of 'Mexican' lime, itself a natural interspecific F1 hybrid between C. medica L. and C. micrantha Wester. For an optimized breeding program, we analyzed the meiotic behavior of the allotetraploid lime, the genetic structure of its diploid gametes, the interspecific recombination between C. medica and C. micrantha, and constructed its genetic map. A population of 272 triploid hybrids was generated using 'Giant Key' lime as pollinator. One hundred fifty-eight SNPs diagnostic of C. micrantha, regularly distributed throughout the citrus genome were successfully developed and applied. The genetic structure of the diploid gametes was examined based on C. micrantha doses along the genome. The diploid gametes transmitted in average 91.17% of the parental interspecific C. medica/C. micrantha heterozygosity. Three chromosomes (2, 8, and 9) showed disomic segregation with high preferential pairing values, while the remaining chromosomes showed an intermediate inheritance with a preferential disomic trend. A total of 131 SNPs were assigned to nine linkage groups to construct the genetic map. It spanned 272.8 cM with a low average recombination rate (0.99 cM Mb-1) and high synteny and colinearity with the reference clementine genome. Our results confirmed that an efficient reconstruction breeding strategy for 'Tahiti' lime is possible, based on interploid hybridization using a doubled diploid of C. aurantiifolia. The tetraploid parent should be selected for favorable agronomic traits and its genetic value should be efficiently inherited by the progeny thanks to transmission of the high level of parental heterozygosity. However, it would require developing numerous progeny to overcome the linkage drag caused by the limited interspecific recombination associated with the predominant disomic inheritance.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, San Giuliano, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
13
|
Samuk K, Manzano-Winkler B, Ritz KR, Noor MAF. Natural Selection Shapes Variation in Genome-wide Recombination Rate in Drosophila pseudoobscura. Curr Biol 2020; 30:1517-1528.e6. [PMID: 32275873 DOI: 10.1016/j.cub.2020.03.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/16/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
While recombination is widely recognized to be a key modulator of numerous evolutionary phenomena, we have a poor understanding of how recombination rate itself varies and evolves within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8,000 individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for which we then quantified crossovers. Interestingly, variation in recombination rate within and between populations largely manifested as differences in genome-wide recombination rate rather than remodeling of the local recombination landscape. Comparing populations, we discovered individuals from the Utah population displayed on average 8% higher crossover rates than the Arizona population, a statistically significant difference. Using a QST-FST analysis, we found that this difference in crossover rate was dramatically higher than expected under neutrality, indicating that this difference may have been driven by natural selection. Finally, using a combination of short- and long-read whole-genome sequencing, we found no significant association between crossover rate and structural variation at the 200-400 kb scale. Our results demonstrate that (1) there is abundant variation in genome-wide crossover rate in natural populations, (2) at the 200-400 kb scale, recombination rate appears to vary largely genome-wide, rather than in specific intervals, and (3) interpopulation differences in recombination rate may be the result of local adaptation.
Collapse
Affiliation(s)
- Kieran Samuk
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | - Kathryn R Ritz
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
14
|
Gonzalez V, Spampinato CP. The mismatch repair protein MSH6 regulates somatic recombination in Arabidopsis thaliana. DNA Repair (Amst) 2020; 87:102789. [PMID: 31945543 DOI: 10.1016/j.dnarep.2020.102789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
The mismatch repair (MMR) pathway promotes genome stability by controlling the fidelity of replication and recombination. The first step of the pathway involves recognition of the mismatch by heterodimers composed of MutS homologs (MSH). Although MSH6 has been well characterized in yeasts and humans, the role of the plant protein has not been extensively studied. We first analyzed gene expression in Arabidopsis thaliana. The use of transgenic plants expressing the β-glucuronidase (GUS) reporter gene under the control of approximately 1-kb region upstream of the start codon of the AtMSH6 gene demonstrated that MSH6 is preferentially expressed in undifferentiated cells with an intense cell division rate. We then examined protein function in meiotic and somatic recombination. Suppression of AtMSH6 did not affect the rate of meiotic recombination, but increased the frequency of recombination between two homeologous repeats of a marker gene by 3-fold relative to wild-type plants. Expression of the AtMSH6 gene under the control of its own promoter in msh6 homozygous mutant plants rescued the altered somatic recombination phenotype. We conclude that MSH6 shows a functional conservation across different biological kingdoms and a functional specificity in plants.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
15
|
Nelson TC, Crandall JG, Ituarte CM, Catchen JM, Cresko WA. Selection, Linkage, and Population Structure Interact To Shape Genetic Variation Among Threespine Stickleback Genomes. Genetics 2019; 212:1367-1382. [PMID: 31213503 PMCID: PMC6707445 DOI: 10.1534/genetics.119.302261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022] Open
Abstract
The outcome of selection on genetic variation depends on the geographic organization of individuals and populations as well as the organization of loci within the genome. Spatially variable selection between marine and freshwater habitats has had a significant and heterogeneous impact on patterns of genetic variation across the genome of threespine stickleback fish. When marine stickleback invade freshwater habitats, more than a quarter of the genome can respond to divergent selection, even in as little as 50 years. This process largely uses standing genetic variation that can be found ubiquitously at low frequency in marine populations, can be millions of years old, and is likely maintained by significant bidirectional gene flow. Here, we combine population genomic data of marine and freshwater stickleback from Cook Inlet, Alaska, with genetic maps of stickleback fish derived from those same populations to examine how linkage to loci under selection affects genetic variation across the stickleback genome. Divergent selection has had opposing effects on linked genetic variation on chromosomes from marine and freshwater stickleback populations: near loci under selection, marine chromosomes are depauperate of variation, while these same regions among freshwater genomes are the most genetically diverse. Forward genetic simulations recapitulate this pattern when different selective environments also differ in population structure. Lastly, dense genetic maps demonstrate that the interaction between selection and population structure may impact large stretches of the stickleback genome. These findings advance our understanding of how the structuring of populations across geography influences the outcomes of selection, and how the recombination landscape broadens the genomic reach of selection.
Collapse
Affiliation(s)
- Thomas C Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | | | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Julian M Catchen
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Illinois 61801
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
16
|
Zappacosta D, Gallardo J, Carballo J, Meier M, Rodrigo JM, Gallo CA, Selva JP, Stein J, Ortiz JPA, Albertini E, Echenique V. A High-Density Linkage Map of the Forage Grass Eragrostis curvula and Localization of the Diplospory Locus. FRONTIERS IN PLANT SCIENCE 2019; 10:918. [PMID: 31354781 PMCID: PMC6640543 DOI: 10.3389/fpls.2019.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/28/2019] [Indexed: 05/05/2023]
Abstract
Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is an apomictic species native to Southern Africa that is used as forage grass in semiarid regions of Argentina. Apomixis is a mechanism for clonal propagation through seeds that involves the avoidance of meiosis to generate an unreduced embryo sac (apomeiosis), parthenogenesis, and viable endosperm formation in a fertilization-dependent or -independent manner. Here, we constructed the first saturated linkage map of tetraploid E. curvula using both traditional (AFLP and SSR) and high-throughput molecular markers (GBS-SNP) and identified the locus controlling diplospory. We also identified putative regulatory regions affecting the expressivity of this trait and syntenic relationships with genomes of other grass species. We obtained a tetraploid mapping population from a cross between a full sexual genotype (OTA-S) with a facultative apomictic individual of cv. Don Walter. Phenotypic characterization of F1 hybrids by cytoembryological analysis yielded a 1:1 ratio of apomictic vs. sexual plants (34:27, X 2 = 0.37), which agrees with the model of inheritance of a single dominant genetic factor. The final number of markers was 1,114 for OTA-S and 2,019 for Don Walter. These markers were distributed into 40 linkage groups per parental genotype, which is consistent with the number of E. curvula chromosomes (containing 2 to 123 markers per linkage group). The total length of the OTA-S map was 1,335 cM, with an average marker density of 1.22 cM per marker. The Don Walter map was 1,976.2 cM, with an average marker density of 0.98 cM/marker. The locus responsible for diplospory was mapped on Don Walter linkage group 3, with other 65 markers. QTL analyses of the expressivity of diplospory in the F1 hybrids revealed the presence of two main QTLs, located 3.27 and 15 cM from the diplospory locus. Both QTLs explained 28.6% of phenotypic variation. Syntenic analysis allowed us to establish the groups of homologs/homeologs for each linkage map. The genetic linkage map reported in this study, the first such map for E. curvula, is the most saturated map for the genus Eragrostis and one of the most saturated maps for a polyploid forage grass species.
Collapse
Affiliation(s)
- Diego Zappacosta
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jimena Gallardo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - José Carballo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Mauro Meier
- Laboratorio Biotecnológico, Asociación de Cooperativas Argentinas Coop. Ltd., Pergamino, Argentina
| | - Juan Manuel Rodrigo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristian A. Gallo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Selva
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juliana Stein
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Juan Pablo A. Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- Emidio Albertini,
| | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
- *Correspondence: Viviana Echenique,
| |
Collapse
|
17
|
Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genet 2018; 14:e1007843. [PMID: 30543623 PMCID: PMC6307820 DOI: 10.1371/journal.pgen.1007843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
During meiosis, chromosomes undergo DNA double-strand breaks (DSBs), which can be repaired using a homologous chromosome to produce crossovers. Meiotic recombination frequency is variable along chromosomes and tends to concentrate in narrow hotspots. We mapped crossover hotspots located in the Arabidopsis thaliana RAC1 and RPP13 disease resistance genes, using varying haplotypic combinations. We observed a negative non-linear relationship between interhomolog divergence and crossover frequency within the hotspots, consistent with polymorphism locally suppressing crossover repair of DSBs. The fancm, recq4a recq4b, figl1 and msh2 mutants, or lines with increased HEI10 dosage, are known to show increased crossovers throughout the genome. Surprisingly, RAC1 crossovers were either unchanged or decreased in these genetic backgrounds, showing that chromosome location and local chromatin environment are important for regulation of crossover activity. We employed deep sequencing of crossovers to examine recombination topology within RAC1, in wild type, fancm, recq4a recq4b and fancm recq4a recq4b backgrounds. The RAC1 recombination landscape was broadly conserved in the anti-crossover mutants and showed a negative relationship with interhomolog divergence. However, crossovers at the RAC1 5'-end were relatively suppressed in recq4a recq4b backgrounds, further indicating that local context may influence recombination outcomes. Our results demonstrate the importance of interhomolog divergence in shaping recombination within plant disease resistance genes and crossover hotspots.
Collapse
|
18
|
Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2018; 9:1694. [PMID: 30542355 PMCID: PMC6278636 DOI: 10.3389/fpls.2018.01694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/31/2018] [Indexed: 05/29/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.
Collapse
Affiliation(s)
- Ming Huang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dongliang Du
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuan Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yi Zhang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Zhanao Deng
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Ed Stover
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL, United States
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
19
|
Role of Cis, Trans, and Inbreeding Effects on Meiotic Recombination in Saccharomyces cerevisiae. Genetics 2018; 210:1213-1226. [PMID: 30291109 DOI: 10.1534/genetics.118.301644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is a major driver of genome evolution by creating new genetic combinations. To probe the factors driving variability of meiotic recombination, we used a high-throughput method to measure recombination rates in hybrids between SK1 and a total of 26 Saccharomyces cerevisiae strains from different geographic origins and habitats. Fourteen intervals were monitored for each strain, covering chromosomes VI and XI entirely, and part of chromosome I. We found an average number of crossovers per chromosome ranging between 1.0 and 9.5 across strains ("domesticated" or not), which is higher than the average between 0.5 and 1.5 found in most organisms. In the different intervals analyzed, recombination showed up to ninefold variation across strains but global recombination landscapes along chromosomes varied less. We also built an incomplete diallel experiment to measure recombination rates in one region of chromosome XI in 10 different crosses involving five parental strains. Our overall results indicate that recombination rate is increasingly positively correlated with sequence similarity between homologs (i) in DNA double-strand-break-rich regions within intervals, (ii) in entire intervals, and (iii) at the whole genome scale. Therefore, these correlations cannot be explained by cis effects only. We also estimated that cis and trans effects explained 38 and 17%, respectively, of the variance of recombination rate. In addition, by using a quantitative genetics analysis, we identified an inbreeding effect that reduces recombination rate in homozygous genotypes, while other interaction effects (specific combining ability) or additive effects (general combining ability) are found to be weak. Finally, we measured significant crossover interference in some strains, and interference intensity was positively correlated with crossover number.
Collapse
|
20
|
Cross-Contamination Explains "Inter and Intraspecific Horizontal Genetic Transfers" between Asexual Bdelloid Rotifers. Curr Biol 2018; 28:2436-2444.e14. [PMID: 30017483 DOI: 10.1016/j.cub.2018.05.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 05/23/2018] [Indexed: 11/22/2022]
Abstract
A few metazoan lineages are thought to have persisted for millions of years without sexual reproduction. If so, they would offer important clues to the evolutionary paradox of sex itself [1, 2]. Most "ancient asexuals" are subject to ongoing doubt because extant populations continue to invest in males [3-9]. However, males are famously unknown in bdelloid rotifers, a class of microscopic invertebrates comprising hundreds of species [10-12]. Bdelloid genomes have acquired an unusually high proportion of genes from non-metazoans via horizontal transfer [13-17]. This well-substantiated finding has invited speculation [13] that homologous horizontal transfer between bdelloid individuals also may occur, perhaps even "replacing" sex [14]. In 2016, Current Biology published an article claiming to supply evidence for this idea. Debortoli et al. [18] sampled rotifers from natural populations and sequenced one mitochondrial and four nuclear loci. Species assignments were incongruent among loci for several samples, which was interpreted as evidence of "interspecific horizontal genetic transfers." Here, we use sequencing chromatograms supplied by the authors to demonstrate that samples treated as individuals actually contained two or more highly divergent mitochondrial and ribosomal sequences, revealing cross-contamination with DNA from multiple animals of different species. Other chromatograms indicate contamination with DNA from conspecific animals, explaining genetic and genomic evidence for "intraspecific horizontal exchanges" reported in the same study. Given the clear evidence of contamination, the data and findings of Debortoli et al. [18] provide no reliable support for their conclusions that DNA is transferred horizontally between or within bdelloid species.
Collapse
|
21
|
Rouiss H, Bakry F, Froelicher Y, Navarro L, Aleza P, Ollitrault P. Origin of C. latifolia and C. aurantiifolia triploid limes: the preferential disomic inheritance of doubled-diploid 'Mexican' lime is consistent with an interploid hybridization hypothesis. ANNALS OF BOTANY 2018; 121:571-585. [PMID: 29293884 PMCID: PMC5838810 DOI: 10.1093/aob/mcx179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 05/23/2023]
Abstract
Background and Aims Two main types of triploid limes are produced worldwide. The 'Tahiti' lime type (Citrus latifolia) is predominant, while the 'Tanepao' type (C. aurantiifolia) is produced to a lesser extent. Both types result from natural interspecific hybridization involving a diploid gamete of C. aurantiifolia 'Mexican' lime type (itself a direct interspecific C. micrantha × C. medica hybrid). The meiotic behaviour of a doubled-diploid 'Mexican' lime, the interspecific micrantha/medica recombination and the resulting diploid gamete structures were analysed to investigate the possibility that 'Tahiti' and 'Tanepao' varieties are derived from natural interploid hybridization. Methods A population of 85 tetraploid hybrids was established between a doubled-diploid clementine and a doubled-diploid 'Mexican' lime and used to infer the genotypes of 'Mexican' lime diploid gametes. Meiotic behaviour was studied through combined segregation analysis of 35 simple sequenbce repeat (SSR) and single nucleotide polymorphismn (SNP) markers covering the nine citrus chromosomes and cytogenetic studies. It was supplemented by pollen viability assessment. Key Results Pollen viability of the doubled-diploid Mexican lime (64 %) was much higher than that of the diploid. On average, 65 % of the chromosomes paired as bivalents and 31.4 % as tetravalents. Parental heterozygosity restitution ranged from 83 to 99 %. Disomic inheritance with high preferential pairing values was deduced for three chromosomes. Intermediate inheritances, with disomic trend, were found for five chromosomes, and an intermediate inheritance was observed for one chromosome. The average effective interspecific recombination rate was low (1.2 cM Mb-1). Conclusion The doubled-diploid 'Mexican' lime had predominantly disomic segregation, producing interspecific diploid gamete structures with high C. medica/C. micrantha heterozygosity, compatible with the phylogenomic structures of triploid C. latifolia and C. aurantiifolia varieties. This disomic trend limits effective interspecific recombination and diversity of the diploid gamete population. Interploid reconstruction breeding using doubled-diploid lime as one parent is a promising approach for triploid lime diversification.
Collapse
Affiliation(s)
- H Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| | - F Bakry
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Y Froelicher
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San Giuliano, Corse, France
| | - L Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - P Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - P Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| |
Collapse
|
22
|
Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30542355 DOI: 10.1101/330753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.
Collapse
Affiliation(s)
- Ming Huang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dongliang Du
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuan Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yi Zhang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Zhanao Deng
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Ed Stover
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL, United States
| | - Frederick G Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
23
|
Subirana JA, Messeguer X. Evolution of Tandem Repeat Satellite Sequences in Two Closely Related Caenorhabditis Species. Diminution of Satellites in Hermaphrodites. Genes (Basel) 2017; 8:genes8120351. [PMID: 29182550 PMCID: PMC5748669 DOI: 10.3390/genes8120351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
The availability of the genome sequence of the unisexual (male-female) Caenorhabditis nigoni offers an opportunity to compare its non-coding features with the related hermaphroditic species Caenorhabditis briggsae; to understand the evolutionary dynamics of their tandem repeat sequences (satellites), as a result of evolution from the unisexual ancestor. We take advantage of the previously developed SATFIND program to build satellite families defined by a consensus sequence. The relative number of satellites (satellites/Mb) in C. nigoni is 24.6% larger than in C. briggsae. Some satellites in C. nigoni have developed from a proto-repeat present in the ancestor species and are conserved as an isolated sequence in C. briggsae. We also identify unique satellites which occur only once and joint satellite families with a related sequence in both species. Some of these families are only found in C. nigoni, which indicates a recent appearance; they contain conserved adjacent 5′ and 3′ regions, which may favor transposition. Our results show that the number, length and turnover of satellites are restricted in the hermaphrodite C. briggsae when compared with the unisexual C. nigoni. We hypothesize that this results from differences in unequal recombination during meiotic chromosome pairing, which limits satellite turnover in hermaphrodites.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
- Evolutionary Genomics Group, Research Program on Biomedical Informatics (GRIB)-Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Doctor Aiguader 86, 08003 Barcelona, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| |
Collapse
|
24
|
Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS Biol 2016; 14:e2000234. [PMID: 28027292 PMCID: PMC5189939 DOI: 10.1371/journal.pbio.2000234] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids—the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation. Isolated populations accumulate genetic differences across their genomes as they diverge, whereas gene flow between populations counteracts divergence and tends to restore genetic homogeneity. Speciation proceeds by the accumulation at specific loci of mutations that reduce the fitness of hybrids, therefore preventing gene flow—the so-called species barriers. Importantly, species barriers are expected to act locally within the genome, leading to the prediction of a mosaic pattern of genetic differentiation between populations at intermediate levels of divergence—the genic view of speciation. At the same time, linked selection also contributes to speed up differentiation in low-recombining and gene-dense regions. We used a modelling approach that accounts for both sources of genomic heterogeneity and explored a wide continuum of genomic divergence made by 61 pairs of species/populations in animals. Our analysis provides a unifying picture of the relationship between molecular divergence and ability to exchange genes. We show that the "grey zone" of speciation—the intermediate state in which species definition is controversial—spans from 0.5% to 2% of molecular divergence, with these thresholds being independent of species life history traits and ecology. Semi-isolated species, between which alleles can be exchanged at some but not all loci, are numerous, with the earliest species barriers being detected at divergences as low as 0.075%. These results have important implications regarding taxonomy, conservation biology, and the management of biodiversity.
Collapse
|
25
|
Guo C, Du J, Wang L, Yang S, Mauricio R, Tian D, Gu T. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1792. [PMID: 27965694 PMCID: PMC5127803 DOI: 10.3389/fpls.2016.01792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome.
Collapse
Affiliation(s)
- Changjiang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Rodney Mauricio
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Tingting Gu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
26
|
Tennessen JA, Govindarajulu R, Liston A, Ashman T. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining region. THE NEW PHYTOLOGIST 2016; 211:1412-23. [PMID: 27102236 PMCID: PMC5074332 DOI: 10.1111/nph.13983] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/21/2016] [Indexed: 05/10/2023]
Abstract
Recombination in ancient, heteromorphic sex chromosomes is typically suppressed at the sex-determining region (SDR) and proportionally elevated in the pseudoautosomal region (PAR). However, little is known about recombination dynamics of young, homomorphic plant sex chromosomes. We examine male and female function in crosses and unrelated samples of the dioecious octoploid strawberry Fragaria chiloensis in order to map the small and recently evolved SDR controlling both traits and to examine recombination patterns on the incipient ZW chromosome. The SDR of this ZW system is located within a 280 kb window, in which the maternal recombination rate is lower than the paternal one. In contrast to the SDR, the maternal PAR recombination rate is much higher than the rates of the paternal PAR or autosomes, culminating in an elevated chromosome-wide rate. W-specific divergence is elevated within the SDR and a single polymorphism is observed in high species-wide linkage disequilibrium with sex. Selection for recombination suppression within the small SDR may be weak, but fluctuating sex ratios could favor elevated recombination in the PAR to remove deleterious mutations on the W. The recombination dynamics of this nascent sex chromosome with a modestly diverged SDR may be typical of other dioecious plants.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative BiologyOregon State UniversityCorvallisOR97331USA
| | | | - Aaron Liston
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOR97331USA
| | - Tia‐Lynn Ashman
- Department of Biological SciencesUniversity of PittsburghPittsburghPA15260‐3929USA
| |
Collapse
|
27
|
Gion JM, Hudson CJ, Lesur I, Vaillancourt RE, Potts BM, Freeman JS. Genome-wide variation in recombination rate in Eucalyptus. BMC Genomics 2016; 17:590. [PMID: 27507140 PMCID: PMC4979139 DOI: 10.1186/s12864-016-2884-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Results Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = −0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = −0.75). Conclusions The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst chromosomes in recombination rates appear stable across Eucalyptus species. Together with the strong correlations between recombination rate and features of the Eucalyptus reference genome, we maintain these findings provide further evidence for a broad conservation of genome architecture across the globally significant lineages of Eucalyptus.
Collapse
Affiliation(s)
| | - Corey J Hudson
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.,Present address: Tasmanian Alkaloids, P.O. Box 130, Westbury, TAS, 7303, Australia
| | | | - René E Vaillancourt
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Jules S Freeman
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
28
|
Phylogenetic Analysis Reveals That ERVs "Die Young" but HERV-H Is Unusually Conserved. PLoS Comput Biol 2016; 12:e1004964. [PMID: 27295277 PMCID: PMC4905674 DOI: 10.1371/journal.pcbi.1004964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
About 8% of the human genome is made up of endogenous retroviruses (ERVs). Though most human endogenous retroviruses (HERVs) are thought to be irrelevant to our biology notable exceptions include members of the HERV-H family that are necessary for the correct functioning of stem cells. ERVs are commonly found in two forms, the full-length proviral form, and the more numerous solo-LTR form, thought to result from homologous recombination events. Here we introduce a phylogenetic framework to study ERV insertion and solo-LTR formation. We then apply the framework to site patterns sampled from a set of long alignments covering six primate genomes. Studying six categories of ERVs we quantitatively recapitulate patterns of insertional activity that are usually described in qualitative terms in the literature. A slowdown in most ERV groups is observed but we suggest that HERV-K activity may have increased in humans since they diverged from chimpanzees. We find that the rate of solo-LTR formation decreases rapidly as a function of ERV age and that an age dependent model of solo-LTR formation describes the history of ERVs more accurately than the commonly used exponential decay model. We also demonstrate that HERV-H loci are markedly less likely to form solo-LTRs than ERVs from other families. We conclude that the slower dynamics of HERV-H suggest a host role for the internal regions of these exapted elements and posit that in future it will be possible to use the relationship between full-length proviruses and solo-LTRs to help identify large scale co-options in distant vertebrate genomes. Animal genomes contain ancient pathogens known as endogenous retroviruses (ERVs). Though the widespread abundance of ERVs is due to their ability to self replicate, some ERVs are known to have become important to host processes including placentation, and in the case of HERV-H, the functioning of human stem cells. In our study we place the insertion and deletion activity of primate ERV families in direct quantitative comparison. In particular, we show that ERV deletion is an age dependent process, so that as an ERV ages it becomes less likely to be deleted at any given instant. We also find that ERVs from the HERV-H family are unusually slowly deleted, an interesting result that suggests that the exaptation of HERV-H may have involved internal regions of the virus and not just its terminal promoters. Assuming the behaviour of primate ERVs is not unusual, our study suggests that future bioinformatics screening for ERVs with slow deletion dynamics could help identify large-scale exaptations in distant species. Furthermore, as we demonstrate that ERVs are deleted rapidly, we think that such screening could be performed using ratios of conserved to deleted elements and could therefore be applied to single genomes.
Collapse
|
29
|
Unraveling the Sex Chromosome Heteromorphism of the Paradoxical Frog Pseudis tocantins. PLoS One 2016; 11:e0156176. [PMID: 27214234 PMCID: PMC4877019 DOI: 10.1371/journal.pone.0156176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
The paradoxical frog Pseudis tocantins is the only species in the Hylidae family with known heteromorphic Z and W sex chromosomes. The Z chromosome is metacentric and presents an interstitial nucleolar organizer region (NOR) on the long arm that is adjacent to a pericentromeric heterochromatic band. In contrast, the submetacentric W chromosome carries a pericentromeric NOR on the long arm, which is adjacent to a clearly evident heterochromatic band that is larger than the band found on the Z chromosome and justify the size difference observed between these chromosomes. Here, we provide evidence that the non-centromeric heterochromatic bands in Zq and Wq differ not only in size and location but also in composition, based on comparative genomic hybridization (CGH) and an analysis of the anuran PcP190 satellite DNA. The finding of PcP190 sequences in P. tocantins extends the presence of this satellite DNA, which was previously detected among Leptodactylidae and Hylodidae, suggesting that this family of repetitive DNA is even older than it was formerly considered. Seven groups of PcP190 sequences were recognized in the genome of P. tocantins. PcP190 probes mapped to the heterochromatic band in Wq, and a Southern blot analysis indicated the accumulation of PcP190 in the female genome of P. tocantins, which suggests the involvement of this satellite DNA in the evolution of the sex chromosomes of this species.
Collapse
|
30
|
Subirana JA, Albà MM, Messeguer X. High evolutionary turnover of satellite families in Caenorhabditis. BMC Evol Biol 2015; 15:218. [PMID: 26438045 PMCID: PMC4595182 DOI: 10.1186/s12862-015-0495-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background The high density of tandem repeat sequences (satellites) in nematode genomes and the availability of genome sequences from several species in the group offer a unique opportunity to better understand the evolutionary dynamics and the functional role of these sequences. We take advantage of the previously developed SATFIND program to study the satellites in four Caenorhabditis species and investigate these questions. Methods The identification and comparison of satellites is carried out in three steps. First we find all the satellites present in each species with the SATFIND program. Each satellite is defined by its length, number of repeats, and repeat sequence. Only satellites with at least ten repeats are considered. In the second step we build satellite families with a newly developed alignment program. Satellite families are defined by a consensus sequence and the number of satellites in the family. Finally we compare the consensus sequence of satellite families in different species. Results We give a catalog of individual satellites in each species. We have also identified satellite families with a related sequence and compare them in different species. We analyze the turnover of satellites: they increased in size through duplications of fragments of 100-300 bases. It appears that in many cases they have undergone an explosive expansion. In C. elegans we have identified a subset of large satellites that have strong affinity for the centromere protein CENP-A. We have also compared our results with those obtained from other species, including one nematode and three mammals. Conclusions Most satellite families found in Caenorhabditis are species-specific; in particular those with long repeats. A subset of these satellites may facilitate the formation of kinetochores in mitosis. Other satellite families in C. elegans are either related to Helitron transposons or to meiotic pairing centers. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0495-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 31, Barcelona, 08034, Spain. .,Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Dr. Aiguader 86, Barcelona, 08003, Spain.
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Dr. Aiguader 86, Barcelona, 08003, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 31, Barcelona, 08034, Spain.
| |
Collapse
|
31
|
Orthologous endogenous retroviruses exhibit directional selection since the chimp-human split. Retrovirology 2015; 12:52. [PMID: 26088204 PMCID: PMC4477479 DOI: 10.1186/s12977-015-0172-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Endogenous retroviruses (ERVs) are often viewed as selfish DNA that do not contribute to host phenotype. Yet ERVs have also been co-opted to play important roles in the maintenance of stem cell identity and placentation, amongst other things. This has led to debate over whether the typical ERV confers a cost or benefit upon the host. We studied the divergence of orthologous ERVs since the chimp-human split with the aim of assessing whether ERVs exert detectable fitness effects. Results ERVs have evolved faster than other selfish DNA in human and chimpanzee. The divergence of ERVs relative to neighbouring selfish DNA is positively correlated with the length of the long terminal repeat of an ERV and with the percentage of neighbouring DNA that is not selfish. ERVs from the HERV-H family have diverged particularly quickly and in a manner that correlates with their level of transcription in human stem cells. A substitution into a highly transcribed HERV-H has a selective coefficient of the order of 10−4. This is large enough to suggest these substitutions are not dominated by drift. Conclusions ERVs differ from other selfish DNA in the extent to which they diverge and appear to have measurable effects on hosts, even after fixation. The effects are strongest for HERV-H and suggest that the HERV-H transcriptome has recently evolved under the influence of directional selection. As there are many HERV-H loci distributed across the ape lineage, our results suggest that in future this family can be used to model the evolutionary consequences of ERV exaptation in primates and other mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0172-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Lario LD, Botta P, Casati P, Spampinato CP. Role of AtMSH7 in UV-B-induced DNA damage recognition and recombination. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3019-26. [PMID: 25465032 DOI: 10.1093/jxb/eru464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mismatch repair (MMR) system maintains genome integrity by correcting replication-associated errors and inhibiting recombination between divergent DNA sequences. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in this DNA repair system vary among organisms. Plants have an extra mismatch recognition protein, MutSγ, which is a heterodimer: MSH2-MSH7. To further understand the role of MSH7 in vivo, we present data from this protein in Arabidopsis thaliana. First, we generated transgenic plants that express β-glucuronidase (GUS) under the control of the MSH7 promoter. Histochemical staining of the transgenic plants indicated that MSH7 is preferentially expressed in proliferating tissues. Then, we identified msh7 T-DNA insertion mutants. Plants deficient in MSH7 show increased levels of UV-B-induced cyclobutane pyrimidine dimers relative to wild-type (WT) plants. Consistent with the patterns of MSH7 expression, we next analysed the role of the protein during somatic and meiotic recombination. The frequency of somatic recombination between homologous or homeologous repeats (divergence level of 1.6%) was monitored using a previously described GUS recombination reporter assay. Disruption of MSH7 has no effect on the rates of somatic homologous or homeologous recombination under control conditions or after UV-B exposure. However, the rate of meiotic recombination between two genetically linked seed-specific fluorescent markers was 97% higher in msh7 than in WT plants. Taken together, these results suggest that MSH7 is involved in UV-B-induced DNA damage recognition and in controlling meiotic recombination.
Collapse
Affiliation(s)
- Luciana Daniela Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina Present address: Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Pablo Botta
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina Present address: Biotechnology Department, Nidera S.A., Ruta 8 Km 376, 2600 Venado Tuerto, Santa Fe, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia Patricia Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
33
|
Seplyarskiy VB, Logacheva MD, Penin AA, Baranova MA, Leushkin EV, Demidenko NV, Klepikova AV, Kondrashov FA, Kondrashov AS, James TY. Crossing-over in a hypervariable species preferentially occurs in regions of high local similarity. Mol Biol Evol 2014; 31:3016-25. [PMID: 25135947 PMCID: PMC4209137 DOI: 10.1093/molbev/msu242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recombination between double-stranded DNA molecules is a key genetic process which occurs in a wide variety of organisms. Usually, crossing-over (CO) occurs during meiosis between genotypes with 98.0–99.9% sequence identity, because within-population nucleotide diversity only rarely exceeds 2%. However, some species are hypervariable and it is unclear how CO can occur between genotypes with less than 90% sequence identity. Here, we study CO in Schizophyllum commune, a hypervariable cosmopolitan basidiomycete mushroom, a frequently encountered decayer of woody substrates. We crossed two haploid individuals, from the United States and from Russia, and obtained genome sequences for their 17 offspring. The average genetic distance between the parents was 14%, making it possible to study CO at very high resolution. We found reduced levels of linkage disequilibrium between loci flanking the CO sites indicating that they are mostly confined to hotspots of recombination. Furthermore, CO events preferentially occurred in regions under stronger negative selection, in particular within exons that showed reduced levels of nucleotide diversity. Apparently, in hypervariable species CO must avoid regions of higher divergence between the recombining genomes due to limitations imposed by the mismatch repair system, with regions under strong negative selection providing the opportunity for recombination. These patterns are opposite to those observed in a number of less variable species indicating that population genomics of hypervariable species may reveal novel biological phenomena.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksey A Penin
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Maria A Baranova
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Leushkin
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Demidenko
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Anna V Klepikova
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - Alexey S Kondrashov
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Bashir T, Sailer C, Gerber F, Loganathan N, Bhoopalan H, Eichenberger C, Grossniklaus U, Baskar R. Hybridization alters spontaneous mutation rates in a parent-of-origin-dependent fashion in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:424-37. [PMID: 24664208 PMCID: PMC4012600 DOI: 10.1104/pp.114.238451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/22/2014] [Indexed: 05/18/2023]
Abstract
Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col)×Cape Verde Islands and Col×C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col×C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col×Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.
Collapse
|
35
|
Gonzalez G, Koyanagi KO, Aoki K, Kitaichi N, Ohno S, Kaneko H, Ishida S, Watanabe H. Intertypic modular exchanges of genomic segments by homologous recombination at universally conserved segments in human adenovirus species D. Gene 2014; 547:10-7. [PMID: 24726548 DOI: 10.1016/j.gene.2014.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
Human adenovirus species D (HAdV-D), which is composed of clinically and epidemiologically important pathogens worldwide, contains more taxonomic "types" than any other species of the genus Mastadenovirus, although the mechanisms accounting for the high level of diversity remain to be disclosed. Recent studies of known and new types of HAdV-D have indicated that intertypic recombination between distant types contributes to the increasing diversity of the species. However, such findings raise the question as to how homologous recombination events occur between diversified types since homologous recombination is suppressed as nucleotide sequences diverge. In order to address this question, we investigated the distribution of the recombination boundaries in comparison with the landscape of intergenomic sequence conservation assessed according to the synonymous substitution rate (dS). The results revealed that specific genomic segments are conserved between even the most distantly related genomes; we call these segments "universally conserved segments" (UCSs). These findings suggest that UCSs facilitate homologous recombination, resulting in intergenomic segmental exchanges of UCS-flanking genomic regions as recombination modules. With the aid of such a mechanism, the haploid genomes of HAdV-Ds may have been reshuffled, resulting in chimeric genomes out of diversified repertoires in the HAdV-D population analogous to the MHC region reshuffled via crossing over in vertebrates. In addition, some HAdVs with chimeric genomes may have had the opportunity to avoid host immune responses thereby causing epidemics.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Kanako O Koyanagi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Koki Aoki
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Nobuyoshi Kitaichi
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Department of Ophthalmology, Health Sciences University of Hokkaido, Sapporo 002-8072, Japan
| | - Shigeaki Ohno
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hisatoshi Kaneko
- Department of Ophthalmology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Hobara Eye clinic, Date 960-0612, Japan
| | - Susumu Ishida
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hidemi Watanabe
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
| |
Collapse
|
36
|
Rockwood J, Mao D, Grogan DW. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications. MICROBIOLOGY-SGM 2013; 159:1888-1899. [PMID: 23832004 DOI: 10.1099/mic.0.067942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although homologous recombination (HR) is known to influence the structure, stability, and evolution of microbial genomes, few of its functional properties have been measured in cells of hyperthermophilic archaea. The present study manipulated various properties of the parental DNAs in high-resolution assays of Sulfolobus acidocaldarius transformation, and measured the impact on the efficiency and pattern of marker transfer to the recipient chromosome. The relative orientation of homologous sequences, the type and position of chromosomal mutation being replaced, and the length of DNA flanking the marked region all affected the efficiency, linkage, tract continuity, and other parameters of marker transfer. Effects predicted specifically by the classical reciprocal-exchange model of HR were not observed. One analysis observed only 90 % linkage between markers defined by adjacent bases; in another series of experiments, sequence divergence up to 4 % had no detectable impact on overall efficiency of HR or on the co-transfer of a distal non-selected marker. The effects of introducing DNA via conjugation, rather than transformation, were more difficult to assess, but appeared to increase co-transfer (i.e. linkage) of relatively distant non-selected markers. The results indicate that HR events between gene-sized duplex DNAs and the S. acidocaldarius chromosome typically involve neither crossing over nor interference from a mismatch-activated anti-recombination system. Instead, the donor DNA may anneal to a transient chromosomal gap, as in the mechanism proposed for oligonucleotide-mediated transformation of Sulfolobus and other micro-organisms.
Collapse
Affiliation(s)
- Jananie Rockwood
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| | - Dominic Mao
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| | - Dennis W Grogan
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| |
Collapse
|
37
|
Kung SH, Retchless AC, Kwan JY, Almeida RPP. Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 2013; 79:1712-7. [PMID: 23315739 PMCID: PMC3591940 DOI: 10.1128/aem.03525-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/02/2013] [Indexed: 11/20/2022] Open
Abstract
Horizontally transferred DNA acquired through transformation and recombination has the potential to contribute to the diversity and evolution of naturally competent bacteria. However, many different factors affect the efficiency with which DNA can be transformed and recombined. In this study, we determined how the size of both homologous and nonhomologous regions affects transformation and recombination efficiencies in Xylella fastidiosa, a naturally competent generalist pathogen responsible for many emerging plant diseases. Our experimental data indicate that 96 bp of flanking homology is sufficient to initiate recombination, with recombination efficiencies increasing exponentially with the size of the homologous flanking region up to 1 kb. Recombination efficiencies also decreased with the size of the nonhomologous insert, with no recombination detected when 6 kb of nonhomologous DNA was flanked on either side by 1 kb of homologous sequences. Upon analyzing sequenced X. fastidiosa subsp. fastidiosa genomes for evidence of allele conversion, we estimated the mean size of recombination events to be 1,906 bp, with each event modifying, on average, 1.79% of the nucleotides in the recombined region. There is increasing evidence that horizontally acquired genes significantly affect the genetic diversity of X. fastidiosa, and DNA acquired through natural transformation could be a prominent mode of this horizontal transfer.
Collapse
Affiliation(s)
| | - Adam C. Retchless
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Jessica Y. Kwan
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Rodrigo P. P. Almeida
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
38
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Bérard A, Chauveau A, Cuenca J, Costantino G, Kacar Y, Mu L, Garcia-Lor A, Froelicher Y, Aleza P, Boland A, Billot C, Navarro L, Luro F, Roose ML, Gmitter FG, Talon M, Brunel D. A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics 2012; 13:593. [PMID: 23126659 PMCID: PMC3546309 DOI: 10.1186/1471-2164-13-593] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a 'Mediterranean' mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. RESULTS Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between 'Mediterranean' mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. CONCLUSIONS A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the 'Mediterranean' mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents.
Collapse
|
40
|
Puchta H, Hohn B. In planta somatic homologous recombination assay revisited: a successful and versatile, but delicate tool. THE PLANT CELL 2012; 24:4324-31. [PMID: 23144182 PMCID: PMC3531836 DOI: 10.1105/tpc.112.101824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Marker-transgene-dependent lines of Arabidopsis thaliana measuring somatic homologous recombination (SHR) have been available for almost two decades. Here we discuss mechanisms of marker-gene restoration, comment on results obtained using the reporter lines, and stress how caution must be applied to avoid experimental problems or false interpretation in the use of SHR reporter lines. Although theoretically possible, we conclude that explanations other than SHR are unlikely to account for restoration of marker gene expression in the SHR lines when used with appropriate controls. We provide an overview of some of the most important achievements obtained with the SHR lines, give our view of the limitations of the system, and supply the reader with suggestions on the proper handling of the SHR lines. We are convinced that SHR lines are and will remain in the near future a valuable tool to explore the mechanism and influence of external and internal factors on genome stability and DNA repair in plants.
Collapse
Affiliation(s)
- Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | | |
Collapse
|
41
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
42
|
Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function. BMC Evol Biol 2011; 11:298. [PMID: 21988730 PMCID: PMC3214919 DOI: 10.1186/1471-2148-11-298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/12/2011] [Indexed: 11/30/2022] Open
Abstract
Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.
Collapse
|
43
|
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E. Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 2011; 28:1847-59. [PMID: 21220759 DOI: 10.1093/molbev/msr007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.
Collapse
|
44
|
Abstract
Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.
Collapse
|
45
|
Boyko A, Golubov A, Bilichak A, Kovalchuk I. Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1066-78. [PMID: 20385609 DOI: 10.1093/pcp/pcq048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Various environmental stresses influence plant genome stability. Most of these stresses, such as ionizing radiation, heavy metals and organic chemicals, represent potent DNA-damaging agents. Here, we show that exposure to NaCl, the stress that is not thought to cause direct DNA damage, results in an increase in the level of strand breaks and homologous recombination rates (RRs) in Arabidopsis thaliana plants. The effect of salt stress on the RR was found to be primarily associated with Cl(-) ions, since exposure of plants to Na(2)SO(4) did not increase the RR, whereas exposure to MgCl(2) resulted in an increase. Changes in the number of strand breaks and in the RR were also paralleled by transcriptional activation of AtRad51 and down-regulation of AtKu70. The progeny of exposed plants exhibited higher RRs, higher expression of AtRad51, lower expression of AtKu70, higher tolerance to salt and methyl methane sulfate (MMS) stresses, as well as a higher increase in RR upon further exposure to stress. Our experiments showed that NaCl is a genotoxic stress that leads to somatic and transgenerational changes in recombination rates, and these changes are primarily triggered by exposure to Cl(-) ions.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, 4401 University Drive, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | | | | |
Collapse
|
46
|
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. THE NEW PHYTOLOGIST 2010; 186:148-60. [PMID: 19968801 DOI: 10.1111/j.1469-8137.2009.03101.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Allopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH). We observed that parental satellite sequences redistribute around the genome in allopolyploids of Nicotiana section Polydicliae, formed c. 1 million yr ago (Mya), and that new satellite repeats evolved and amplified in section Repandae, which was formed c. 5 Mya. In some cases that process involved the complete replacement of parental satellite sequences. The rate of satellite repeat replacement is faster than theoretical predictions assuming the mechanism involved is unequal recombination and crossing-over. Instead we propose that this mechanism occurs with the deletion of large chromatin blocks and reamplification, perhaps via rolling circle replication.
Collapse
Affiliation(s)
- Blazena Koukalova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
47
|
Le Comber SC, Ainouche ML, Kovarik A, Leitch AR. Making a functional diploid: from polysomic to disomic inheritance. THE NEW PHYTOLOGIST 2010; 186:113-22. [PMID: 20028473 DOI: 10.1111/j.1469-8137.2009.03117.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
One little understood feature of polyploid speciation is the transition from polysomic to disomic inheritance, and much recent attention has focused on the role of pairing genes in this process. Using computer simulations we studied the effects of mutations, chromosomal inversions, chiasma, neofunctionalization, subfunctionalization and selection on the evolution of disomic inheritance in a polyploid over 10 000 generations. We show that: the evolution of pairing genes is not essential for the establishment of disomic inheritance, as genetic drift, coupled with a threshold for homologue pairing fidelity, is sufficient to explain the transition from polysomic to disomic inheritance; high rates of recombination increase the number of generations required for disomic inheritance to become established; both neofunctionalization and subfunctionalization speed up the transition to disomic inheritance. The data suggest that during polyploid species establishment, selection will favour reduced chiasma number and/or more focused distribution. The data also suggest a new role for subfunctionalization in that it can drive disomic inheritance. The evolution of subfunctionalization in genes across the genome will then act to maintain genes in syntenic blocks and may explain why such regions are so highly conserved.
Collapse
Affiliation(s)
- S C Le Comber
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, UK
| | | | | | | |
Collapse
|
48
|
Sjödin P, Bataillon T, Schierup MH. Insertion and deletion processes in recent human history. PLoS One 2010; 5:e8650. [PMID: 20098729 PMCID: PMC2808225 DOI: 10.1371/journal.pone.0008650] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/14/2009] [Indexed: 11/25/2022] Open
Abstract
Background Although insertions and deletions (indels) account for a sizable portion of genetic changes within and among species, they have received little attention because they are difficult to type, are alignment dependent and their underlying mutational process is poorly understood. A fundamental question in this respect is whether insertions and deletions are governed by similar or different processes and, if so, what these differences are. Methodology/Principal Findings We use published resequencing data from Seattle SNPs and NIEHS human polymorphism databases to construct a genomewide data set of short polymorphic insertions and deletions in the human genome (n = 6228). We contrast these patterns of polymorphism with insertions and deletions fixed in the same regions since the divergence of human and chimpanzee (n = 10546). The macaque genome is used to resolve all indels into insertions and deletions. We find that the ratio of deletions to insertions is greater within humans than between human and chimpanzee. Deletions segregate at lower frequency in humans, providing evidence for deletions being under stronger purifying selection than insertions. The insertion and deletion rates correlate with several genomic features and we find evidence that both insertions and deletions are associated with point mutations. Finally, we find no evidence for a direct effect of the local recombination rate on the insertion and deletion rate. Conclusions/Significance Our data strongly suggest that deletions are more deleterious than insertions but that insertions and deletions are otherwise generally governed by the same genomic factors.
Collapse
Affiliation(s)
- Per Sjödin
- Bioinformatics Research Center, C. F. Møllers Alle, Arhus, Denmark.
| | | | | |
Collapse
|
49
|
Castric V, Bechsgaard JS, Grenier S, Noureddine R, Schierup MH, Vekemans X. Molecular Evolution within and between Self-Incompatibility Specificities. Mol Biol Evol 2009; 27:11-20. [DOI: 10.1093/molbev/msp224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Inagaki S, Nakamura K, Morikami A. A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 2009; 5:e1000613. [PMID: 19696887 PMCID: PMC2721414 DOI: 10.1371/journal.pgen.1000613] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 07/24/2009] [Indexed: 12/28/2022] Open
Abstract
Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed. DNA replication, repair, and recombination are interrelated processes. Chromatin structure, into which DNA is packaged, is important for regulation of DNA replication, repair, and recombination, as well as gene transcription. After DNA replication and repair, chromatin status including its structure and modification has to be reproduced, and defects in these processes can alter gene expression program because of change in chromatin regulation. Our series of genetic analysis of tebichi (teb) mutant of model plant Arabidopsis thaliana suggest that TEB gene is involved in DNA replication and recombination. We also show here that TEB gene is required for correct expression of many genes including genes regulating development. From these results we propose that TEB gene function is important for maintenance of gene expression pattern after DNA replication and recombination. Furthermore, preferential upregulation of genes near highly duplicated transposons and tandemly arrayed homologous genes are observed in teb mutants, suggesting the interrelationship between homologous recombination and gene transcription around the repetitive sequences.
Collapse
Affiliation(s)
- Soichi Inagaki
- Laboratory of Biochemistry, Graduate School of Bio-agricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan.
| | | | | |
Collapse
|