1
|
González-Castellano I, Ordás P, Caballero A. Estimation of Inbreeding Depression From Overdominant Loci Using Molecular Markers. Evol Appl 2025; 18:e70085. [PMID: 40094104 PMCID: PMC11906488 DOI: 10.1111/eva.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Inbreeding depression is a highly relevant universal phenomenon in population and conservation genetics since it leads to a decline in the fitness of individuals. This phenomenon is due to the homozygous expression of alleles whose effects are hidden in heterozygotes (inbreeding load). The rate of inbreeding depression for quantitative traits can be quantified if the coefficient of inbreeding (F) of individuals is known. This coefficient can be estimated from pedigrees or from the information of molecular markers, such as SNPs, using measures of homozygosity of individual markers or runs of homozygosity (ROH) across the genome. Several studies have investigated the accuracy of different F measures to estimate inbreeding depression, but always assuming that this is only due to recessive or partially recessive deleterious mutations. It is possible, though, that part of the inbreeding depression is due to variants with overdominant gene action (heterozygote advantage). In this study, we carried out computer simulations to assess the impact of overdominance on the estimation of inbreeding depression based on different measures of F. The results indicate that the estimators based on ROH provide the most robust estimates of inbreeding depression when this is due to overdominant loci. The estimators that use measures of homozygosity from individual markers may provide estimates with substantial biases, depending on whether or not low-frequency alleles are discarded in the analyses; but among these SNP-by-SNP measures, those based on the correlation between uniting gametes are generally the most reliable.
Collapse
Affiliation(s)
- Inés González-Castellano
- Centro de Investigación Mariña, Universidade de Vigo Vigo Spain
- Universidade da Coruña A Coruña Spain
| | - Pilar Ordás
- Centro de Investigación Mariña, Universidade de Vigo Vigo Spain
| | | |
Collapse
|
2
|
Veltsos P, Kelly JK. The quantitative genetics of gene expression in Mimulus guttatus. PLoS Genet 2024; 20:e1011072. [PMID: 38603726 PMCID: PMC11060551 DOI: 10.1371/journal.pgen.1011072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/30/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Gene expression can be influenced by genetic variants that are closely linked to the expressed gene (cis eQTLs) and variants in other parts of the genome (trans eQTLs). We created a multiparental mapping population by sampling genotypes from a single natural population of Mimulus guttatus and scored gene expression in the leaves of 1,588 plants. We find that nearly every measured gene exhibits cis regulatory variation (91% have FDR < 0.05). cis eQTLs are usually allelic series with three or more functionally distinct alleles. The cis locus explains about two thirds of the standing genetic variance (on average) but varies among genes and tends to be greatest when there is high indel variation in the upstream regulatory region and high nucleotide diversity in the coding sequence. Despite mapping over 10,000 trans eQTL / affected gene pairs, most of the genetic variance generated by trans acting loci remains unexplained. This implies a large reservoir of trans acting genes with subtle or diffuse effects. Mapped trans eQTLs show lower allelic diversity but much higher genetic dominance than cis eQTLs. Several analyses also indicate that trans eQTLs make a substantial contribution to the genetic correlations in expression among different genes. They may thus be essential determinants of "gene expression modules," which has important implications for the evolution of gene expression and how it is studied by geneticists.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
3
|
Puixeu G, Macon A, Vicoso B. Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkad121. [PMID: 37259621 PMCID: PMC10411594 DOI: 10.1093/g3journal/jkad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
The regulatory architecture of gene expression is known to differ substantially between sexes in Drosophila, but most studies performed so far used whole-body data and only single crosses, which may have limited their scope to detect patterns that are robust across tissues and biological replicates. Here, we use allele-specific gene expression of parental and reciprocal hybrid crosses between 6 Drosophila melanogaster inbred lines to quantify cis- and trans-regulatory variation in heads and gonads of both sexes separately across 3 replicate crosses. Our results suggest that female and male heads, as well as ovaries, have a similar regulatory architecture. On the other hand, testes display more and substantially different cis-regulatory effects, suggesting that sex differences in the regulatory architecture that have been previously observed may largely derive from testis-specific effects. We also examine the difference in cis-regulatory variation of genes across different levels of sex bias in gonads and heads. Consistent with the idea that intersex correlations constrain expression and can lead to sexual antagonism, we find more cis variation in unbiased and moderately biased genes in heads. In ovaries, reduced cis variation is observed for male-biased genes, suggesting that cis variants acting on these genes in males do not lead to changes in ovary expression. Finally, we examine the dominance patterns of gene expression and find that sex- and tissue-specific patterns of inheritance as well as trans-regulatory variation are highly variable across biological crosses, although these were performed in highly controlled experimental conditions. This highlights the importance of using various genetic backgrounds to infer generalizable patterns.
Collapse
Affiliation(s)
- Gemma Puixeu
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
4
|
Berbel-Filho WM, Pacheco G, Lira MG, Garcia de Leaniz C, Lima SMQ, Rodríguez-López CM, Zhou J, Consuegra S. Additive and non-additive epigenetic signatures of natural hybridisation between fish species with different mating systems. Epigenetics 2022; 17:2356-2365. [PMID: 36082413 PMCID: PMC9665120 DOI: 10.1080/15592294.2022.2123014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hybridization is a major source of evolutionary innovation. In plants, epigenetic mechanisms can help to stabilize hybrid genomes and contribute to reproductive isolation, but the relationship between genetic and epigenetic changes in animal hybrids is unclear. We analysed the relationship between genetic background and methylation patterns in natural hybrids of two genetically divergent fish species with different mating systems, Kryptolebias hermaphroditus (self-fertilizing) and K. ocellatus (outcrossing). Co-existing parental species displayed highly distinct genetic (SNPs) and methylation patterns (37,000 differentially methylated cytosines). Hybrids had predominantly intermediate methylation patterns (88.5% of the sites) suggesting additive effects, as expected from hybridization between genetically distant species. The large number of differentially methylated cytosines between hybrids and parental species (n = 5,800) suggests that hybridization may play a role in increasing genetic and epigenetic variation. Although most of the observed epigenetic variation was additive and had a strong genetic component, we also found a small percentage of non-additive, potentially stochastic, methylation differences that might act as an evolutionary bet-hedging strategy and increase fitness under environmental instability.
Collapse
Affiliation(s)
- Waldir M Berbel-Filho
- Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - George Pacheco
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Mateus G Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Carlos Garcia de Leaniz
- Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Carlos M Rodríguez-López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Jia Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sofia Consuegra
- Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
5
|
Pérez‐Pereira N, López‐Cortegano E, García‐Dorado A, Caballero A. Prediction of fitness under different breeding designs in conservation programs. Anim Conserv 2022. [DOI: 10.1111/acv.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Pérez‐Pereira
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - E. López‐Cortegano
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - A. García‐Dorado
- Departamento de Genética, Facultad de Ciencias Biológicas Universidad Complutense Madrid Spain
| | - A. Caballero
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| |
Collapse
|
6
|
Benowitz KM, Coleman JM, Allan CW, Matzkin LM. Contributions of cis- and trans-Regulatory Evolution to Transcriptomic Divergence across Populations in the Drosophila mojavensis Larval Brain. Genome Biol Evol 2021; 12:1407-1418. [PMID: 32653899 PMCID: PMC7495911 DOI: 10.1093/gbe/evaa145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Natural selection on gene expression was originally predicted to result primarily in cis- rather than trans-regulatory evolution, due to the expectation of reduced pleiotropy. Despite this, numerous studies have ascribed recent evolutionary divergence in gene expression predominantly to trans-regulation. Performing RNA-seq on single isofemale lines from genetically distinct populations of the cactophilic fly Drosophila mojavensis and their F1 hybrids, we recapitulated this pattern in both larval brains and whole bodies. However, we demonstrate that improving the measurement of brain expression divergence between populations by using seven additional genotypes considerably reduces the estimate of trans-regulatory contributions to expression evolution. We argue that the finding of trans-regulatory predominance can result from biases due to environmental variation in expression or other sources of noise, and that cis-regulation is likely a greater contributor to transcriptional evolution across D. mojavensis populations. Lastly, we merge these lines of data to identify several previously hypothesized and intriguing novel candidate genes, and suggest that the integration of regulatory and population-level transcriptomic data can provide useful filters for the identification of potentially adaptive genes.
Collapse
Affiliation(s)
| | - Joshua M Coleman
- Department of Entomology, University of Arizona.,Department of Biological Sciences, University of Alabama in Huntsville
| | | | - Luciano M Matzkin
- Department of Entomology, University of Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona.,BIO5 Institute, University of Arizona
| |
Collapse
|
7
|
Varkoohi S, Banabazi MH, Ghsemi-Siab M. Allele Specific Expression (ASE) analysis between Bos Taurus and Bos Indicus cows using RNA-Seq data at SNP level and gene level. AN ACAD BRAS CIENC 2021; 93:e20191453. [PMID: 33978066 DOI: 10.1590/0001-3765202120191453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
In the current study, allele specific expression analysis was performed in two subspecies cows (Bos taurus and Bos indicus) at SNP and gene levels. RNA-Seq data of 21,078,477 and 20940063 paired end reads from pooling of whole blood samples (Leukocyte) from 40 US Holstein (Bos Taurus) and 45 Cholistani cows (Bos indicus) obtained from SRA database in NCBI. Quality control and trimming of row RNA-Seq data were processed by FASTQC and Trimmomatic softwares. The transcriptome was assembled by TopHat2 software in two cow's population by aligning and mapping the RNA-Seq reads on bovine reference genome. The SNPs were discovered by Samtools software and ASE analysis was performed by Chi-square test. Results showed that 50183 and 137954 SNPs were discovered on the assembled transcriptome of Holstein and Cholistani cow samples, respectively, and 15308 SNPs were common in both breeds. 10158 SNPs from 50183 (20%) in Holstein and 31523 SNPs from 137954 (23%) in Cholistani cows were identified as ASE-SNPs. Reference allele and alternative allele count in Holstein and Cholistani cows were 3041 and 7155, respectively. Among 131 discovered SNPs in 41 genes with different expression in Holstein and Cholistani cows, 31 ASE-SNPs (5 in Holstein; 26 in Cholistani cows) were discovered.
Collapse
Affiliation(s)
- Sheida Varkoohi
- Department of Animal Science, College of Agriculture & Natural Resources, Razi University, 67346-67149, Kermanshah, Iran
| | - Mohammad Hossein Banabazi
- Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj 3146618361, Iran
| | - Mojgan Ghsemi-Siab
- Department of Animal Science, College of Agriculture & Natural Resources, Razi University, 67346-67149, Kermanshah, Iran
| |
Collapse
|
8
|
McGirr JA, Martin CH. Few Fixed Variants between Trophic Specialist Pupfish Species Reveal Candidate Cis-Regulatory Alleles Underlying Rapid Craniofacial Divergence. Mol Biol Evol 2021; 38:405-423. [PMID: 32877534 PMCID: PMC7826174 DOI: 10.1093/molbev/msaa218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists-a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species-only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.
Collapse
Affiliation(s)
- Joseph A McGirr
- Environmental Toxicology Department, University of California, Davis, CA
| | - Christopher H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
9
|
McGirr JA, Martin CH. Hybrid gene misregulation in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes. PLoS One 2019; 14:e0218899. [PMID: 31291291 PMCID: PMC6619667 DOI: 10.1371/journal.pone.0218899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic incompatibilities constitute the final stages of reproductive isolation and speciation, but little is known about incompatibilities that occur within recent adaptive radiations among closely related diverging populations. Crossing divergent species to form hybrids can break up coadapted variation, resulting in genetic incompatibilities within developmental networks shaping divergent adaptive traits. We crossed two closely related sympatric Cyprinodon pupfish species–a dietary generalist and a specialized molluscivore–and measured expression levels in their F1 hybrids to identify regulatory variation underlying the novel craniofacial morphology found in this recent microendemic adaptive radiation. We extracted mRNA from eight day old whole-larvae tissue and from craniofacial tissues dissected from 17–20 day old larvae to compare gene expression between a total of seven F1 hybrids and 24 individuals from parental species populations. We found 3.9% of genes differentially expressed between generalists and molluscivores in whole-larvae tissues and 0.6% of genes differentially expressed in craniofacial tissue. We found that 2.1% of genes were misregulated in whole-larvae hybrids whereas 19.1% of genes were misregulated in hybrid craniofacial tissues, after correcting for sequencing biases. We also measured allele specific expression across 15,429 heterozygous sites to identify putative compensatory regulatory mechanisms underlying differential expression between generalists and molluscivores. Together, our results highlight the importance of considering misregulation as an early indicator of genetic incompatibilities in the context of rapidly diverging adaptive radiations and suggests that compensatory regulatory divergence drives hybrid gene misregulation in developing tissues that give rise to novel craniofacial traits.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
10
|
Support for the Dominance Theory in Drosophila Transcriptomes. Genetics 2018; 210:703-718. [PMID: 30131345 PMCID: PMC6216581 DOI: 10.1534/genetics.118.301229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of Drosophila yakuba, Drosophila santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analyses also suggest a contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in the sex toward which the expression is biased (e.g., genes with female-biased expression when analyzed in females). In the opposite sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes (e.g., female-biased genes). This slower-X effect is mediated by significant decreases in cis- and trans-regulatory divergence. The distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts.
Collapse
|
11
|
Alvarez E, Del Pino F, Jara L, Godoy-Herrera R. The genetics and development of mandibles and hypopharyngeal sclerite and cornua in larvae of Drosophila gaucha. PLoS One 2017; 12:e0185054. [PMID: 29045450 PMCID: PMC5646785 DOI: 10.1371/journal.pone.0185054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022] Open
Abstract
The genetics and epigenetic processes associated with morphological organization are a principal aim of biology, ranging from cohesion between cells to shape and size of organisms. We investigate the post-embryonic development of Hypopharyngeal sclerite and cornua HPC and mandibles M of Drosophila gaucha larva. Integrated functioning of these Cephalopharyngeal skeleton parts of D. gaucha larva is essential for food acquisition, participating in locomotion and microhabitat selection. We examined two isolates by recording the growth of the HPC and M every 24 h for 8 days in parental, F1, F2 and backcross larvae. In F1 larvae, the HPC and M growth was similar to the parental. In F2 and backcross larvae, the growth was slower. Epistasis and dominance are the principal sources upon which the growth of HPC and M are based. Pleiotropic genes seem also to be involved in integrating the development of M and HPC. Our data suggest that hybridization of the isolates modified epigenetic processes involved in the development of those morphological structures of D. gaucha larva.
Collapse
Affiliation(s)
- Eduardo Alvarez
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Del Pino
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lilian Jara
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Raúl Godoy-Herrera
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
Cis- and Trans-regulatory Effects on Gene Expression in a Natural Population of Drosophila melanogaster. Genetics 2017; 206:2139-2148. [PMID: 28615283 DOI: 10.1534/genetics.117.201459] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
Cis- and trans-regulatory mutations are important contributors to transcriptome evolution. Quantifying their relative contributions to intraspecific variation in gene expression is essential for understanding the population genetic processes that underlie evolutionary changes in gene expression. Here, we have examined this issue by quantifying genome-wide, allele-specific expression (ASE) variation using a crossing scheme that produces F1 hybrids between 18 different Drosophila melanogaster strains sampled from the Drosophila Genetic Reference Panel and a reference strain from another population. Head and body samples from F1 adult females were subjected to RNA sequencing and the subsequent ASE quantification. Cis- and trans-regulatory effects on expression variation were estimated from these data. A higher proportion of genes showed significant cis-regulatory variation (∼28%) than those that showed significant trans-regulatory variation (∼9%). The sizes of cis-regulatory effects on expression variation were 1.98 and 1.88 times larger than trans-regulatory effects in heads and bodies, respectively. A generalized linear model analysis revealed that both cis- and trans-regulated expression variation was strongly associated with nonsynonymous nucleotide diversity and tissue specificity. Interestingly, trans-regulated variation showed a negative correlation with local recombination rate. Also, our analysis on proximal transposable element (TE) insertions suggested that they affect transcription levels of ovary-expressed genes more pronouncedly than genes not expressed in the ovary, possibly due to defense mechanisms against TE mobility in the germline. Collectively, our detailed quantification of ASE variations from a natural population has revealed a number of new relationships between genomic factors and the effects of cis- and trans-regulatory factors on expression variation.
Collapse
|
13
|
Mähler N, Wang J, Terebieniec BK, Ingvarsson PK, Street NR, Hvidsten TR. Gene co-expression network connectivity is an important determinant of selective constraint. PLoS Genet 2017; 13:e1006402. [PMID: 28406900 PMCID: PMC5407845 DOI: 10.1371/journal.pgen.1006402] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/27/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jing Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Barbara K. Terebieniec
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pär K. Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Torgeir R. Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
A New Mechanism for Mendelian Dominance in Regulatory Genetic Pathways: Competitive Binding by Transcription Factors. Genetics 2016; 205:101-112. [PMID: 27866169 DOI: 10.1534/genetics.116.195255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
We report a new mechanism for allelic dominance in regulatory genetic interactions that we call binding dominance. We investigated a biophysical model of gene regulation, where the fractional occupancy of a transcription factor (TF) on the cis-regulated promoter site it binds to is determined by binding energy (-ΔG) and TF dosage. Transcription and gene expression proceed when the TF is bound to the promoter. In diploids, individuals may be heterozygous at the cis-site, at the TF's coding region, or at the TF's own promoter, which determines allele-specific dosage. We find that when the TF's coding region is heterozygous, TF alleles compete for occupancy at the cis-sites and the tighter-binding TF is dominant in proportion to the difference in binding strength. When the TF's own promoter is heterozygous, the TF produced at the higher dosage is also dominant. Cis-site heterozygotes have additive expression and therefore codominant phenotypes. Binding dominance propagates to affect the expression of downstream loci and it is sensitive in both magnitude and direction to genetic background, but its detectability often attenuates. While binding dominance is inevitable at the molecular level, it is difficult to detect in the phenotype under some biophysical conditions, more so when TF dosage is high and allele-specific binding affinities are similar. A body of empirical research on the biophysics of TF binding demonstrates the plausibility of this mechanism of dominance, but studies of gene expression under competitive binding in heterozygotes in a diversity of genetic backgrounds are needed.
Collapse
|
15
|
Buffering of Genetic Regulatory Networks in Drosophila melanogaster. Genetics 2016; 203:1177-90. [PMID: 27194752 DOI: 10.1534/genetics.116.188797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023] Open
Abstract
Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study. A Bayesian model for AI, with an intersection test, controls type I error. There are ∼200 genes with AI exclusively in mated or virgin flies, indicating an environmental component of expression regulation. On average 34% of genes within a cross and 54% of all genes show evidence for genetic regulation of transcription. Nearly all differentially regulated genes are affected in cis, with an average of 63% of expression variation explained by the cis-effects. Trans-effects explain 8% of the variance in AI on average and the interaction between cis and trans explains an average of 11% of the total variance in AI. In both environments cis- and trans-effects are compensatory in their overall effect, with a negative association between cis- and trans-effects in 85% of the exons examined. We hypothesize that the gene expression level perturbed by cis-regulatory mutations is compensated through trans-regulatory mechanisms, e.g., trans and cis by trans-factors buffering cis-mutations. In addition, when AI is detected in both environments, cis-mated, cis-virgin, and trans-mated-trans-virgin estimates are highly concordant with 99% of all exons positively correlated with a median correlation of 0.83 for cis and 0.95 for trans We conclude that the gene regulatory networks (GRNs) are robust and that trans-buffering explains robustness.
Collapse
|
16
|
Abstract
Complete sex chromosome dosage compensation has more often been observed in XY than ZW species. In this study, using a population genetic model and the chicken transcriptome, we assess whether sexual conflict can account for this difference. Sexual conflict over expression is inevitable when mutation effects are correlated across the sexes, as compensatory mutations in the heterogametic sex lead to hyperexpression in the homogametic sex. Coupled with stronger selection and greater reproductive variance in males, this results in slower and less complete evolution of Z compared with X dosage compensation. Using expression variance as a measure of selection strength, we find that, as predicted by the model, dosage compensation in the chicken is most pronounced in genes that are under strong selection biased towards females. Our study explains the pattern of weak dosage compensation in ZW systems, and suggests that sexual selection plays a major role in shaping sex chromosome dosage compensation. Complete sex chromosome dosage compensation is largely limited to male heterogametic species, with the majority of female heterogametic species displaying incomplete dosage compensation. Here, the authors show that sexual conflict over gene expression combined with sexual selection in males can explain this pattern.
Collapse
|
17
|
Graze RM, McIntyre LM, Morse AM, Boyd BM, Nuzhdin SV, Wayne ML. What the X has to do with it: differences in regulatory variability between the sexes in Drosophila simulans. Genome Biol Evol 2015; 6:818-29. [PMID: 24696400 PMCID: PMC4007535 DOI: 10.1093/gbe/evu060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanistic basis of regulatory variation and the prevailing evolutionary forces shaping that variation are known to differ between sexes and between chromosomes. Regulatory variation of gene expression can be due to functional changes within a gene itself (cis) or in other genes elsewhere in the genome (trans). The evolutionary properties of cis mutations are expected to differ from mutations affecting gene expression in trans. We analyze allele-specific expression across a set of X substitution lines in intact adult Drosophila simulans to evaluate whether regulatory variation differs for cis and trans, for males and females, and for X-linked and autosomal genes. Regulatory variation is common (56% of genes), and patterns of variation within D. simulans are consistent with previous observations in Drosophila that there is more cis than trans variation within species (47% vs. 25%, respectively). The relationship between sex-bias and sex-limited variation is remarkably consistent across sexes. However, there are differences between cis and trans effects: cis variants show evidence of purifying selection in the sex toward which expression is biased, while trans variants do not. For female-biased genes, the X is depleted for trans variation in a manner consistent with a female-dominated selection regime on the X. Surprisingly, there is no evidence for depletion of trans variation for male-biased genes on X. This is evidence for regulatory feminization of the X, trans-acting factors controlling male-biased genes are more likely to be found on the autosomes than those controlling female-biased genes.
Collapse
Affiliation(s)
- Rita M. Graze
- Department of Molecular Genetics and Microbiology, University of Florida
- Department of Biological Sciences, Auburn University
- *Corresponding author: E-mail:
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida
- Department of Statistics, University of Florida
| | - Alison M. Morse
- Department of Molecular Genetics and Microbiology, University of Florida
| | - Bret M. Boyd
- Florida Museum of Natural History, University of Florida
| | - Sergey V. Nuzhdin
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California
| | | |
Collapse
|
18
|
León-Novelo LG, McIntyre LM, Fear JM, Graze RM. A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics 2014; 15:920. [PMID: 25339465 PMCID: PMC4230747 DOI: 10.1186/1471-2164-15-920] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/09/2014] [Indexed: 01/01/2023] Open
Abstract
Background One method of identifying cis regulatory differences is to analyze allele-specific expression (ASE) and identify cases of allelic imbalance (AI). RNA-seq is the most common way to measure ASE and a binomial test is often applied to determine statistical significance of AI. This implicitly assumes that there is no bias in estimation of AI. However, bias has been found to result from multiple factors including: genome ambiguity, reference quality, the mapping algorithm, and biases in the sequencing process. Two alternative approaches have been developed to handle bias: adjusting for bias using a statistical model and filtering regions of the genome suspected of harboring bias. Existing statistical models which account for bias rely on information from DNA controls, which can be cost prohibitive for large intraspecific studies. In contrast, data filtering is inexpensive and straightforward, but necessarily involves sacrificing a portion of the data. Results Here we propose a flexible Bayesian model for analysis of AI, which accounts for bias and can be implemented without DNA controls. In lieu of DNA controls, this Poisson-Gamma (PG) model uses an estimate of bias from simulations. The proposed model always has a lower type I error rate compared to the binomial test. Consistent with prior studies, bias dramatically affects the type I error rate. All of the tested models are sensitive to misspecification of bias. The closer the estimate of bias is to the true underlying bias, the lower the type I error rate. Correct estimates of bias result in a level alpha test. Conclusions To improve the assessment of AI, some forms of systematic error (e.g., map bias) can be identified using simulation. The resulting estimates of bias can be used to correct for bias in the PG model, without data filtering. Other sources of bias (e.g., unidentified variant calls) can be easily captured by DNA controls, but are missed by common filtering approaches. Consequently, as variant identification improves, the need for DNA controls will be reduced. Filtering does not significantly improve performance and is not recommended, as information is sacrificed without a measurable gain. The PG model developed here performs well when bias is known, or slightly misspecified. The model is flexible and can accommodate differences in experimental design and bias estimation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-920) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Rita M Graze
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, 36849 Auburn, AL, USA.
| |
Collapse
|
19
|
Abstract
Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels.
Collapse
Affiliation(s)
- Jennifer M Andrie
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Jon Wakefield
- Department of Statistics, University of Washington, Seattle, Washington 98195, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
20
|
Wang Y, Han Y, Teng W, Zhao X, Li Y, Wu L, Li D, Li W. Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed. BMC Genomics 2014; 15:680. [PMID: 25124843 PMCID: PMC4138391 DOI: 10.1186/1471-2164-15-680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mapping expression quantitative trait loci (eQTL) of targeted genes represents a powerful and widely adopted approach to identify putative regulatory variants. Linking regulation differences to specific genes might assist in the identification of networks and interactions. The objective of this study is to identify eQTL underlying expression of four gene families encoding isoflavone synthetic enzymes involved in the phenylpropanoid pathway, which are phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), 2-hydroxyisoflavanone synthase (IFS; EC1.14.13.136) and flavanone 3-hydroxylase (F3H; EC 1.14.11.9). A population of 130 recombinant inbred lines (F5:11), derived from a cross between soybean cultivar 'Zhongdou 27' (high isoflavone) and 'Jiunong 20' (low isoflavone), and a total of 194 simple sequence repeat (SSR) markers were used in this study. Overlapped loci of eQTLs and phenotypic QTLs (pQTLs) were analyzed to identify the potential candidate genes underlying the accumulation of isoflavone in soybean seed. RESULTS Thirty three eQTLs (thirteen cis-eQTLs and twenty trans-eQTLs) underlying the transcript abundance of the four gene families were identified on fifteen chromosomes. The eQTLs between Satt278-Sat_134, Sat_134-Sct_010 and Satt149-Sat_234 underlie the expression of both IFS and CHS genes. Five eQTL intervals were overlapped with pQTLs. A total of eleven candidate genes within the overlapped eQTL and pQTL were identified. CONCLUSIONS These results will be useful for the development of marker-assisted selection to breed soybean cultivars with high or low isoflavone contents and for map-based cloning of new isoflavone related genes.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Lin Wu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Dongmei Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
21
|
Carr DE, Eubanks MD. Interactions between insect herbivores and plant mating systems. ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:185-203. [PMID: 24160428 DOI: 10.1146/annurev-ento-011613-162049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Self-pollination is common in plants, and limited seed and pollen dispersal can create localized inbreeding even within outcrossing plants. Consequently, insects regularly encounter inbred plants in nature. Because inbreeding results in elevated homozygosity, greater expression of recessive alleles, and subsequent phenotypic changes in inbred plants, inbreeding may alter plant-insect interactions. Recent research has found that plant inbreeding alters resistance and tolerance to herbivores, alters the attraction and susceptibility of plants to insects that vector plant pathogens, and alters visitation rates of insect pollinators. These results suggest that interactions with insects can increase or decrease inbreeding depression (the loss of fitness due to self-fertilization) and subsequently alter the evolution of selfing within plant populations. Future work needs to focus on the mechanisms underlying genetic variation in the effects of inbreeding on plant-insect interactions and the consequences of altered plant-insect interactions on the evolution of plant defense and plant mating systems.
Collapse
Affiliation(s)
- David E Carr
- Blandy Experimental Farm, University of Virginia, Boyce, Virginia 22620;
| | | |
Collapse
|
22
|
Abstract
The concept of genomic balance traces to the early days of genetics. In recent years, studies of gene expression have found parallels to the classical phenotypic studies in that aneuploid changes have greater effects than whole genome changes. This has an explanation in terms of potential stoichiometric imbalances of the gene products encoded in the aneuploid regions. Studies of transcriptional factor mutations indicated that they tend to be haplo-insufficient as heterozygotes. Molecular evolution studies found that genes encoding members of macromolecular complexes were preferentially retained following polyploidy and underrepresented in copy number variants. In this review chapter, we synthesize these observations under the rubric of the Gene Balance Hypothesis.
Collapse
|
23
|
White SL, Sakhrani D, Danzmann RG, Devlin RH. Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss). BMC Genomics 2013; 14:673. [PMID: 24088438 PMCID: PMC3851433 DOI: 10.1186/1471-2164-14-673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Release of domesticated strains of fish into nature may pose a threat to wild populations with respect to their evolved genetic structure and fitness. Understanding alterations that have occurred in both physiology and genetics as a consequence of domestication can assist in evaluating the risks posed by introgression of domesticated genomes into wild genetic backgrounds, however the molecular causes of these consequences are currently poorly defined. The present study has examined levels of mRNA in fast-growing pure domesticated (D), slow-growing age-matched pure wild (Wa), slow-growing size-matched pure wild (Ws), and first generation hybrid cross (W/D) rainbow trout (Oncorhynchus mykiss) to investigate the influence of genotype (domesticated vs. wild, and their interactions in hybrids) and developmental stage (age- or size-matched animals) on genetic responses (i.e. dominant vs. recessive) and specific physiological pathways. RESULTS Highly significant differences in mRNA levels were found between domesticated and wild-type rainbow trout genotypes (321 mRNAs), with many mRNAs in the wild-domesticated hybrid progeny showing intermediate levels. Differences were also found between age-matched and size-matched wild-type trout groups (64 mRNAs), with unique mRNA differences for each of the wild-type groups when compared to domesticated trout (Wa: 114 mRNAs, Ws: 88 mRNAs), illustrating an influence of fish developmental stage affecting findings when used as comparator groups to other genotypes. Analysis of differentially expressed mRNAs (found for both wild-type trout to domesticated comparisons) among the genotypes indicates that 34.8% are regulated consistent with an additive genetic model, whereas 39.1% and 26.1% show a recessive or dominant mode of regulation, respectively. These molecular data are largely consistent with phenotypic data (growth and behavioural assessments) assessed in domesticated and wild trout strains. CONCLUSIONS The present molecular data are concordant with domestication having clearly altered rainbow trout genomes and consequent phenotype from that of native wild populations. Although mainly additive responses were noted in hybrid progeny, the prevalence of dominant and non-additive responses reveals that introgression of domesticated and wild genotypes alters the type of genetic control of mRNA levels from that of wild-type, which may lead to disruption of gene regulation systems important for developing phenotypes for optimal fitness in nature. A clear influence of both fish age and size (developmental stage) on mRNA levels was also noted in this study, which highlights the importance of examining multiple control samples to provide a comprehensive understanding of changes observed between strains possessing differences in growth rate.
Collapse
Affiliation(s)
- Samantha L White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
24
|
Meiklejohn CD, Coolon JD, Hartl DL, Wittkopp PJ. The roles of cis- and trans-regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression. Genome Res 2013; 24:84-95. [PMID: 24043293 PMCID: PMC3875864 DOI: 10.1101/gr.156414.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Evolutionary changes in gene expression underlie many aspects of phenotypic diversity within and among species. Understanding the genetic basis for evolved changes in gene expression is therefore an important component of a comprehensive understanding of the genetic basis of phenotypic evolution. Using interspecific introgression hybrids, we examined the genetic basis for divergence in genome-wide patterns of gene expression between Drosophila simulans and Drosophila mauritiana. We find that cis-regulatory and trans-regulatory divergences differ significantly in patterns of genetic architecture and evolution. The effects of cis-regulatory divergence are approximately additive in heterozygotes, quantitatively different between males and females, and well predicted by expression differences between the two parental species. In contrast, the effects of trans-regulatory divergence are associated with largely dominant introgressed alleles, have similar effects in the two sexes, and generate expression levels in hybrids outside the range of expression in both parental species. Although the effects of introgressed trans-regulatory alleles are similar in males and females, expression levels of the genes they regulate are sexually dimorphic between the parental D. simulans and D. mauritiana strains, suggesting that pure-species genotypes carry unlinked modifier alleles that increase sexual dimorphism in expression. Our results suggest that independent effects of cis-regulatory substitutions in males and females may favor their role in the evolution of sexually dimorphic phenotypes, and that trans-regulatory divergence is an important source of regulatory incompatibilities.
Collapse
Affiliation(s)
- Colin D Meiklejohn
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
25
|
Garcia C, Avila V, Quesada H, Caballero A. Candidate transcriptomic sources of inbreeding depression in Drosophila melanogaster. PLoS One 2013; 8:e70067. [PMID: 23922905 PMCID: PMC3726430 DOI: 10.1371/journal.pone.0070067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/14/2013] [Indexed: 12/02/2022] Open
Abstract
The genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress induced by increased homozygosity due to inbreeding. Attempting to differentiate causes from responses, we made a c-DNA microarray analysis of inbreeding depression in Drosophila melanogaster. The rationale of the experiment was that, while depression is a general phenomenon involving reductions in fitness in different inbred lines, its first genetic causes would be different for each inbred line, as they are expected to be caused by the fixation of rare deleterious genes. We took four sets of inbred sublines, each set descending from a different founding pair obtained from a large outbred stock, and compared the expression of the three most depressed sublines and the three least depressed sublines from each set. Many changes in expression were common to all sets, but fourteen genes, grouped in four expression clusters, showed strong set-specific changes, and were therefore possible candidates to be sources of the inbreeding depression observed.
Collapse
Affiliation(s)
- Carlos Garcia
- Departamento de Xenética, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain.
| | | | | | | |
Collapse
|
26
|
Gaur U, Li K, Mei S, Liu G. Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genet 2013; 54:271-83. [PMID: 23609142 DOI: 10.1007/s13353-013-0148-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
Although the majority of genes are expressed equally from both alleles, some genes are differentially expressed. Organisms possess characteristics to preferentially express a particular allele under regulatory factors, which is termed allele-specific expression (ASE). It is one of the important genetic factors that lead to phenotypic variation and can be used to identify the variance of gene regulation factors. ASE indicates mechanisms such as DNA methylation, histone modifications, and non-coding RNAs function. Here, we review a broad survey of progress in ASE studies, and what this simple yet very effective approach can offer in functional genomics, and possible implications toward our better understanding of the underlying mechanisms of complex traits.
Collapse
Affiliation(s)
- Uma Gaur
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Yaoyuan No. 1, Nanhu, Hongshan District, Wuhan, 430064, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Bougas B, Normandeau E, Audet C, Bernatchez L. Linking transcriptomic and genomic variation to growth in brook charr hybrids (Salvelinus fontinalis, Mitchill). Heredity (Edinb) 2013; 110:492-500. [PMID: 23321707 DOI: 10.1038/hdy.2012.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hybridization can lead to phenotypic differences arising from changes in gene expression patterns or new allele combinations. Variation in gene expression is thought to be controlled by differences in transcription regulation of parental alleles, either through cis- or trans-regulatory elements. A previous study among brook charr hybrids from different populations (Rupert, Laval, and domestic) showing distinct length at age during early life stages also revealed different patterns in transcription regulation inheritance of transcript abundance. In the present study, transcript abundance using RNA-sequencing and quantitative real-time PCR, single-nucleotide polymorphism (SNP) genotypes and allelic imbalance were assessed in order to understand the molecular mechanisms underlying the observed transcriptomic and differences in length at age among domestic × Rupert hybrids and Laval × domestic hybrids. We found 198 differentially expressed genes between the two hybrid crosses, and allelic imbalance could be analyzed for 69 of them. Among these 69 genes, 36 genes exhibited cis-acting regulatory effects in both of the two crosses, thus confirming the prevalent role of cis-acting regulatory elements in the regulation of differentially expressed genes among intraspecific hybrids. In addition, we detected a significant association between SNP genotypes of three genes and length at age. Our study is thus one of the few that have highlighted some of the molecular mechanisms potentially involved in the differential phenotypic expression in intraspecific hybrids for nonmodel species.
Collapse
Affiliation(s)
- B Bougas
- Département de biologie, Institut de Biologie Intégrative et des Systèmes IBIS, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
28
|
Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 2012; 109:14746-53. [PMID: 22908297 DOI: 10.1073/pnas.1207726109] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We summarize, in this review, the evidence that genomic balance influences gene expression, quantitative traits, dosage compensation, aneuploid syndromes, population dynamics of copy number variants and differential evolutionary fate of genes after partial or whole-genome duplication. Gene balance effects are hypothesized to result from stoichiometric differences among members of macromolecular complexes, the interactome, and signaling pathways. The implications of gene balance are discussed.
Collapse
|
29
|
Kloosterman B, Anithakumari AM, Chibon PY, Oortwijn M, van der Linden GC, Visser RGF, Bachem CWB. Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source--sink tissues in a segregating potato population. BMC PLANT BIOLOGY 2012; 12:17. [PMID: 22313736 PMCID: PMC3546430 DOI: 10.1186/1471-2229-12-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 02/07/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization. RESULTS Leaf and tuber samples were analysed and screened for the presence of conserved and tissue dependent eQTLs. Expression QTLs present in both tissues are predominantly cis-acting whilst for tissue specific QTLs, the percentage of trans-acting QTLs increases. Tissue dependent eQTLs were assigned to functional classes and visualized in metabolic pathways. We identified a potential regulatory network on chromosome 10 involving genes crucial for maintaining circadian rhythms and controlling clock output genes. In addition, we show that the type of genetic material screened and sampling strategy applied, can have a high impact on the output of genetical genomics studies. CONCLUSIONS Identification of tissue dependent regulatory networks based on mapped differential expression not only gives us insight in tissue dependent gene subfunctionalization but brings new insights into key biological processes and delivers targets for future haplotyping and genetic marker development.
Collapse
Affiliation(s)
- Bjorn Kloosterman
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
- KeyGene N.V., P.O. Box 216, 6700 AE Wageningen, The Netherlands
| | - AM Anithakumari
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
- Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
| | - Pierre-Yves Chibon
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
- Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
| | - Marian Oortwijn
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
| | - Gerard C van der Linden
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AA Wageningen, The Netherlands
| | - Christian WB Bachem
- Wageningen UR Plant Breeding, Wageningen University and Research Center, PO Box 386, 6700 AJ Wageningen, the Netherlands
| |
Collapse
|
30
|
Graze RM, Novelo LL, Amin V, Fear JM, Casella G, Nuzhdin SV, McIntyre LM. Allelic imbalance in Drosophila hybrid heads: exons, isoforms, and evolution. Mol Biol Evol 2012; 29:1521-32. [PMID: 22319150 DOI: 10.1093/molbev/msr318] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unraveling how regulatory divergence contributes to species differences and adaptation requires identifying functional variants from among millions of genetic differences. Analysis of allelic imbalance (AI) reveals functional genetic differences in cis regulation and has demonstrated differences in cis regulation within and between species. Regulatory mechanisms are often highly conserved, yet differences between species in gene expression are extensive. What evolutionary forces explain widespread divergence in cis regulation? AI was assessed in Drosophila melanogaster-Drosophila simulans hybrid female heads using RNA-seq technology. Mapping bias was virtually eliminated by using genotype-specific references. Allele representation in DNA sequencing was used as a prior in a novel Bayesian model for the estimation of AI in RNA. Cis regulatory divergence was common in the organs and tissues of the head with 41% of genes analyzed showing significant AI. Using existing population genomic data, the relationship between AI and patterns of sequence evolution was examined. Evidence of positive selection was found in 30% of cis regulatory divergent genes. Genes involved in defense, RNAi/RISC complex genes, and those that are sex regulated are enriched among adaptively evolving cis regulatory divergent genes. For genes in these groups, adaptive evolution may play a role in regulatory divergence between species. However, there is no evidence that adaptive evolution drives most of the cis regulatory divergence that is observed. The majority of genes showed patterns consistent with stabilizing selection and neutral evolutionary processes.
Collapse
Affiliation(s)
- R M Graze
- Department of Molecular Genetics and Microbiology, University of Florida, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
32
|
Wurmser F, Ogereau D, Mary-Huard T, Loriod B, Joly D, Montchamp-Moreau C. Population transcriptomics: insights from Drosophila simulans, Drosophila sechellia and their hybrids. Genetica 2011; 139:465-77. [PMID: 21424276 DOI: 10.1007/s10709-011-9566-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/07/2011] [Indexed: 01/03/2023]
Abstract
Sequence differentiation has been widely studied between populations and species, whereas interest in expression divergence is relatively recent. Using microarrays, we compared four geographically distinct populations of Drosophila simulans and a population of Drosophila sechellia, and interspecific hybrids. We observed few differences between populations, suggesting a slight population structure in D. simulans. This structure was observed in direct population comparisons, as well as in interspecific comparisons (hybrids vs. parents, D. sechellia vs. D. simulans). Expression variance is higher in the French and Zimbabwean populations than in the populations from the ancestral range of D. simulans (Kenya and Seychelles). This suggests a large scale phenomenon of decanalization following the invasion of a new environment. Comparing D. simulans and D. sechellia, we revealed 304 consistently differentially expressed genes, with striking overrepresentation of genes of the cytochrome P450 family, which could be related to their role in detoxification as well as in hormone regulation. We also revealed differences in genes involved in Juvenile hormone and Dopamine differentiation. We finally observed very few differentially expressed genes between hybrids and parental populations, with an overrepresentation of X-linked genes.
Collapse
Affiliation(s)
- François Wurmser
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR9034 Avenue de la Terrasse, Gif-sur-Yvette F-91198 Cedex, and Univ Paris-Sud, 91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
33
|
Sarup P, Sørensen JG, Kristensen TN, Hoffmann AA, Loeschcke V, Paige KN, Sørensen P. Candidate genes detected in transcriptome studies are strongly dependent on genetic background. PLoS One 2011; 6:e15644. [PMID: 21283582 PMCID: PMC3026803 DOI: 10.1371/journal.pone.0015644] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022] Open
Abstract
Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate genes identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same genetic backgrounds. Putative candidates found using transcriptomics therefore appear very sensitive to genetic background and this can mask or override effects of treatments. The functional importance of putative candidate genes emerging from transcriptome studies needs to be validated through additional experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds.
Collapse
Affiliation(s)
- Pernille Sarup
- Department of Biological Sciences, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kolaczkowski B, Kern AD, Holloway AK, Begun DJ. Genomic differentiation between temperate and tropical Australian populations of Drosophila melanogaster. Genetics 2011; 187:245-60. [PMID: 21059887 PMCID: PMC3018305 DOI: 10.1534/genetics.110.123059] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022] Open
Abstract
Determining the genetic basis of environmental adaptation is a central problem of evolutionary biology. This issue has been fruitfully addressed by examining genetic differentiation between populations that are recently separated and/or experience high rates of gene flow. A good example of this approach is the decades-long investigation of selection acting along latitudinal clines in Drosophila melanogaster. Here we use next-generation genome sequencing to reexamine the well-studied Australian D. melanogaster cline. We find evidence for extensive differentiation between temperate and tropical populations, with regulatory regions and unannotated regions showing particularly high levels of differentiation. Although the physical genomic scale of geographic differentiation is small--on the order of gene sized--we observed several larger highly differentiated regions. The region spanned by the cosmopolitan inversion polymorphism In(3R)P shows higher levels of differentiation, consistent with the major difference in allele frequencies of Standard and In(3R)P karyotypes in temperate vs. tropical Australian populations. Our analysis reveals evidence for spatially varying selection on a number of key biological processes, suggesting fundamental biological differences between flies from these two geographic regions.
Collapse
Affiliation(s)
- Bryan Kolaczkowski
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Andrew D. Kern
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Alisha K. Holloway
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David J. Begun
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
35
|
The transcriptional landscape of cross-specific hybrids and its possible link with growth in brook charr (Salvelinus fontinalis Mitchill). Genetics 2010; 186:97-107. [PMID: 20551437 DOI: 10.1534/genetics.110.118158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genetic mechanisms underlying hybridization are poorly understood despite their potentially important roles in speciation processes, adaptative evolution, and agronomical innovation. In this study, transcription profiles were compared among three populations of brook charr and their hybrids using microarrays to assess the influence of hybrid origin on modes of transcription regulation inheritance and on the mechanisms underlying growth. We found that twice as many transcripts were differently expressed between the domestic population and the two wild populations (Rupert and Laval) than between wild ones, despite their deeper genetic distance. This could reflect the consequence of artificial selection during domestication. We detected that hybrids exhibited strikingly different patterns of mode of transcription regulation, being mostly additive (94%) for domestic × Rupert, and nonadditive for Laval × domestic (45.7%) and Rupert × Laval hybrids (37.5%). Both heterosis and outbreeding depression for growth were observed among the crosses. Our results indicated that prevalence of dominance in transcription regulation seems related to growth heterosis, while prevalence of transgressive transcription regulation may be more related to outbreeding depression. Our study clearly shows, for the first time in vertebrates, that the consequences of hybridization on both the transcriptome level and the phenotype are highly dependent on the specific genetic architectures of crossed populations and therefore hardly predictable.
Collapse
|
36
|
Fontanillas P, Landry CR, Wittkopp PJ, Russ C, Gruber JD, Nusbaum C, Hartl DL. Key considerations for measuring allelic expression on a genomic scale using high-throughput sequencing. Mol Ecol 2010; 19 Suppl 1:212-27. [PMID: 20331781 DOI: 10.1111/j.1365-294x.2010.04472.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Differences in gene expression are thought to be an important source of phenotypic diversity, so dissecting the genetic components of natural variation in gene expression is important for understanding the evolutionary mechanisms that lead to adaptation. Gene expression is a complex trait that, in diploid organisms, results from transcription of both maternal and paternal alleles. Directly measuring allelic expression rather than total gene expression offers greater insight into regulatory variation. The recent emergence of high-throughput sequencing offers an unprecedented opportunity to study allelic transcription at a genomic scale for virtually any species. By sequencing transcript pools derived from heterozygous individuals, estimates of allelic expression can be directly obtained. The statistical power of this approach is influenced by the number of transcripts sequenced and the ability to unambiguously assign individual sequence fragments to specific alleles on the basis of transcribed nucleotide polymorphisms. Here, using mathematical modelling and computer simulations, we determine the minimum sequencing depth required to accurately measure relative allelic expression and detect allelic imbalance via high-throughput sequencing under a variety of conditions. We conclude that, within a species, a minimum of 500-1000 sequencing reads per gene are needed to test for allelic imbalance, and consequently, at least five to 10 millions reads are required for studying a genome expressing 10 000 genes. Finally, using 454 sequencing, we illustrate an application of allelic expression by testing for cis-regulatory divergence between closely related Drosophila species.
Collapse
Affiliation(s)
- Pierre Fontanillas
- Department of Ecology and Evolution, University of Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Birchler JA, Veitia RA. The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. THE NEW PHYTOLOGIST 2010; 186:54-62. [PMID: 19925558 PMCID: PMC2858765 DOI: 10.1111/j.1469-8137.2009.03087.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The gene balance hypothesis states that the stoichiometry of members of multisubunit complexes affects the function of the whole because of the kinetics and mode of assembly. Gene regulatory mechanisms also would be governed by these principles. Here, we review the impact of this concept with regard to the effects on the genetics of quantitative traits, the fate of duplication of genes following polyploidization events or segmental duplication, the basis of aneuploid syndromes, the constraints on cis and trans variation in gene regulation and the potential involvement in hybrid incompatibilities.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
38
|
Paige KN. The Functional Genomics of Inbreeding Depression: A New Approach to an Old Problem. Bioscience 2010. [DOI: 10.1525/bio.2010.60.4.5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
39
|
From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics 2010; 11:158. [PMID: 20210995 PMCID: PMC2843620 DOI: 10.1186/1471-2164-11-158] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly. Here we present the identification of novel candidate genes for different potato tuber quality traits by employing a pooling approach reducing the number of hybridizations needed. Extreme genotypes for a quantitative trait are collected and the RNA from contrasting bulks is then profiled with the aim of finding differentially expressed genes. Results We have successfully implemented the pooling strategy for potato quality traits and identified candidate genes associated with potato tuber flesh color and tuber cooking type. Elevated expression level of a dominant allele of the β-carotene hydroxylase (bch) gene was associated with yellow flesh color through mapping of the gene under a major QTL for flesh color on chromosome 3. For a second trait, a candidate gene with homology to a tyrosine-lysine rich protein (TLRP) was identified based on allele specificity of the probe on the microarray. TLRP was mapped on chromosome 9 in close proximity to a QTL for potato cooking type strengthening its significance as a candidate gene. Furthermore, we have performed a profiling experiment targeting a polygenic trait, by pooling individual genotypes based both on phenotypic and marker data, allowing the identification of candidate genes associated with the two different linkage groups. Conclusions A pooling approach for RNA-profiling with the aim of identifying novel candidate genes associated with tuber quality traits was successfully implemented. The identified candidate genes for tuber flesh color (bch) and cooking type (tlrp) can provide useful markers for breeding schemes in the future. Strengths and limitations of the approach are discussed.
Collapse
|
40
|
Regulatory divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific expression. Genetics 2009; 183:547-61, 1SI-21SI. [PMID: 19667135 DOI: 10.1534/genetics.109.105957] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species-specific regulation of gene expression contributes to the development and maintenance of reproductive isolation and to species differences in ecologically important traits. A better understanding of the evolutionary forces that shape regulatory variation and divergence can be developed by comparing expression differences among species and interspecific hybrids. Once expression differences are identified, the underlying genetics of regulatory variation or divergence can be explored. With the goal of associating cis and/or trans components of regulatory divergence with differences in gene expression, overall and allele-specific expression levels were assayed genomewide in female adult heads of Drosophila melanogaster, D. simulans, and their F1 hybrids. A greater proportion of cis differences than trans differences were identified for genes expressed in heads and, in accordance with previous studies, cis differences also explained a larger number of species differences in overall expression level. Regulatory divergence was found to be prevalent among genes associated with defense, olfaction, and among genes downstream of the Drosophila sex determination hierarchy. In addition, two genes, with critical roles in sex determination and micro RNA processing, Sxl and loqs, were identified as misexpressed in hybrid female heads, potentially contributing to hybrid incompatibility.
Collapse
|
41
|
Ayroles JF, Hughes KA, Rowe KC, Reedy MM, Rodriguez-Zas SL, Drnevich JM, Cáceres CE, Paige KN. A genomewide assessment of inbreeding depression: gene number, function, and mode of action. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2009; 23:920-930. [PMID: 19627320 DOI: 10.1111/j.1523-1739.2009.01186.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although the genetic basis of inbreeding depression is still being debated, most fitness effects are thought to be the result of increased homozygosity for recessive or partially recessive deleterious alleles rather than the loss of overdominant genes. It is unknown how many loci are associated with inbreeding depression, the genes or gene pathways involved, or their mode of action. To uncover genes associated with variation in fitness following inbreeding, we generated a set of inbred lines of Drosophila melanogaster for which only the third chromosome varied among lines and measured male competitive reproductive success among these lines to estimate inbreeding depression. Male competitive reproductive success for different lines validated our prediction that equally inbred lines show variation in inbreeding depression. To begin to assess the molecular basis of inbreeding depression for male competitive reproductive success, we detected variation in whole-genome gene expression across these inbred lines with commercially available high-density oligonucleotide microarrays. A total of 567 genes were differentially expressed among these inbred lines, indicating that inbreeding directly or indirectly affects a large number of genes: genes that are disproportionately involved in metabolism, stress and defense responses. Subsequently, we generated a set of outbred lines by crossing the highest inbreeding depression lines to each other and contrasted gene expression between parental inbred lines and F(1) hybrids with transcript abundance as a quantitative phenotype to determine the mode of action of the genes associated with inbreeding depression. Although our results indicated that approximately 75% of all genes involved in inbreeding depression were additive, partially additive, or dominant, about 25% of all genes expressed patterns of overdominance. These results should be viewed with caution given that they may be confounded by issues of statistical inference or associative overdominance.
Collapse
Affiliation(s)
- Julien F Ayroles
- School of Integrative Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Normandeau E, Hutchings JA, Fraser DJ, Bernatchez L. Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evol Appl 2009; 2:489-503. [PMID: 25567894 PMCID: PMC3352448 DOI: 10.1111/j.1752-4571.2009.00074.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/29/2022] Open
Abstract
Because of intrinsic differences in their genetic architectures, wild populations invaded by domesticated individuals could experience population-specific consequences following introgression by genetic material of domesticated origin. Expression levels of 16 000 transcripts were quantified by microarrays in liver tissue from farm, wild, and farm-wild backcross (i.e. F1 farm-wild hybrid × wild; total n = 50) Atlantic salmon (Salmo salar) raised under common environmental conditions. The wild populations and farm strain originated from three North American rivers in eastern Canada (Stewiacke, Tusket, and Saint John rivers, respectively). Analysis of variance revealed 177 transcripts with different expression levels among the five strains compared. Five times more of these transcripts were differentiated between farmed parents and Tusket backcrosses (n = 53) than between Stewiacke backcrosses and their farmed parents (n = 11). Altered biological processes in backcrosses also differed between populations both in number and in the type of processes impacted (metabolism vs immunity). Over-dominant gene expression regulation in backcrosses varied considerably between populations (23% in Stewiacke vs 44% in Tusket). Hence, the consequences of introgression of farm genetic material on gene expression depended on population-specific genetic architectures. These results support the need to evaluate impacts of farm-wild genetic interactions at the population scale.
Collapse
Affiliation(s)
| | | | - Dylan J Fraser
- Department of Biology, Dalhousie University Halifax, Nova Scotia, Canada
| | | |
Collapse
|
43
|
Effects of ploidy and recombination on evolution of robustness in a model of the segment polarity network. PLoS Comput Biol 2009; 5:e1000296. [PMID: 19247428 PMCID: PMC2637435 DOI: 10.1371/journal.pcbi.1000296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 01/20/2009] [Indexed: 11/19/2022] Open
Abstract
Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression. Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone. Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex (recombination) conferred a robustness advantage through "survival of the compatible": those alleles that can work with a wide variety of genetically diverse partners persist, and this selects for robust alleles.
Collapse
|
44
|
Renaut S, Nolte AW, Bernatchez L. Gene expression divergence and hybrid misexpression between lake whitefish species pairs (Coregonus spp. Salmonidae). Mol Biol Evol 2009; 26:925-36. [PMID: 19174479 DOI: 10.1093/molbev/msp017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genomewide analyses of the transcriptome have confirmed that gene misexpression may underlie reproductive isolation mechanisms in interspecific hybrids. Here, using a 16,006 features cDNA microarray, we compared and contrasted gene expression divergence at two ontogenetic stages in incipient species of normal and dwarf whitefish (Coregonus clupeaformis) with that of first generation (normal x dwarf) and second-generation hybrid crosses (backcross: [normal x dwarf] x normal]. Our goal was to identify the main mode of action responsible for gene transcription and to discover key genes misexpressed in hybrids. Very few transcripts (five of 4,950 expressed) differed in mean expression level between parentals and hybrids at the embryonic stage, in contrast to 16-week-old juvenile fish for which 617 out of 5,359 transcripts differed significantly. We also found evidence for more misexpression in backcross hybrids whereby nonadditivity explained a larger fraction of hybrid inheritance patterns in backcross (54%) compared with F1-hybrids (9%). Gene expression in hybrids was more variable than in pure crosses and transgressive patterns of expression were ubiquitous in hybrids. In backcross embryos in particular, the expression of three key developmental genes involved in protein folding and mRNA translation was severely disrupted. Accordingly, gene misexpression in hybrids adds to other factors previously identified as contributing to the reproductive isolation of incipient species of lake whitefish.
Collapse
Affiliation(s)
- S Renaut
- Département de Biologie, IBIS (Institut de Biologie Intégrative et des Systémes), Université Laval, Québec, Canada.
| | | | | |
Collapse
|
45
|
Kliebenstein D. Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:93-114. [PMID: 19012536 DOI: 10.1146/annurev.arplant.043008.092114] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Scientific inquiries in fields ranging from ecology to plant breeding assess phenotypic variation within a plant species either to explain its presence or utilize its consequences. Frequently this natural genetic variation is studied via mapping quantitative trait loci (QTLs); however, elucidation of the underlying molecular mechanisms is a continuing bottleneck. The genomic analysis of transcripts as individual phenotypes has led to the emerging field of expression QTL analysis. This field has begun both to delve into the ecological/evolutionary significance of this transcript variation as well as to use specific eQTLs to speed up our analysis of the molecular basis of quantitative traits. This review introduces eQTL analysis and begins to illustrate how these data can be applied to multiple research fields.
Collapse
Affiliation(s)
- Dan Kliebenstein
- Plant Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
46
|
Price AL, Patterson N, Hancks DC, Myers S, Reich D, Cheung VG, Spielman RS. Effects of cis and trans genetic ancestry on gene expression in African Americans. PLoS Genet 2008; 4:e1000294. [PMID: 19057673 PMCID: PMC2586034 DOI: 10.1371/journal.pgen.1000294] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/04/2008] [Indexed: 11/18/2022] Open
Abstract
Variation in gene expression is a fundamental aspect of human phenotypic variation. Several recent studies have analyzed gene expression levels in populations of different continental ancestry and reported population differences at a large number of genes. However, these differences could largely be due to non-genetic (e.g., environmental) effects. Here, we analyze gene expression levels in African American cell lines, which differ from previously analyzed cell lines in that individuals from this population inherit variable proportions of two continental ancestries. We first relate gene expression levels in individual African Americans to their genome-wide proportion of European ancestry. The results provide strong evidence of a genetic contribution to expression differences between European and African populations, validating previous findings. Second, we infer local ancestry (0, 1, or 2 European chromosomes) at each location in the genome and investigate the effects of ancestry proximal to the expressed gene (cis) versus ancestry elsewhere in the genome (trans). Both effects are highly significant, and we estimate that 12+/-3% of all heritable variation in human gene expression is due to cis variants.
Collapse
Affiliation(s)
- Alkes L. Price
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Nick Patterson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Dustin C. Hancks
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Simon Myers
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - David Reich
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vivian G. Cheung
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Pennsylvania, United States of America
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Howard Hughes Medical Institute, Philadelphia, Pennsylvania, United States of America
| | - Richard S. Spielman
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
47
|
Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc Natl Acad Sci U S A 2008; 105:14471-6. [PMID: 18791071 DOI: 10.1073/pnas.0805160105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene expression levels appear to be under pervasive stabilizing selection. Yet the genetic architecture underlying abundant gene expression diversity within and between populations remains elusive. Here, we investigated the role of dominance in the segregation of cis- and trans-regulation within and between populations. We used chromosome substitution lines of Drosophila melanogaster to show that (i) >70% of the genes that are differentially expressed between two homozygous lines are masked in the heterozygous, suggesting that one of the substituted chromosomes contains a recessive allele; (ii) such large masking is already obtained with heterozygous chromosomes originating from the same population, with the time of divergence between chromosomes in heterozygous lines making only a small but significant contribution to the masking of variation observed in homozygous lines; (iii) variation in gene expression due to trans-regulation is biased toward greater deviations from additivity because of recessive and dominant alleles, whereas variation due to cis-regulation shows higher additivity; and (iv) genetic divergence between second chromosomes is associated with increased cis-regulation, whereas the level of trans-regulation shows little increase over the time scale studied. Our results indicate that cis-acting alleles may be preferentially fixed by positive natural selection because of their higher additivity, and that the disruption of gene expression by recessive variation with pervasive trans-effects may be important for understanding gene expression variation within populations. We suggest that widespread regulatory effects of recessive low-frequency homozygous variation may provide a general mechanism mediating disease phenotypes and the genetic load of natural populations.
Collapse
|
48
|
Sun W, Yuan S, Li KC. Trait-trait dynamic interaction: 2D-trait eQTL mapping for genetic variation study. BMC Genomics 2008; 9:242. [PMID: 18498664 PMCID: PMC2432080 DOI: 10.1186/1471-2164-9-242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 05/23/2008] [Indexed: 11/11/2022] Open
Abstract
Background Many studies have shown that the abundance level of gene expression is heritable. Analogous to the traditional genetic study, most researchers treat the expression of one gene as a quantitative trait and map it to expression quantitative trait loci (eQTL). This is 1D-trait mapping. 1D-trait mapping ignores the trait-trait interaction completely, which is a major shortcoming. Results To overcome this limitation, we study the expression of a pair of genes and treat the variation in their co-expression pattern as a two dimensional quantitative trait. We develop a method to find gene pairs, whose co-expression patterns, including both signs and strengths, are mediated by genetic variations and map these 2D-traits to the corresponding genetic loci. We report several applications by combining 1D-trait mapping with 2D-trait mapping, including the contribution of genetic variations to the perturbations in the regulatory mechanisms of yeast metabolic pathways. Conclusion Our approach of 2D-trait mapping provides a novel and effective way to connect the genetic variation with higher order biological modules via gene expression profiles.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | | | | |
Collapse
|
49
|
Wang D, Nettleton D. Combining classical trait and microarray data to dissect transcriptional regulation: a case study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:683-690. [PMID: 18189124 DOI: 10.1007/s00122-007-0701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 12/13/2007] [Indexed: 05/25/2023]
Abstract
The selective transcriptional profiling approach involves selecting an optimal subset of individuals to microarray from a larger set of individuals for which relatively inexpensive quantitative trait and molecular marker data are available. The goal of the selection and subsequent analyses is to identify genes whose expression is associated with a quantitative trait or quantitative trait locus (QTL). In this paper, we applied the selective transcriptional profiling approach to data sets concerning flowering time and gene transcription levels of Arabidopsis recombinant inbred lines. Our results confirm that the selective transcriptional profiling approach can achieve much greater power for uncovering associations than standard approaches that ignore information from classical traits. In addition, we show that selective transcriptional profiling can achieve power similar to standard approaches at a fraction of the cost and effort. We also identified three groups of genes which show distinctive patterns with regard to gene expression levels, QTL genotype, and a classical trait. This study represents the first application of selective transcriptional profiling to real data and serves as a template for dissecting gene regulation networks related to a classical trait using the selective transcriptional profiling approach.
Collapse
Affiliation(s)
- Dong Wang
- Department of Statistics, University of Nebraska-Lincoln, 340 Hardin Hall North, Lincoln, NE 68583-0963, USA.
| | | |
Collapse
|
50
|
Hadzhiev Y, Lang M, Ertzer R, Meyer A, Strähle U, Müller F. Functional diversification of sonic hedgehog paralog enhancers identified by phylogenomic reconstruction. Genome Biol 2008; 8:R106. [PMID: 17559649 PMCID: PMC2394741 DOI: 10.1186/gb-2007-8-6-r106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/09/2007] [Accepted: 06/08/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cis-regulatory modules of developmental genes are targets of evolutionary changes that underlie the morphologic diversity of animals. Little is known about the 'grammar' of interactions between transcription factors and cis-regulatory modules and therefore about the molecular mechanisms that underlie changes in these modules, particularly after gene and genome duplications. We investigated the ar-C midline enhancer of sonic hedgehog (shh) orthologs and paralogs from distantly related vertebrate lineages, from fish to human, including the basal vertebrate Latimeria menadoensis. RESULTS We demonstrate that the sonic hedgehog a (shha) paralogs sonic hedgehog b (tiggy winkle hedgehog; shhb) genes of fishes have a modified ar-C enhancer, which specifies a diverged function at the embryonic midline. We have identified several conserved motifs that are indicative of putative transcription factor binding sites by local alignment of ar-C enhancers of numerous vertebrate sequences. To trace the evolutionary changes among paralog enhancers, phylogenomic reconstruction was carried out and lineage-specific motif changes were identified. The relation between motif composition and observed developmental differences was evaluated through transgenic functional analyses. Altering and exchanging motifs between paralog enhancers resulted in reversal of enhancer specificity in the floor plate and notochord. A model reconstructing enhancer divergence during vertebrate evolution was developed. CONCLUSION Our model suggests that the identified motifs of the ar-C enhancer function as binary switches that are responsible for specific activity between midline tissues, and that these motifs are adjusted during functional diversification of paralogs. The unraveled motif changes can also account for the complex interpretation of activator and repressor input signals within a single enhancer.
Collapse
Affiliation(s)
- Yavor Hadzhiev
- Laboratory of Developmental Transcription Regulation, Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany
- Laboratory of Developmental Neurobiology and Genetics, Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany
| | - Michael Lang
- Department of Zoology and Evolution biology, Faculty of Biology, University of Konstanz, Konstanz D-78457, Germany
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Raymond Ertzer
- Laboratory of Developmental Neurobiology and Genetics, Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany
| | - Axel Meyer
- Department of Zoology and Evolution biology, Faculty of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Uwe Strähle
- Laboratory of Developmental Neurobiology and Genetics, Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany
| | - Ferenc Müller
- Laboratory of Developmental Transcription Regulation, Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany
| |
Collapse
|