1
|
Giedrojć W, Pluskota WE, Wachowska U. Fusarium graminearum in Wheat-Management Strategies in Central Europe. Pathogens 2025; 14:265. [PMID: 40137750 PMCID: PMC11945457 DOI: 10.3390/pathogens14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
The main aim of this study was to discuss and compare the threats associated with F. graminearum in wheat production in Poland and in other Central European countries. Wheat is one of the most widely cultivated crops in the world, and pathogens causing Fusarium head blight (FHB) pose the greatest threat to wheat production. Our knowledge of FHB has to be regularly expanded in order to explore the impacts of climate change, new wheat cultivars, and new fungicides on the prevalence of this disease. The pathogen's resistance to fungicides was analyzed in a global context due to the relative scarcity of studies examining this problem in Central Europe (excluding Germany). This is an interesting research perspective because, despite a relatively large number of Polish studies on FHB, F. graminearum genotypes and the pathogen's resistance to fungicides remain insufficiently investigated. The hemibiotrophic pathogen Fusarium graminearum causes particularly high losses in wheat cultivation due to its ability to produce mycotoxins that are dangerous to human health (mainly deoxynivalenol, DON), colonize plant residues in soil in the saprotrophic phase, and produce spores that infect the stem base and spikes throughout the growing season. The infection process is highly dynamic, and it is facilitated by DON. The synthesis of DON (trichothecene) is encoded by Tri genes located in four loci. In Poland, the F. graminearum population is mainly composed of the 15ADON genotype, and the spread of FHB cannot effectively be managed with fungicides during epidemic years. Dynamic gene flows in field populations enable the pathogen to rapidly adapt to environmental changes and overcome wheat resistance to FHB. The emergence of fungicide-resistant F. graminearum strains significantly compromises the quality of wheat crops, but the associated mechanisms have not been sufficiently investigated to date. In addition, although some biopreparations are promising and effective in small-scale field trials, very few have been commercialized. Extensive research into pathogen populations, the development of new resistant wheat varieties, and the use of effective fungicides and biopreparations are required to produce wheat grain that is free of mycotoxins.
Collapse
Affiliation(s)
- Weronika Giedrojć
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-722 Olsztyn, Poland;
| | - Wioletta E. Pluskota
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Michała Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-722 Olsztyn, Poland;
| |
Collapse
|
2
|
Lampar A, Farkas A, Ivanizs L, Szőke‐Pázsi K, Gaál E, Said M, Bartoš J, Doležel J, Korol A, Valárik M, Molnár I. A linkage map of Aegilops biuncialis reveals significant genomic rearrangements compared to bread wheat. THE PLANT GENOME 2025; 18:e70009. [PMID: 40008795 PMCID: PMC11863542 DOI: 10.1002/tpg2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Goatgrasses with U- and M-genomes are important sources of new alleles for wheat breeding to maintain yield and quality under extreme conditions. However, the introgression of beneficial traits from wild Aegilops species into wheat has been limited by poor knowledge of their genomes and scarcity of molecular tools. Here, we present the first linkage map of allotetraploid Aegilops biuncialis Vis., developed using 224 F2 individuals derived from a cross between MvGB382 and MvGB642 accessions. The map comprises 5663 DArTseq markers assigned to 15 linkage groups corresponding to 13 chromosomes. Chromosome 1Mb could not be constructed due to a lack of recombination caused by rearrangements in the MvGB382 accession. The genetic map spans 2518 cM with an average marker density of 2.79 cM. The skeleton map contains 920 segregating markers, divided between the Mb sub-genome (425 markers) and the Ub sub-genome (495 markers). Chromosomes of the Mb sub-genome, originating from Aegilops comosa Sm. in Sibth. et Sm., show well-preserved collinearity with Triticum aestivum L. chromosomes. In contrast, chromosomes of the Ub sub-genome, originating from Aegilops umbellulata Zhuk., exhibit a varying degree of collinearity, with 1Ub, 3Ub, and 5Ub retaining a substantial level of collinearity with Triticum aestivum, while 2Ub, 4Ub, 6Ub, and 7Ub show significant rearrangements. A quantitative trait locus affecting fertility was identified near the centromere on the long arm of chromosome 3Mb, explaining 23.5% of the variance. The genome structure of Aegilops biuncialis, highlighted by the genetic map, provides insights into the speciation within the species and will support alien gene transfer into wheat.
Collapse
Affiliation(s)
- Adam Lampar
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
- Department of Cell Biology and Genetics, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - András Farkas
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - Kitti Szőke‐Pázsi
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
- Field Crops Research InstituteAgricultural Research CentreGizaEgypt
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - Abraham Korol
- Institute of EvolutionUniversity of HaifaMount CarmelIsrael
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of Plant Structural and Functional GenomicsOlomoucCzech Republic
- Department of Biological Resources, Agricultural InstituteHUN‐REN Centre for Agricultural ResearchMartonvásárHungary
| |
Collapse
|
3
|
Neděla V, Tihlaříková E, Cápal P, Doležel J. Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state. Sci Rep 2024; 14:12998. [PMID: 38844535 PMCID: PMC11156959 DOI: 10.1038/s41598-024-63515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.
Collapse
Affiliation(s)
- Vilém Neděla
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno, 612 00, Czech Republic.
| | - Eva Tihlaříková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno, 612 00, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, Olomouc, 772 00, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, Olomouc, 772 00, Czech Republic
| |
Collapse
|
4
|
Li Y, Wei ZZ, Sela H, Govta L, Klymiuk V, Roychowdhury R, Chawla HS, Ens J, Wiebe K, Bocharova V, Ben-David R, Pawar PB, Zhang Y, Jaiwar S, Molnár I, Doležel J, Coaker G, Pozniak CJ, Fahima T. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. PLANT COMMUNICATIONS 2024; 5:100646. [PMID: 37415333 PMCID: PMC10811346 DOI: 10.1016/j.xplc.2023.100646] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.
Collapse
Affiliation(s)
- Yinghui Li
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Zhen-Zhen Wei
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hanan Sela
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Liubov Govta
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Rajib Roychowdhury
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Harmeet Singh Chawla
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Valeria Bocharova
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Roi Ben-David
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO) - Volcani Center, Rishon Lezion 7505101, Israel
| | - Prerna B Pawar
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Yuqi Zhang
- Department of Crop Genomics and Bioinformatics, China Agricultural University, Beijing 100094, China
| | - Samidha Jaiwar
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Gitta Coaker
- Plant Pathology Department, University of California, Davis, Davis, CA 95616, USA
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
| |
Collapse
|
5
|
Bouteraa MT, Ben Romdhane W, Ben Hsouna A, Amor F, Ebel C, Ben Saad R. Genome-wide characterization and expression profiling of GASA gene family in Triticum turgidum ssp. durum (desf.) husn. (Durum wheat) unveils its involvement in environmental stress responses. PHYTOCHEMISTRY 2023; 206:113544. [PMID: 36464102 DOI: 10.1016/j.phytochem.2022.113544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Family members within the plant-specific gibberellic acid-stimulated Arabidopsis (GASA) gene serve a crucial role in plant growth and development, particularly in flower induction and seed development. Through a genome-wide analysis of Triticum turgidum ssp. Durum (durum wheat), we identified 19 GASA genes, designated as TdGASA1‒19. Moreover, the chromosomal locations, exon-intron distribution and the physiochemical properties of these genes were determined and the subcellular localization of their encoded proteins was estimated. Analyses of their domain structure, motif arrangements, and phylogeny revealed four distinct groups that share a conserved GASA domain. Additionally, a real-time q-PCR analysis revealed differential expression patterns of TdGASA genes in various tissues (including leaves, roots, stems, and seeds) and in response to salinity, osmotic stress, and treatment with exogenous phytohormones (abscisic and gibberellic acid), implying that these genes may play a role in the growth, development, and stress responses of Triticum turgidum. Heterologous expression of TdGASA1, TdGASA4, TdGASA14, and TdGASA19 in Saccharomyces cerevisiae improved its tolerance to salt, osmotic, oxidative, and heat stresses, which suggests the involvement of these genes in abiotic stress tolerance mechanisms. The present study is the first to identify and analyze the expression profile of T. turgidum GASA genes, therefore offering novel insights for their further functional characterization, which may serve as a novel resource for molecular breeding of durum wheat.
Collapse
Affiliation(s)
- Mohamed Taieb Bouteraa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia; University of Carthage, Faculty of Sciences of Bizerte UR13ES47, BP W, 7021 Jarzouna, Bizerte, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia; Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5100, Mahdia, Tunisia
| | - Fatma Amor
- Plant Physiology and Functional Genomics Unit; Institute of Biotechnology, University of Sfax, BP B1175, 3038, Sfax, Tunisia
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Unit; Institute of Biotechnology, University of Sfax, BP B1175, 3038, Sfax, Tunisia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
6
|
Said M, Cápal P, Farkas A, Gaál E, Ivanizs L, Friebe B, Doležel J, Molnár I. Flow karyotyping of wheat- Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1017958. [PMID: 36262648 PMCID: PMC9575658 DOI: 10.3389/fpls.2022.1017958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/13/2023]
Abstract
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| |
Collapse
|
7
|
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022; 13:1607. [PMID: 35338132 PMCID: PMC8956640 DOI: 10.1038/s41467-022-29132-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance. Aegilops sharonensis is a wild diploid relative of wheat. Here, the authors assemble the genome of Ae. sharonensis and use the assembly as an aid to clone the Ae. sharonensis-derived stem rust resistance gene Sr62 in the allohexaploid genome of wheat.
Collapse
|
8
|
Said M, Holušová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele MM, Kalapos B, Bartoš J, Friebe B, Doležel J, Molnár I. Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. FRONTIERS IN PLANT SCIENCE 2021; 12:689031. [PMID: 34211490 PMCID: PMC8240756 DOI: 10.3389/fpls.2021.689031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/31/2023]
Abstract
Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Research Centre, Field Crops Research Institute, Cairo, Egypt
| | - Katerina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - László Ivanizs
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Eszter Gaál
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Michael Abrouk
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mihaela M. Martis-Thiele
- NBIS (National Bioinformatics Infrastructure Sweden, Science for Life Laboratory), Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Balázs Kalapos
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- ELKH Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
| |
Collapse
|
9
|
Doležel J, Lucretti S, Molnár I, Cápal P, Giorgi D. Chromosome analysis and sorting. Cytometry A 2021; 99:328-342. [PMID: 33615737 PMCID: PMC8048479 DOI: 10.1002/cyto.a.24324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Sergio Lucretti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Debora Giorgi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| |
Collapse
|
10
|
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv 2020; 46:107659. [PMID: 33259907 DOI: 10.1016/j.biotechadv.2020.107659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| |
Collapse
|
11
|
Feng Z, Zhang M, Liu X, Liang D, Liu X, Hao M, Liu D, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L. FISH karyotype comparison between A b- and A-genome chromosomes using oligonucleotide probes. J Appl Genet 2020; 61:313-322. [PMID: 32248406 DOI: 10.1007/s13353-020-00555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023]
Abstract
Triticum boeoticum (2n = 2x = 14, AbAb) contains beneficial traits for common wheat improvement. The discrimination of Ab-genome chromosomes from A-genome chromosomes is an important step in gene transfer from T. boeoticum to common wheat. In this study, fluorescence in situ hybridization (FISH) analysis using nine oligonucleotide probes revealed high divergence between chromosomes of the common wheat germplasm Crocus and T. boeoticum accession G52. The combination of Oligo-pTa535-HM and Oligo-pSc119.2-HM can differentiate Ab and A chromosomes within homologous groups 2, 4, 5, and 6; chromosomes 2Ab and 6Ab can be identified by using (ACT)7, (CTT)7, and (GAA)7. The probes Oligo-pTa713 and (ACT)7 can be utilized for the identification of chromosomes 1Ab and 3Ab, respectively. Probes (CAG)7 and (CAC)7 can be applied in the identification of 7Ab. Moreover, probe combinations consisting of Oligo-pTa535-HM and (AAC)7 with (ACT)7 or (CTT)7 and of Oligo-pTa535-HM and Oligo-pTa713 with (CAC)7 or (CTT)7 will help discriminate the Ab-genome chromosomes of T. boeoticum. These probes are being used as potential markers to select common wheat Crocus-T. boeoticum G52 alien chromosome lines. Moreover, FISH patterns are highly divergent between Ab- and A-genome chromosomes, indicating that obvious chromosome structural variations arose during wheat evolution.
Collapse
Affiliation(s)
- Zhen Feng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dongyu Liang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaojuan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China. .,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
12
|
Kurkiev KU, Adonina IG, Gadjimagomedova MK, Shchukina LV, Pshenichnikova TA. Biological and economic characteristics of the allotetraploid with genomic formula DDAuAu from the cereal family. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- K. U. Kurkiev
- Dagestan Experimental Station – Department of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | - M. Kh. Gadjimagomedova
- Dagestan Experimental Station – Department of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | | | |
Collapse
|
13
|
Said M, Kubaláková M, Karafiátová M, Molnár I, Doležel J, Vrána J. Dissecting the Complex Genome of Crested Wheatgrass by Chromosome Flow Sorting. THE PLANT GENOME 2019; 12:180096. [PMID: 31290923 DOI: 10.3835/plantgenome2018.12.0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheatgrass (Agropyron sp.) is a potential source of beneficial traits for wheat improvement. Among them, crested wheatgrass [A. cristatum (L.) Gaertn.] comprises a complex of diploid, tetraploid, and hexaploid forms with the basic genome P, with some accessions carrying supernumerary B chromosomes (Bs). In this work, we applied flow cytometry to dissect the complex genome of crested wheatgrass into individual chromosomes to facilitate its analysis. Flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained mitotic chromosomes of diploid and tetraploid accessions consisted of three peaks, each corresponding to a group of two or three chromosomes. To improve the resolution, bivariate flow karyotyping after fluorescent labeling of chromosomes with fluorescein isothiocyanate (FITC)-conjugated probe (GAA) microsatellite was applied and allowed discrimination and sorting of P genome chromosomes from wheat-crested wheatgrass addition lines. Chromosomes 1P-6P and seven telomeric chromosomes could be sorted at purities ranging from 81.7 to 98.2% in disomics and from 44.8 to 87.3% in telosomics. Chromosome 7P was sorted at purities reaching 50.0 and 39.5% in diploid and tetraploid crested wheatgrass, respectively. In addition to the whole complement chromosomes (A), Bs could be easily discriminated and sorted from a diploid accession at 95.4% purity. The sorted chromosomes will streamline genome analysis of crested wheatgrass, facilitating gene cloning and development of molecular tools to support alien introgression into wheat.
Collapse
|
14
|
Du P, Cui C, Liu H, Fu L, Li L, Dai X, Qin L, Wang S, Han S, Xu J, Liu B, Huang B, Tang F, Dong W, Qi Z, Zhang X. Development of an oligonucleotide dye solution facilitates high throughput and cost-efficient chromosome identification in peanut. PLANT METHODS 2019; 15:69. [PMID: 31316581 PMCID: PMC6613257 DOI: 10.1186/s13007-019-0451-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Development of oligonucleotide probes facilitates chromosome identification via fluorescence in situ hybridization (FISH) in many organisms. RESULTS We report a high throughput and economical method of chromosome identification based on the development of a dye solution containing 2 × saline-sodium citrate (SSC) and oligonucleotide probes. Based on the concentration, staining time, and sequence effects of oligonucleotides, an efficient probe dye of peanut was developed for chromosome identification. To validate the effects of this solution, 200 slides derived from 21 accessions of the cultivated peanut and 30 wild Arachis species were painted to identify Arachis genomes and establish karyotypes. The results showed that one jar of dye could be used to paint 10 chromosome preparations and recycled at least 10 times to efficiently dye more than 100 slides. The A, B, K, F, E, and H genomes showed unique staining karyotype patterns and signal colors. CONCLUSIONS Based on the karyotype patterns of Arachis genomes, we revealed the relationships among the A, B, K, F, E, and H genomes in genus Arachis, and demonstrated the potential for adoption of this oligonucleotide dye solution in practice.
Collapse
Affiliation(s)
- Pei Du
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Caihong Cui
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Hua Liu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Liuyang Fu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Lina Li
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Xiaodong Dai
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Li Qin
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Siyu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Suoyi Han
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Jing Xu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Bing Liu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Bingyan Huang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Fengshou Tang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Wenzhao Dong
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinyou Zhang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002 Henan China
| |
Collapse
|
15
|
MicroRNAs in durum wheat seedlings under chronic and short-term nitrogen stress. Funct Integr Genomics 2018; 18:645-657. [PMID: 29948458 DOI: 10.1007/s10142-018-0619-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Nitrogen is an essential macronutrient for plant growth and reproduction. In durum wheat, an appropriate nitrogen soil availability is essential for an optimal seed development. miRNAs contribute to the environmental change adaptation of plants through the regulation of important genes involved in stress processes. In this work, nitrogen stress response was evaluated in durum wheat seedlings of Ciccio and Svevo cultivars. Eight small RNA libraries from leaves and roots of chronically stressed plants were sequenced to detect conserved and novel miRNAs. A total of 294 miRNAs were identified, 7 of which were described here for the first time. The expression level of selected miRNAs and target genes was analyzed by qPCR in seedlings subjected to chronic (Ciccio and Svevo, leaves and roots) or short-term (Svevo roots) stress conditions. Some miRNAs showed an immediate stress response, and their level of expression was either maintained or returned to a basal level during a long-term stress. Other miRNAs showed a gradual up- or downregulation during the short-term stress. The newly identified miRNA ttu-novel-106 showed an immediate strongly downregulation after nitrogen stress, which was negatively correlated with the expression of MYB-A, its putative target gene. PHO2 gene was significantly upregulated after 24-48-h stress, corresponding to a downregulation of miR399b. Ttu-miR399b putative binding sites in the 5' UTR region of the Svevo PHO2 gene were identified in the A and B genomes. Both MYB-A and PHO2 genes were validated for their cleavage site using 5' RACE assay.
Collapse
|
16
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
17
|
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:452-467. [PMID: 27402341 DOI: 10.1111/tpj.13266] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/09/2023]
Abstract
Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC-labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat-Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
18
|
Vrána J, Cápal P, Šimková H, Karafiátová M, Čížková J, Doležel J. Flow Analysis and Sorting of Plant Chromosomes. CURRENT PROTOCOLS IN CYTOMETRY 2016; 78:5.3.1-5.3.43. [PMID: 27723090 DOI: 10.1002/cpcy.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Analysis and sorting of plant chromosomes (plant flow cytogenetics) is a special application of flow cytometry in plant genomics and its success depends critically on sample quality. This unit describes the methodology in a stepwise manner, starting with the induction of cell cycle synchrony and accumulation of dividing cells in mitotic metaphase, and continues with the preparation of suspensions of intact mitotic chromosomes, flow analysis and sorting of chromosomes, and finally processing of the sorted chromosomes. Each step of the protocol is described in detail as some procedures have not been used widely. Supporting histograms are presented as well as hints on dealing with plant material; the utility of sorted chromosomes for plant genomics is also discussed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
19
|
Cytomolecular discrimination of the A m chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats. J Appl Genet 2016. [PMID: 27468932 DOI: 10.1007/s13353‐016‐0361‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The cytomolecular discrimination of the Am- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the Am and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the Am and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6Am and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2Am and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3Am and 3A. Chromosomes 7Am and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the Am chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.
Collapse
|
20
|
Cytomolecular discrimination of the A m chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats. J Appl Genet 2016; 58:67-70. [PMID: 27468932 DOI: 10.1007/s13353-016-0361-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
The cytomolecular discrimination of the Am- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the Am and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the Am and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6Am and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2Am and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3Am and 3A. Chromosomes 7Am and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the Am chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.
Collapse
|
21
|
Kwiatek M, Majka M, Majka J, Belter J, Suchowilska E, Wachowska U, Wiwart M, Wiśniewska H. Intraspecific Polymorphisms of Cytogenetic Markers Mapped on Chromosomes of Triticum polonicum L. PLoS One 2016; 11:e0158883. [PMID: 27391447 PMCID: PMC4938433 DOI: 10.1371/journal.pone.0158883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 01/23/2023] Open
Abstract
Triticum genus encloses several tetraploid species that are used as genetic stocks for expanding the genetic variability of wheat (Triticum aestivum L.). Although the T. aestivum (2n = 6x = 42, AABBDD) and T. durum (2n = 4x = 28, AABB) karyotypes were well examined by chromosome staining, Giemsa C-banding and FISH markers, other tetraploids are still poorly characterized. Here, we established and compared the fluorescence in situ hybridization (FISH) patterns on chromosomes of 20 accessions of T. polonicum species using different repetitive sequences from BAC library of wheat ‘Chinese Spring’. The chromosome patterns of Polish wheat were compared to tetraploid (2n = 4x = 28, AABB) Triticum species: T. durum, T. diccocon and T. turanicum, as well. A combination of pTa-86, pTa-535 and pTa-713 probes was the most informative among 6 DNA probes tested. Probe pTa-k374, which is similar to 28S rDNA sequence enabled to distinguish signal size and location differences, as well as rDNA loci elimination. Furthermore, pTa-465 and pTa-k566 probes are helpful for the detection of similar organized chromosomes. The polymorphisms of signals distribution were observed in 2A, 2B, 3B, 5B, 6A and 7B chromosomes. Telomeric region of the short arm of 6B chromosome was the most polymorphic. Our work is novel and contributes to the understanding of T. polonicum genome organization which is essential to develop successful advanced breeding strategies for wheat. Collection and characterization of this germplasm can contribute to the wheat biodiversity safeguard.
Collapse
Affiliation(s)
- Michał Kwiatek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- * E-mail:
| | - Maciej Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Joanna Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Jolanta Belter
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Elżbieta Suchowilska
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10–727 Olsztyn, Poland
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10–727 Olsztyn, Poland
| | - Marian Wiwart
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10–727 Olsztyn, Poland
| | - Halina Wiśniewska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| |
Collapse
|
22
|
Abstract
Nuclear genomes of many important plant species are tremendously complicated to map and sequence. The ability to isolate single chromosomes, which represent small units of nuclear genome, is priceless in many areas of plant research including cytogenetics, genomics, and proteomics. Flow cytometry is the only technique which can provide large quantities of pure chromosome fractions suitable for downstream applications including physical mapping, preparation of chromosome-specific BAC libraries, sequencing, and optical mapping. Here, we describe step-by-step procedure of preparation of liquid suspensions of intact mitotic metaphase chromosomes and their flow cytometric analysis and sorting.
Collapse
Affiliation(s)
- Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Jarmila Číhalíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| |
Collapse
|
23
|
Cápal P, Endo TR, Vrána J, Kubaláková M, Karafiátová M, Komínková E, Mora-Ramírez I, Weschke W, Doležel J. The utility of flow sorting to identify chromosomes carrying a single copy transgene in wheat. PLANT METHODS 2016; 12:24. [PMID: 27118986 PMCID: PMC4845436 DOI: 10.1186/s13007-016-0124-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/19/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Identification of transgene insertion sites in plant genomes has practical implications for crop breeding and is a stepping stone to analyze transgene function. However, single copy sequences are not always easy to localize in large plant genomes by standard approaches. RESULTS We employed flow cytometric chromosome sorting to determine chromosomal location of barley sucrose transporter construct in three transgenic lines of common wheat. Flow-sorted chromosomes were used as template for PCR and fluorescence in situ hybridization to identify chromosomes with transgenes. The chromosomes carrying the transgenes were then confirmed by PCR using DNA amplified from single flow-sorted chromosomes as template. CONCLUSIONS Insertion sites of the transgene were unambiguously localized to chromosomes 4A, 7A and 5D in three wheat transgenic lines. The procedure presented in this study is applicable for localization of any single-copy sequence not only in wheat, but in any plant species where suspension of intact mitotic chromosomes suitable for flow cytometric sorting can be prepared.
Collapse
Affiliation(s)
- Petr Cápal
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Takashi R. Endo
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
- />Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194 Japan
| | - Jan Vrána
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Marie Kubaláková
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Miroslava Karafiátová
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Eva Komínková
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Isabel Mora-Ramírez
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Winfriede Weschke
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Jaroslav Doležel
- />Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| |
Collapse
|
24
|
Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma 2015; 125:163-72. [DOI: 10.1007/s00412-015-0537-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
25
|
Molnár I, Vrána J, Farkas A, Kubaláková M, Cseh A, Molnár-Láng M, Doležel J. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization. ANNALS OF BOTANY 2015; 116:189-200. [PMID: 26043745 PMCID: PMC4512188 DOI: 10.1093/aob/mcv073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. METHODS The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. KEY RESULTS FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. CONCLUSIONS The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Jan Vrána
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Marie Kubaláková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary and
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
26
|
Badaeva ED, Amosova AV, Goncharov NP, Macas J, Ruban AS, Grechishnikova IV, Zoshchuk SA, Houben A. A Set of Cytogenetic Markers Allows the Precise Identification of All A-Genome Chromosomes in Diploid and Polyploid Wheat. Cytogenet Genome Res 2015; 146:71-9. [PMID: 26160023 DOI: 10.1159/000433458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Karyotypes of 3 diploid wheat species containing different variants of the A-genome, Triticum boeoticum (A(b)), T. monococcum (A(b)), and T. urartu (A(u)), were examined using C-banding and FISH with DNA probes representing 5S and 45S rDNA families, the microsatellite sequences GAAn and GTTn, the already known satellite sequences pSc119.2, Spelt52, Fat, pAs1, and pTa535, and a newly identified repeat called Aesp_SAT86. The C-banding patterns of the 3 species in general were similar; differences were observed in chromosomes 4A and 6A. Besides 2 major 45S rDNA loci on chromosomes 1A and 5A, 2 minor polymorphic NORs were observed in the terminal part of 5AL and in the distal part of 6AS in all species. An additional minor locus was found in the distal part of 7A(b)L of T. boeoticum and T. monococcum, but not in T. urartu. Two 5S rDNA loci were observed in 1AS and 5AS. The pTa535 probe displayed species- and chromosome-specific hybridization patterns, allowing complete chromosome identification and species discrimination. The distribution of pTa535 on the A(u)-genome chromosomes was more similar to that on the A-genome chromosomes of T. dicoccoides and T. araraticum, thus confirming the origin of these genomes from T. urartu. The probe pAs1 allowed the identification of 4 chromosomes of T. urartu and 2 of T. boeoticum or T. monococcum. The Aesp_SAT86-derived patterns were polymorphic; main clusters were observed on chromosomes 1A(u )and 3A(u) of T. urartu and chromosomes 3A(b) and 6A(b) of T. boeoticum. Thus, a set of probes, pTa535, pAs1, GAAn and GTTn, pTa71, pTa794, and Aesp_SAT86, proved to be most informative for the analysis of A-genomes in diploid and polyploid wheat species.
Collapse
Affiliation(s)
- Ekaterina D Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Garbus I, Romero JR, Valarik M, Vanžurová H, Karafiátová M, Cáccamo M, Doležel J, Tranquilli G, Helguera M, Echenique V. Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics 2015; 16:375. [PMID: 25962417 PMCID: PMC4440537 DOI: 10.1186/s12864-015-1579-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Background The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). Results Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. Conclusion The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ingrid Garbus
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - José R Romero
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Miroslav Valarik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Hana Vanžurová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Mario Cáccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Gabriela Tranquilli
- Instituto Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Marcelo Helguera
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina.
| | - Viviana Echenique
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
28
|
Burešová V, Kopecký D, Bartoš J, Martinek P, Watanabe N, Vyhnánek T, Doležel J. Variation in genome composition of blue-aleurone wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:273-82. [PMID: 25399318 DOI: 10.1007/s00122-014-2427-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/08/2014] [Indexed: 05/08/2023]
Abstract
Different blue-aleurone wheats display major differences in chromosome composition, ranging from disomic chromosome additions, substitutions, single chromosome arm introgressions and chromosome translocation of Thinopyrum ponticum. Anthocyanins are of great importance for human health due to their antioxidant, anti-inflammatory, anti-microbial and anti-cancerogenic potential. In common wheat (Triticum aestivum L.) their content is low. However, elite lines with blue aleurone exhibit significantly increased levels of anthocyanins. These lines carry introgressed chromatin from wild relatives of wheat such as Thinopyrum ponticum and Triticum monococcum. The aim of our study was to characterize genomic constitutions of wheat lines with blue aleurone using genomic and fluorescence in situ hybridization. We used total genomic DNA of Th. ponticum and two repetitive DNA sequences (GAA repeat and the Afa family) as probes to identify individual chromosomes. This enabled precise localization of introgressed Th. ponticum chromatin. Our results revealed large variation in chromosome constitutions of the blue-aleurone wheats. Of 26 analyzed lines, 17 carried an introgression from Th. ponticum; the remaining nine lines presumably carry T. monococcum chromatin undetectable by the methods employed. Of the Th. ponticum introgressions, six different types were present, ranging from a ditelosomic addition (cv. Blue Norco) to a disomic substitution (cv. Blue Baart), substitution of complete (homologous) chromosome arms (line UC66049) and various translocations of distal parts of a chromosome arm(s). Different types of introgressions present support a hypothesis that the introgressions activate the blue aleurone trait present, but inactivated, in common wheat germplasm.
Collapse
Affiliation(s)
- Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Molnár I, Kubaláková M, Šimková H, Farkas A, Cseh A, Megyeri M, Vrána J, Molnár-Láng M, Doležel J. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1091-104. [PMID: 24553964 DOI: 10.1007/s00122-014-2282-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/03/2014] [Indexed: 05/10/2023]
Abstract
Chromosomes 5A (u) , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (A(u)A(u)), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5A(u), 5S and 5D could be sorted with purities of 78-90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1-7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS. SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 2014; 15:273. [PMID: 24716476 PMCID: PMC4051138 DOI: 10.1186/1471-2164-15-273] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop breeding programs and further enable mapping and cloning novel genes from the wild relatives of crop plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
31
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
32
|
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, Spielmeyer W, Šimková H, Šafář J, Cattonaro F, Scalabrin S, Magni F, Vautrin S, Bergès H, Paux E, Fahima T, Doležel J, Korol A, Feuillet C, Keller B. A physical map of the short arm of wheat chromosome 1A. PLoS One 2013; 8:e80272. [PMID: 24278269 PMCID: PMC3836966 DOI: 10.1371/journal.pone.0080272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
Collapse
Affiliation(s)
- James Breen
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Isabelle Bertin
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Romain Philippe
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | | | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | - Etienne Paux
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Catherine Feuillet
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Berkman PJ, Visendi P, Lee HC, Stiller J, Manoli S, Lorenc MT, Lai K, Batley J, Fleury D, Simková H, Kubaláková M, Weining S, Doležel J, Edwards D. Dispersion and domestication shaped the genome of bread wheat. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:564-71. [PMID: 23346876 DOI: 10.1111/pbi.12044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 05/20/2023]
Abstract
Despite the international significance of wheat, its large and complex genome hinders genome sequencing efforts. To assess the impact of selection on this genome, we have assembled genomic regions representing genes for chromosomes 7A, 7B and 7D. We demonstrate that the dispersion of wheat to new environments has shaped the modern wheat genome. Most genes are conserved between the three homoeologous chromosomes. We found differential gene loss that supports current theories on the evolution of wheat, with greater loss observed in the A and B genomes compared with the D. Analysis of intervarietal polymorphisms identified fewer polymorphisms in the D genome, supporting the hypothesis of early gene flow between the tetraploid and hexaploid. The enrichment for genes on the D genome that confer environmental adaptation may be associated with dispersion following wheat domestication. Our results demonstrate the value of applying next-generation sequencing technologies to assemble gene-rich regions of complex genomes and investigate polyploid genome evolution. We anticipate the genome-wide application of this reduced-complexity syntenic assembly approach will accelerate crop improvement efforts not only in wheat, but also in other polyploid crops of significance.
Collapse
Affiliation(s)
- Paul J Berkman
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 2013; 8:e57994. [PMID: 23469124 PMCID: PMC3585268 DOI: 10.1371/journal.pone.0057994] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/29/2013] [Indexed: 11/23/2022] Open
Abstract
The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic aberrations.
Collapse
Affiliation(s)
- Debora Giorgi
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| | - Anna Farina
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| | - Valentina Grosso
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| | - Andrea Gennaro
- DAFNE – Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Carla Ceoloni
- DAFNE – Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Sergio Lucretti
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| |
Collapse
|
35
|
Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S. Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One 2012; 7:e50151. [PMID: 23185561 PMCID: PMC3502404 DOI: 10.1371/journal.pone.0050151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
Dasypyrum villosum (L.) Candargy (sin. Haynaldia villosa) is an annual wild diploid grass species (2n = 2x = 14; genome VV) belonging to the Poaceae family, which is considered to be an important source of biotic and abiotic stress resistance genes for wheat breeding. Enhanced characterization of D. villosum chromosomes can facilitate exploitation of its gene pool and its use in wheat breeding programs. Here we present the cytogenetic identification of D. villosum chromosomes on slide by fluorescent in situ hybridization (FISH), with the GAA simple sequence repeat (SSR) as a probe. We also describe the isolation and the flow cytometric analysis of D. villosum chromosomes in suspension, resulting in a distinguished flow karyotype. Chromosomes were flow sorted into three fractions, according their DNA content, one of which was composed of a single type of chromosome, namely 6 V, sorted with over 85% purity. Chromosome 6 V is known to carry genes to code for important resistance and seed storage characteristics, and its isolation represents a new source of genetic traits and specific markers useful for wheat improvement.
Collapse
Affiliation(s)
| | | | - Andrea Gennaro
- Department of Agriculture, Forestry, Nature and Energy - DAFNE, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
36
|
Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U. Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genomics 2012; 13:492. [PMID: 22989011 PMCID: PMC3505470 DOI: 10.1186/1471-2164-13-492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023] Open
Abstract
Background Bread wheat is one of the world’s most important food crops and considerable efforts have been made to develop genomic resources for this species. This includes an on-going project by the International Wheat Genome Sequencing Consortium to assemble its large and complex genome, which is hexaploid and contains three closely related ‘homoeologous’ copies for each chromosome. This multi-national effort avoids the complications polyploidy entails for correct assembly of the genome by sequencing flow-sorted chromosome arms one at a time. Here we report on an alternate approach, a direct homoeolog-specific assembly of the expressed portion of the genome, the transcriptome. Results After assessment of the ability of various assemblers to generate homoeolog-specific assemblies, we employed a two-stage assembly process to produce a high-quality assembly of the transcriptome of hexaploid wheat from Roche-454 and Illumina GAIIx paired-end sequence reads. The assembly process made use of a rapid partitioning of expressed sequences into homoeologous clusters, followed by a parallel high-fidelity assembly of each cluster on a 1150-processor compute cloud. We assessed assembly quality through comparison to known wheat gene sequences and found that in ca. 98.5% of cases the assembly was sufficiently accurate for homoeologous triplets to be cleanly separated into either two or three separate contigs. Comparison to publicly available transcript collections suggests that the assembly covers ~75-80% of the complete transcriptome. Conclusions This work therefore describes the first homoeolog-specific sequence assembly of the wheat transcriptome and provides a reference transcriptome for future wheat research. Furthermore, our assembly methodology is transferable to other polyploid organisms.
Collapse
Affiliation(s)
- Andreas W Schreiber
- Australian Centre for Plant Functional Genomics, Univ. of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 2012; 12:397-416. [PMID: 22895700 PMCID: PMC3431466 DOI: 10.1007/s10142-012-0293-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022]
Abstract
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
38
|
Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J. Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS One 2011; 6:e27708. [PMID: 22132127 PMCID: PMC3223179 DOI: 10.1371/journal.pone.0027708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/22/2011] [Indexed: 01/20/2023] Open
Abstract
This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - András Cseh
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| |
Collapse
|
39
|
Zatloukalová P, Hřibová E, Kubaláková M, Suchánková P, Simková H, Adoración C, Kahl G, Millán T, Doležel J. Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 2011; 19:729-39. [PMID: 21947955 DOI: 10.1007/s10577-011-9235-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022]
Abstract
Cultivated chickpea is the third most important legume after field bean and garden pea worldwide. Despite considerable breeding towards improved yield and resistance to biotic and abiotic stresses, the production of chickpea remained stagnant, but molecular tools are expected to increase the impact of current improvement programs. As a first step towards this goal, various genetic linkage maps have been established and markers linked to resistance genes been identified. However, until now, only one linkage group (LG) has been assigned to a specific chromosome. In the present work, mitotic chromosomes were sorted using flow cytometry and used as template for PCR with primers designed for genomic regions flanking microsatellites. These primers amplify sequence-tagged microsatellite site markers. This approach confirmed the assignment of LG8 to the smallest chromosome H. For the first time, LG5 was linked to the largest chromosome A, LG4 to a medium-sized chromosome E, while LG3 was anchored to the second largest chromosome B. Chromosomes C and D could not be flow-sorted separately and were jointly associated to LG6 and LG7. By the same token, chromosomes F and G were anchored to LG1 and LG2. To establish a set of preferably diagnostic cytogenetic markers, the genomic distribution of various probes was verified using FISH. Moreover, a partial genomic bacterial artificial chromosome (BAC) library was constructed and putative single/low-copy BAC clones were mapped cytogenetically. As a result, two clones were identified localizing specifically to chromosomes E and H, for which no cytogenetic markers were yet available.
Collapse
Affiliation(s)
- Pavlína Zatloukalová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovská 6, 77200 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M. Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Genet 2011; 52:269-77. [PMID: 21404041 DOI: 10.1007/s13353-011-0037-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/26/2011] [Indexed: 11/26/2022]
Abstract
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one J(S) pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.
Collapse
Affiliation(s)
- Mariyana Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
41
|
Xiao J, Jia X, Wang H, Zhao R, Fang Y, Gao R, Wu Z, Cao A, Wang J, Xue Z, Zhao W, Kang J, Chen Q, Chen P, Wang X. A fast-neutron induced chromosome fragment deletion of 3BS in wheat landrace Wangshuibai increased its susceptibility to Fusarium head blight. Chromosome Res 2011; 19:225-34. [PMID: 21331795 DOI: 10.1007/s10577-011-9192-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
Fusarium head blight (FHB), also called wheat scab, is an important disease in warm and humid regions worldwide, which not only reduces crop yield and grain quality, but also is a major safety concern in food and feed production due to mycotoxin contamination. Growing wheat cultivars with FHB resistance is one of the most economical and effective means to control the disease. Chinese wheat landrace Wangshuibai is an important resistant source from southern China. Several resistance QTLs in Wangshuibai were identified and mapped on chromosomes or chromosomal arms including 3BS, 4B, 6BS, 7AL, etc. In the present research, a mutant with increased FHB susceptibility, designated as NAUH117, was identified from the M(1) progenies of Wangshuibai irradiated by fast neutron. Genetic analysis of the F (1), F (2), and F (2:3) families from the reciprocal cross of Wangshuibai and NAUH117 indicated that NAUH117 was a recessive mutant. Genome-wide molecular marker analysis identified a deletion in the short arm of chromosome 3B of NAUH117, spanning the region of FL0.57 to FL1.00 that covers the locus of Fhb1 previously mapped on chromosome 3BS. Further molecular cytogenetics characterization by bi-color fluorescence in situ hybridization using three repetitive sequences, pSc119.2, pAs1 and GAA-satellite indicated that a multiple chromosome rearrangements occurred in chromosomes 3B, 6B, 3D, 4D, and 3A of the mutant. During these processes, a distal fragment of chromosome arm 3BS was eliminated, which is confirmed by molecular marker analysis. Four markers covered the deletion fragment were used for analysis of the F (2) population. The result showed that the 3BS deletion was only present in the susceptible plants, indicating that the deletion of 3BS fragment in NAUH117 increased susceptibility to FHB. The susceptible mutant will be valuable for the validation of the contribution of the resistant QTL located on 3BS, and for the characterization of the molecular mechanisms of FHB resistance in Wangshuibai.
Collapse
Affiliation(s)
- Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. ANNALS OF BOTANY 2011; 107:65-76. [PMID: 21036694 PMCID: PMC3002473 DOI: 10.1093/aob/mcq215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/16/2010] [Accepted: 09/21/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. METHODS The chromosomal localization of (ACG)(n) and (GAA)(n) microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. KEY RESULTS Single pericentromeric (ACG)(n) signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)(n) sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7U(b)-7M(b) reciprocal translocations and one had a 7U(b)-1M(b) rearrangement, while two Ae. geniculata accessions carried 7U(g)-1M(g) or 5U(g)-5M(g) translocations. Conspicuous (ACG)(n) and/or (GAA)(n) clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. CONCLUSIONS Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)(n) and (GAA)(n) SSR motifs serve as additional chromosome markers for the karyotypic analysis of UM genome Aegilops species.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| | - Marta Cifuentes
- Departamento de Biotecnología (Genética), E. T. S. Ingenieros Agrónomos, Universidad Politécnica, 28040 Madrid, Spain
| | - Annamária Schneider
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| | - Elena Benavente
- Departamento de Biotecnología (Genética), E. T. S. Ingenieros Agrónomos, Universidad Politécnica, 28040 Madrid, Spain
| | - Márta Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, POB 19, Hungary
| |
Collapse
|
43
|
Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:589-97. [PMID: 20407740 DOI: 10.1007/s00122-010-1332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/01/2010] [Indexed: 05/07/2023]
Abstract
Thinopyrum bessarabicum (2n = 2x = 14, JJ or E(b)E(b)) is an important genetic resource for wheat improvement due to its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines will facilitate its practical utilization in wheat improvement. In this study, a novel wheat-Th. bessarabicum translocation line T2JS-2BS.2BL, which carries a segment of Th. bessarabicum chromosome arm 2JS was identified and further characterized using sequential chromosome C-banding, genomic in situ hybridization (GISH), dual-color fluorescent in situ hybridization (FISH) and DNA markers. The translocation breakpoint was mapped within bin C-2BS1-0.53 of chromosome 2B through marker analysis. Compared to the Chinese Spring (CS) parent and to CS-type lines, the translocation line has more fertile spikes per plant, longer spikes, more grains per spike and higher yield per plant, which suggests that the alien segment carries yield-related genes. However, plants with the translocation are also taller, head later and have lower 1,000-kernel weight than CS or CS-type lines. By using markers specific to the barley photoperiod response gene Ppd-H1, it was determined that the late heading date was conferred by a recessive allele located on the 2JS segment. In addition, four markers specific for the translocated segment were identified, which can be used for marker-aided screening.
Collapse
Affiliation(s)
- Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Luo MC, Ma Y, You FM, Anderson OD, Kopecký D, Simková H, Safár J, Dolezel J, Gill B, McGuire PE, Dvorak J. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics 2010; 11:122. [PMID: 20170511 PMCID: PMC2836288 DOI: 10.1186/1471-2164-11-122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/19/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. RESULTS The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries. CONCLUSIONS The negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes.
Collapse
Affiliation(s)
- Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bartoš J, Paux E, Kofler R, Havránková M, Kopecký D, Suchánková P, Šafář J, Šimková H, Town CD, Lelley T, Feuillet C, Doležel J. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC PLANT BIOLOGY 2008; 8:95. [PMID: 18803819 PMCID: PMC2565679 DOI: 10.1186/1471-2229-8-95] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/19/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein content and resistance to biotic and abiotic stress, it has been introgressed into wheat as the 1BL.1RS translocation. A better knowledge of the rye genome could facilitate rye improvement and increase the efficiency of utilizing rye genes in wheat breeding. RESULTS Here, we report on BAC end sequencing of 1,536 clones from two 1RS-specific BAC libraries. We obtained 2,778 (90.4%) useful sequences with a cumulative length of 2,032,538 bp and an average read length of 732 bp. These sequences represent 0.5% of 1RS arm. The GC content of the sequenced fraction of 1RS is 45.9%, and at least 84% of the 1RS arm consists of repetitive DNA. We identified transposable element junctions in BESs and developed insertion site based polymorphism markers (ISBP). Out of the 64 primer pairs tested, 17 (26.6%) were specific for 1RS. We also identified BESs carrying microsatellites suitable for development of 1RS-specific SSR markers. CONCLUSION This work demonstrates the utility of chromosome arm-specific BAC libraries for targeted analysis of large Triticeae genomes and provides new sequence data from the rye genome and molecular markers for the short arm of rye chromosome 1.
Collapse
Affiliation(s)
- Jan Bartoš
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Etienne Paux
- INRA- Université Blaise Pascal, UMR GDEC 1095, 234 Avenue du Brezet, F-63100 Clermont-Ferrand, France
| | - Robert Kofler
- University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, Institute for Plant Production Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Miroslava Havránková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - David Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Pavla Suchánková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Jan Šafář
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Hana Šimková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Christopher D Town
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville MD 20850, USA
| | - Tamas Lelley
- University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, Institute for Plant Production Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Catherine Feuillet
- INRA- Université Blaise Pascal, UMR GDEC 1095, 234 Avenue du Brezet, F-63100 Clermont-Ferrand, France
| | - Jaroslav Doležel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Palacký University, Šlechtitelù 11, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
46
|
Abstract
Since the first report on the flow cytometric study of plant material 35 years ago, analyzing the nuclear DNA content of field bean, an ever increasing number of applications of FCM has been developed and applied in plant science and industry, but a similar length of time elapsed before the appearance of the first complete volume devoted to FCM of plant cells. Most published information on the uses of FCM addresses various aspects of animal (including human) cell biology, thus failing to provide a pertinent substitute. FCM represents an ideal means for the analysis of both cells and subcellular particles, with a potentially large number of parameters analyzed both rapidly, simultaneously, and quantitatively, thereby furnishing statistically exploitable data and allowing for an accurate and facilitated detection of subpopulations. It is, indeed, the summation of these facts that has established FCM as an important, and sometimes essential, tool for the understanding of fundamental mechanisms and processes underlying plant growth, development, and function. In this review, special attention is paid to FCM as applied to plant cells in the context of plant breeding, and some new and less well-known uses of it for plants will be discussed.
Collapse
Affiliation(s)
- Sergio J Ochatt
- INRA, C.R. Dijon, Unité Mixte de Recherches en Génétique et Ecophysiologie des Légumineuses, Dijon Cedex, France.
| |
Collapse
|
47
|
Simková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, Bartos J, Safár J, Close TJ, Dolezel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 2008; 9:294. [PMID: 18565235 PMCID: PMC2453526 DOI: 10.1186/1471-2164-9-294] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/19/2008] [Indexed: 01/06/2023] Open
Abstract
Background Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. Results Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. Conclusion The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential of chromosome flow sorting in plant genomics.
Collapse
Affiliation(s)
- Hana Simková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Simková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, Bartos J, Safár J, Close TJ, Dolezel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 2008. [PMID: 18565235 DOI: 10.1186/1471‐2164‐9‐294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. RESULTS Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 - 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H - 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. CONCLUSION The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential of chromosome flow sorting in plant genomics.
Collapse
Affiliation(s)
- Hana Simková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:825-34. [PMID: 18224300 DOI: 10.1007/s00122-008-0716-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/08/2008] [Indexed: 05/19/2023]
Abstract
In situ hybridization (multicolor GISH and FISH) was used to characterize the genomic composition of the wheat-Thinopyrum ponticum partial amphiploid BE-1. The amphiploid is a high-protein line having resistance to leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) and has in total 56 chromosomes per cell. Multicolor GISH using J, A and D genomic probes showed 16 chromosomes originating from Thinopyrum ponticum and 14 A genome, 14 B genome and 12 D genome chromosomes. Six of the Th. ponticum chromosomes carried segments different from the J genome in their centromeric regions. It was demonstrated that these alien chromosome segments did not originate from the A, B or D genomes of wheat, so the translocation chromosomes were considered to be J(s) type chromosomes carrying segments similar to the S genome near the centromeres. Rearrangements between the A and D genomes of wheat were detected. FISH using Afa family, pSc119.2 and pTa71 probes allowed the identification of all the wheat chromosomes present and the determination of the chromosomes involved in the translocations. The 4A and 7A chromosomes were identified as being involved in intergenomic translocations. The replaced wheat chromosome was identified as 7D. The localization of these repetitive DNA clones on the Th. ponticum chromosomes of the amphiploid was described in the present study. On the basis of their multicolor FISH patterns, the alien chromosomes could be arranged in eight pairs and could also be differentiated unequivocally from each other.
Collapse
Affiliation(s)
- A Sepsi
- Agricultural Research Institute of the Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | | | | | | |
Collapse
|