1
|
Yoro E, Suzuki S, Akiyoshi N, Kofuji R, Sakakibara K. The transcription factor PpRKD evokes female developmental fate in the sexual reproductive organs of Physcomitrium patens. THE NEW PHYTOLOGIST 2025; 245:653-667. [PMID: 39574395 PMCID: PMC11655435 DOI: 10.1111/nph.20262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024]
Abstract
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown. Here, we identified an RWP-RK domain-containing transcription factor in P. patens, PpRKD, as a factor required for the development of female organs, based on the absence of archegonia in loss-of-function Pprkd mutants and the specific expression of PpRKD in archegonia. When ectopically induced, the expression of PpRKD resulted in the repression of antheridial development and the emergence of archegonium-like organs. Furthermore, the young primordia inside the antheridial bundle displayed typical archegonial division patterns, suggesting that PpRKD confer female fate to antheridium primordia. This study represents the first instance where the function of sex determination has been identified among RKD orthologs in land plants. This finding should provide a new framework for the molecular evolutionary context of the genes in the RKD family, considering the recent elucidation of their roles in algae.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life ScienceRikkyo UniversityTokyo171‐8501Japan
| | - Seiya Suzuki
- Department of Life ScienceRikkyo UniversityTokyo171‐8501Japan
| | | | - Rumiko Kofuji
- College of Science and EngineeringKanazawa UniversityKanazawa920‐1192Japan
| | | |
Collapse
|
2
|
Bedera-García R, García-Gómez ME, Personat JM, Couso I. Inositol polyphosphates regulate resilient mechanisms in the green alga Chlamydomonas reinhardtii to adapt to extreme nutrient conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70089. [PMID: 39868659 DOI: 10.1111/ppl.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation. In this study, we conducted prolonged starvation in WT and vip1-1 Chlamydomonas cells. After N and P had been consumed, they showed important differences in the levels of chlorophyll, photosystem II (PSII) activity and ultrastructural morphology, including differences in the cell size and cell division. Metabolomic analysis under these conditions revealed an overall decrease in different organic compounds such as amino acids, including arginine and its precursors and tryptophan, which is considered a signalling molecule itself in plants. In addition, we observed significant differences in RNA levels of genes related to N assimilation that are under the control of the NIT2 transcription factor. These data are of important relevance in understanding the signalling role of PP-InsPs in nutrient sensing, especially regarding N, which has not directly been connected to these molecules in green organisms before. Additionally, the PP-InsPs regulation over cell size and photosynthesis supports novel strategies for the generation of resilient strains, expanding the biotechnological applications of green microalgae.
Collapse
Affiliation(s)
- Rodrigo Bedera-García
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María Elena García-Gómez
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - José María Personat
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
3
|
Schomaker RA, Richardson TL, Dudycha JL. Consequences of light spectra for pigment composition and gene expression in the cryptophyte Rhodomonas salina. Environ Microbiol 2023; 25:3280-3297. [PMID: 37845005 DOI: 10.1111/1462-2920.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the β-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.
Collapse
Affiliation(s)
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- School of the Earth, Ocean, & Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Lin C, Guo X, Yu X, Li S, Li W, Yu X, An F, Zhao P, Ruan M. Genome-Wide Survey of the RWP-RK Gene Family in Cassava ( Manihot esculenta Crantz) and Functional Analysis. Int J Mol Sci 2023; 24:12925. [PMID: 37629106 PMCID: PMC10454212 DOI: 10.3390/ijms241612925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The plant-specific RWP-RK transcription factor family plays a central role in the regulation of nitrogen response and gametophyte development. However, little information is available regarding the evolutionary relationships and characteristics of the RWP-RK family genes in cassava, an important tropical crop. Herein, 13 RWP-RK proteins identified in cassava were unevenly distributed across 9 of the 18 chromosomes (Chr), and these proteins were divided into two clusters based on their phylogenetic distance. The NLP subfamily contained seven cassava proteins including GAF, RWP-RK, and PB1 domains; the RKD subfamily contained six cassava proteins including the RWP-RK domain. Genes of the NLP subfamily had a longer sequence and more introns than the RKD subfamily. A large number of hormone- and stress-related cis-acting elements were found in the analysis of RWP-RK promoters. Real-time quantitative PCR revealed that all MeNLP1-7 and MeRKD1/3/5 genes responded to different abiotic stressors (water deficit, cold temperature, mannitol, polyethylene glycol, NaCl, and H2O2), hormonal treatments (abscisic acid and methyl jasmonate), and nitrogen starvation. MeNLP3/4/5/6/7 and MeRKD3/5, which can quickly and efficiently respond to different stresses, were found to be important candidate genes for further functional assays in cassava. The MeRKD5 and MeNLP6 proteins were localized to the cell nucleus in tobacco leaf. Five and one candidate proteins interacting with MeRKD5 and MeNLP6, respectively, were screened from the cassava nitrogen starvation library, including agamous-like mads-box protein AGL14, metallothionein 2, Zine finger FYVE domain containing protein, glyceraldehyde-3-phosphate dehydrogenase, E3 Ubiquitin-protein ligase HUWE1, and PPR repeat family protein. These results provided a solid basis to understand abiotic stress responses and signal transduction mediated by RWP-RK genes in cassava.
Collapse
Affiliation(s)
- Chenyu Lin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xin Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Xiaohui Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Feng An
- Hainan Danzhou Agro-Ecosystem National Observation and Research Station, Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China;
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| |
Collapse
|
5
|
Takahashi K, Suzuki S, Kawai-Toyooka H, Yamamoto K, Hamaji T, Ootsuki R, Yamaguchi H, Kawachi M, Higashiyama T, Nozaki H. Reorganization of the ancestral sex-determining regions during the evolution of trioecy in Pleodorina starrii. Commun Biol 2023; 6:590. [PMID: 37296191 PMCID: PMC10256686 DOI: 10.1038/s42003-023-04949-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The coexistence of three sexual phenotypes (male, female and bisexual) in a single species, 'trioecy', is rarely found in diploid organisms such as flowering plants and invertebrates. However, trioecy in haploid organisms has only recently been reported in a green algal species, Pleodorina starrii. Here, we generated whole-genome data of the three sex phenotypes of P. starrii to reveal a reorganization of the ancestral sex-determining regions (SDRs) in the sex chromosomes: the male and bisexual phenotypes had the same "male SDR" with paralogous gene expansions of the male-determining gene MID, whereas the female phenotype had a "female SDR" with transposition of the female-specific gene FUS1 to autosomal regions. Although the male and bisexual sex phenotypes had the identical male SDR and harbored autosomal FUS1, MID and FUS1 expression during sexual reproduction differed between them. Thus, the coexistence of three sex phenotypes in P. starrii is possible.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroko Kawai-Toyooka
- Department of Frontier Bioscience, Hosei University, Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - Kayoko Yamamoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Takashi Hamaji
- Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University, Komazawa, Setagaya-ku, Tokyo, 154-8525, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
6
|
Monteiro LDFR, Giraldi LA, Winck FV. From Feasting to Fasting: The Arginine Pathway as a Metabolic Switch in Nitrogen-Deprived Chlamydomonas reinhardtii. Cells 2023; 12:1379. [PMID: 37408213 PMCID: PMC10216424 DOI: 10.3390/cells12101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
The metabolism of the model microalgae Chlamydomonas reinhardtii under nitrogen deprivation is of special interest due to its resulting increment of triacylglycerols (TAGs), that can be applied in biotechnological applications. However, this same condition impairs cell growth, which may limit the microalgae's large applications. Several studies have identified significant physiological and molecular changes that occur during the transition from an abundant to a low or absent nitrogen supply, explaining in detail the differences in the proteome, metabolome and transcriptome of the cells that may be responsible for and responsive to this condition. However, there are still some intriguing questions that reside in the core of the regulation of these cellular responses that make this process even more interesting and complex. In this scenario, we reviewed the main metabolic pathways that are involved in the response, mining and exploring, through a reanalysis of omics data from previously published datasets, the commonalities among the responses and unraveling unexplained or non-explored mechanisms of the possible regulatory aspects of the response. Proteomics, metabolomics and transcriptomics data were reanalysed using a common strategy, and an in silico gene promoter motif analysis was performed. Together, these results identified and suggested a strong association between the metabolism of amino acids, especially arginine, glutamate and ornithine pathways to the production of TAGs, via the de novo synthesis of lipids. Furthermore, our analysis and data mining indicate that signalling cascades orchestrated with the indirect participation of phosphorylation, nitrosylation and peroxidation events may be essential to the process. The amino acid pathways and the amount of arginine and ornithine available in the cells, at least transiently during nitrogen deprivation, may be in the core of the post-transcriptional, metabolic regulation of this complex phenomenon. Their further exploration is important to the discovery of novel advances in the understanding of microalgae lipids' production.
Collapse
Affiliation(s)
- Lucca de Filipe Rebocho Monteiro
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Laís Albuquerque Giraldi
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia Vischi Winck
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
| |
Collapse
|
7
|
Zhang Q, Li J, Wen X, Deng C, Yang X, Dai S. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium. BMC PLANT BIOLOGY 2023; 23:197. [PMID: 37061708 PMCID: PMC10105424 DOI: 10.1186/s12870-023-04201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RWP-RKs are plant specific transcription factors, which are widely distributed in plants in the form of polygenic families and play key role in nitrogen absorption and utilization, and are crucial to plant growth and development. However, the genome-wide identification and function of RWP-RK in Compositae plants are widely unknown. RESULTS In this study, 101 RWP-RKs in Chrysanthemum lavandulifolium were identified and tandem repeat was an important way for the expansion of RWP-RKs in Compositae species. 101 RWP-RKs contain 38 NIN-like proteins (NLPs) and 31 RWP- RK domain proteins (RKDs), as well as 32 specific expansion members. qRT-PCR results showed that 7 ClNLPs in leaves were up-regulated at the floral transition stage, 10 ClNLPs were negatively regulated by low nitrate conditions, and 3 of them were up-regulated by optimal nitrate conditions. In addition, the flowering time of Chrysanthemum lavandulifolium was advanced under optimal nitrate conditions, the expression level of Cryptochromes (ClCRYs), phytochrome C (ClPHYC) and the floral integration genes GIGANTEA (ClGI), CONSTANS-LIKE (ClCOL1, ClCOL4, ClCOL5), FLOWERING LOCUS T (ClFT), FLOWERING LOCUS C (ClFLC), SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS 1 (ClSOC1) also were up-regulated. The expression level of ClCRY1a, ClCRY1c, ClCRY2a and ClCRY2c in the vegetative growth stage induced by optimal nitrate reached the expression level induced by short-day in the reproductive growth stage, which supplemented the induction effect of short-day on the transcription level of floral-related genes in advance. CONCLUSIONS It was speculated that ClNLPs may act on the photoperiodic pathway under optimal nitrate environment, and ultimately regulate the flowering time by up-regulating the transcription level of ClCRYs. These results provide new perspective for exploring the mechanism of nitrate/nitrogen affecting flowering in higher plants.
Collapse
Affiliation(s)
- Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohui Wen
- Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | - Xiuzhen Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T. A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. THE NEW PHYTOLOGIST 2023; 237:1636-1651. [PMID: 36533897 DOI: 10.1111/nph.18662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ayumi Komiya
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Natsumi Tsuyuki
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Naho Kanda
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Jun Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kakumacho, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
9
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Transcriptome Analysis Reveals the Involvement of Alternative Splicing in the Nitrogen Starvation Response of Chlamydomonas reinhardtii. Processes (Basel) 2022. [DOI: 10.3390/pr10122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing (AS) is a regulatory mechanism of post-transcriptional regulation that plays an important role in plant response to abiotic stresses. However, corresponding research involving the mechanism of AS in the nitrogen starvation response of C. reinhardtii is rare. This study performed a comprehensive and systematic analysis of AS events in C. reinhardtii at nine time points (0 h, 10 m, 30 m, 1 h, 6 h, 8 h, 24 h, and 48 h) under nitrogen starvation. It used STAR and rMATS tools to identify and quantify the probability of the AS event happening through the transcriptome high-throughput sequencing data. A total of 5806 AS events in 3500 genes were identified, and the retained intron and skipped exon were considered the main AS types. The genes related to the AS event in nitrogen starvation were mainly involved in spliceosome and transporter and enriched in the citrate cycle and fatty acid degradation pathways. These results suggested that AS may play an important role in the nitrogen starvation response in C. reinhardtii, and provided insights into post-transcriptional regulation under nitrogen starvation.
Collapse
|
11
|
Shinkawa H, Kajikawa M, Furuya T, Nishihama R, Tsukaya H, Kohchi T, Fukuzawa H. Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:1063-1077. [PMID: 35674121 DOI: 10.1093/pcp/pcac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836 Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493 Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
12
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Liu X, Blomme J, Bogaert KA, D’hondt S, Wichard T, Deforce D, Van Nieuwerburgh F, De Clerck O. Transcriptional dynamics of gametogenesis in the green seaweed Ulva mutabilis identifies an RWP-RK transcription factor linked to reproduction. BMC PLANT BIOLOGY 2022; 22:19. [PMID: 34991492 PMCID: PMC8734247 DOI: 10.1186/s12870-021-03361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND The molecular mechanism underlying sexual reproduction in land plants is well understood in model plants and is a target for crop improvement. However, unlike land plants, the genetic basis involved in triggering reproduction and gamete formation remains elusive in most seaweeds, which are increasingly viewed as an alternative source of functional food and feedstock for energy applications. RESULTS Gametogenesis of Ulva mutabilis, a model organism for green seaweeds, was studied. We analyzed transcriptome dynamics at different time points during gametogenesis following induction of reproduction by fragmentation and removal of sporulation inhibitors. Analyses demonstrated that 45% of the genes in the genome were differentially expressed during gametogenesis. We identified several transcription factors that potentially play a key role in the early gametogenesis of Ulva given the function of their homologs in higher plants and microalgae. In particular, the detailed expression pattern of an evolutionarily conserved transcription factor containing an RWP-RK domain suggested a key role during Ulva gametogenesis. CONCLUSIONS Transcriptomic analyses of gametogenesis in the green seaweed Ulva highlight the importance of a conserved RWP-RK transcription factor in the induction of sexual reproduction. The identification of putative master regulators of gametogenesis provides a starting point for further functional characterization.
Collapse
Affiliation(s)
- Xiaojie Liu
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Jonas Blomme
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kenny A. Bogaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Tuttle JT, Williams JR, Higgs DC. Characterization of a Chlamydomonas reinhardtii mutant strain with tolerance to low nitrogen and increased growth and biomass under nitrogen stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yin M, Zhang Z, Xuan M, Feng H, Ye W, Zheng X, Wang Y. Conserved Subgroups of the Plant-Specific RWP-RK Transcription Factor Family Are Present in Oomycete Pathogens. Front Microbiol 2020; 11:1724. [PMID: 32849368 PMCID: PMC7399023 DOI: 10.3389/fmicb.2020.01724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Nitrogen is a major constituent of proteins, chlorophyll, nucleotides, and hormones and has profound effects on plant growth and productivity. RWP-RK family transcription factors (TFs) are key regulators that bind to cis-acting elements in the promoter regions of nitrogen use efficiency-related genes and genes responsible for gametogenesis and embryogenesis. The proteins share a conserved RWPxRK motif; have been found in all vascular plants, green algae, and slime molds; and are considered to be a plant-specific TF family. In this study, we show that RWP-RK proteins are also widely present in the Stramenopila kingdom, particularly among the oomycetes, with 12-15 members per species. These proteins form three distinct phylogenetic subgroups, two of which are relatively closely related to the nodule inception (NIN)-like protein (NLP) or the RWP-RK domain protein (RKD) subfamilies of plant RWP-RK proteins. The donor for horizontal gene transfer of RWP-RK domains to slime molds is likely to have been among the Stramenopila, predating the divide between brown algae and oomycetes. The RWP-RK domain has secondary structures that are conserved across plants and oomycetes, but several amino acids that may affect DNA-binding affinity differ. The transcriptional activities of orthologous RWP-RK genes were found to be conserved in oomycetes. Our results demonstrate that RWP-RK family TF genes are present in the oomycetes and form specific subgroups with functions that are likely conserved. Our results provide new insights for further understanding the evolution and function of this TF family in specific eukaryotic organisms.
Collapse
Affiliation(s)
- Maozhu Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Mingrun Xuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Hasan AR, Duggal JK, Ness RW. Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2019; 224:1339-1348. [PMID: 31222749 DOI: 10.1111/nph.16003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jaspreet K Duggal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
18
|
Torres-Romero I, Kong F, Légeret B, Beisson F, Peltier G, Li-Beisson Y. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie 2019; 169:54-61. [PMID: 31563539 DOI: 10.1016/j.biochi.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The use of algal biomass for biofuel production requires improvements in both biomass productivity and its energy density. Green microalgae store starch and oil as two major forms of carbon reserves. Current strategies to increase the amount of carbon reserves often compromise algal growth. To better understand the cellular mechanisms connecting cell division to carbon storage, we examined starch and oil accumulation in two Chlamydomonas mutants deficient in a gene encoding a homolog of the Arabidopsis Cell Division Cycle 5 (CDC5), a MYB DNA binding protein known to be involved in cell cycle in higher plants. The two crcdc5 mutants (crcdc5-1 and crcdc5-2) were found to accumulate significantly higher amount of starch and oil than their corresponding parental lines. Flow cytometry analysis on synchronized cultures cultivated in a diurnal light/dark cycle revealed an abnormal division of the two mutants, characterized by a prolonged S/M phase, therefore demonstrating its implication in cell cycle in Chlamydomonas. Taken together, these results suggest that the energy saved by a slowdown in cell division is used for the synthesis of reserve compounds. This work highlights the importance in understanding the interplay between cell cycle and starch/oil homeostasis, which should have a critical impact on improving lipid/starch productivity.
Collapse
Affiliation(s)
- Ismael Torres-Romero
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Fantao Kong
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Fred Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
19
|
Abstract
Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Susana Coelho
- Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, CS 90074, F-29688 Roscoff, France;
| |
Collapse
|
20
|
Salomé PA, Merchant SS. A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. THE PLANT CELL 2019; 31:1682-1707. [PMID: 31189738 PMCID: PMC6713297 DOI: 10.1105/tpc.18.00952] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 05/13/2023]
Abstract
The unicellular alga Chlamydomonas reinhardtii is a classical reference organism for studying photosynthesis, chloroplast biology, cell cycle control, and cilia structure and function. It is also an emerging model for studying sensory cilia, the production of high-value bioproducts, and in situ structural determination. Much of the early appeal of Chlamydomonas was rooted in its promise as a genetic system, but like other classic model organisms, this rise to prominence predated the discovery of the structure of DNA, whole-genome sequences, and molecular techniques for gene manipulation. The haploid genome of C. reinhardtii facilitates genetic analyses and offers many of the advantages of microbial systems applied to a photosynthetic organism. C. reinhardtii has contributed to our understanding of chloroplast-based photosynthesis and cilia biology. Despite pervasive transgene silencing, technological advances have allowed researchers to address outstanding lines of inquiry in algal research. The most thoroughly studied unicellular alga, C. reinhardtii, is the current standard for algal research, and although genome editing is still far from efficient and routine, it nevertheless serves as a template for other algae. We present a historical retrospective of the rise of C. reinhardtii to illuminate its past and present. We also present resources for current and future scientists who may wish to expand their studies to the realm of microalgae.
Collapse
Affiliation(s)
- Patrice A Salomé
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
| | - Sabeeha S Merchant
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
- University of California, Berkeley, Departments of Plant and Microbial Biology and Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
21
|
Shinkawa H, Kajikawa M, Nomura Y, Ogura M, Sawaragi Y, Yamano T, Nakagami H, Sugiyama N, Ishihama Y, Kanesaki Y, Yoshikawa H, Fukuzawa H. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:916-930. [PMID: 30668822 DOI: 10.1093/pcp/pcz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Mayu Ogura
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Kumar A, Batra R, Gahlaut V, Gautam T, Kumar S, Sharma M, Tyagi S, Singh KP, Balyan HS, Pandey R, Gupta PK. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS One 2018; 13:e0208409. [PMID: 30540790 PMCID: PMC6291158 DOI: 10.1371/journal.pone.0208409] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
RWP-RKs represent a small family of transcription factors (TFs) that are unique to plants and function particularly under conditions of nitrogen starvation. These RWP-RKs have been classified in two sub-families, NLPs (NIN-like proteins) and RKDs (RWP-RK domain proteins). NLPs regulate tissue-specific expression of genes involved in nitrogen use efficiency (NUE) and RKDs regulate expression of genes involved in gametogenesis/embryogenesis. During the present study, using in silico approach, 37 wheat RWP-RK genes were identified, which included 18 TaNLPs (2865 to 7340 bp with 4/5 exons), distributed on 15 chromosomes from 5 homoeologous groups (with two genes each on 4B,4D and 5A) and 19 TaRKDs (1064 to 5768 bp with 1 to 6 exons) distributed on 12 chromosomes from 4 homoeologous groups (except groups 1, 4 and 5); 2–3 splice variants were also available in 9 of the 37 genes. Sixteen (16) of these genes also carried 24 SSRs (simple sequence repeats), while 11 genes had targets for 13 different miRNAs. At the protein level, MD simulation analysis suggested their interaction with nitrate-ions. Significant differences were observed in the expression of only two (TaNLP1 and TaNLP2) of the nine representative genes that were used for in silico expression analysis under varying levels of N at post-anthesis stage (data for other genes was not available for in silico expression analysis). Differences in expression were also observed during qRT-PCR, when expression of four representative genes (TaNLP2, TaNLP7, TaRKD6 and TaRKD9) was examined in roots and shoots of seedlings (under different conditions of N supply) in two contrasting genotypes which differed in NUE (C306 with low NUE and HUW468 with high NUE). These four genes for qRT-PCR were selected on the basis of previous literature, level of homology and the level of expression (in silico study). In particular, the TaNLP7 gene showed significant up-regulation in the roots and shoots of HUW468 (with higher NUE) during N-starvation; this gene has already been characterized in Arabidopsis and tobacco, and is known to be involved in nitrate-signal transduction pathway.
Collapse
Affiliation(s)
- Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Vijay Gahlaut
- Department of Plant Molecular Biology, South Campus, University of Delhi, Delhi, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Lucknow, India
| | - Mansi Sharma
- ICMR- National Institute of Cancer Prevention and Research, Noida, India
| | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
- Ch. Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
23
|
Lin H, Guo S, Dutcher SK. RPGRIP1L helps to establish the ciliary gate for entry of proteins. J Cell Sci 2018; 131:jcs220905. [PMID: 30237221 PMCID: PMC6215392 DOI: 10.1242/jcs.220905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in transition zone genes change the composition of the ciliary proteome. We isolated new mutations in RPGRIP1L (denotated as RPG1 in algae) that affect the localization of the transition zone protein NPHP4 in the model organism Chlamydomonas reinhardtii NPHP4 localization is not affected in multiple new intraflagellar transport (IFT) mutants. We compared the proteome of cilia from wild-type and mutants that affect the transition zone (RPGRIP1L) or IFT (IFT172 and DHC1b) by mass spectrometry. The rpg1-1 mutant cilia show the most dramatic increase in cytoplasmic proteins. These nonciliary proteins function in translation, membrane remodeling, ATP production and as chaperonins. These proteins are excluded in isolated cilia from fla11-1 (IFT172) and fla24-1 (DHC1b). Our data support the idea that RPGRIP1L, but not IFT proteins, acts as part of the gate for cytoplasmic proteins. The rpg1-1 cilia lack only a few proteins, which suggests that RPGRIP1L only has a minor role of in the retention of ciliary proteins. The fla11-1 mutant shows the greatest loss/reduction of proteins, and one-third of these proteins have a transmembrane domain. Hence, IFT172 may play a role in the retention of proteins.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Suyang Guo
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG. UV Chromosomes and Haploid Sexual Systems. TRENDS IN PLANT SCIENCE 2018; 23:794-807. [PMID: 30007571 PMCID: PMC6128410 DOI: 10.1016/j.tplants.2018.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/20/2023]
Abstract
The evolution of sex determination continues to pose major questions in biology. Sex-determination mechanisms control reproductive cell differentiation and development of sexual characteristics in all organisms, from algae to animals and plants. While the underlying processes defining sex (meiosis and recombination) are conserved, sex-determination mechanisms are highly labile. In particular, a flow of new discoveries has highlighted several fascinating features of the previously understudied haploid UV sex determination and related mating systems found in diverse photosynthetic taxa including green algae, bryophytes, and brown algae. Analyses integrating information from these systems and contrasting them with classical XY and ZW systems are providing exciting insights into both the universality and the diversity of sex-determining chromosomes across eukaryotes.
Collapse
Affiliation(s)
- Susana Margarida Coelho
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Josselin Gueno
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Agnieszka Paulina Lipinska
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jeremy Mark Cock
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
25
|
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PK, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang C, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA. The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell 2018; 174:448-464.e24. [DOI: 10.1016/j.cell.2018.06.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 01/11/2023]
|
26
|
Geng S, Miyagi A, Umen JG. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 2018; 145:dev.162537. [PMID: 29549112 DOI: 10.1242/dev.162537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Volvocine algae constitute a unique comparative model for investigating the evolution of oogamy from isogamous mating types. The sex- or mating type-determining gene MID encodes a conserved RWP-RK transcription factor found in either the MT- or male mating locus of dioecious volvocine species. We previously found that MID from the isogamous species Chlamydomonas reinhardtii (CrMID) could not induce ectopic spermatogenesis when expressed heterologously in Volvox carteri females, suggesting coevolution of Mid function with gamete dimorphism. Here we found that ectopic expression of MID from the anisogamous species Pleodorina starrii (PsMID) could efficiently induce spermatogenesis when expressed in V. carteri females and, unexpectedly, that GpMID from the isogamous species Gonium pectorale was also able to induce V. carteri spermatogenesis. Neither VcMID nor GpMID could complement a C. reinhardtii mid mutant, at least partly owing to instability of heterologous Mid proteins. Our data show that Mid divergence was not a major contributor to the transition between isogamy and anisogamy/oogamy in volvocine algae, and instead implicate changes in cis-regulatory interactions and/or trans-acting factors of the Mid network in the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - Ayano Miyagi
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - James G Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| |
Collapse
|
27
|
Hamaji T, Kawai-Toyooka H, Uchimura H, Suzuki M, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Miyagishima SY, Umen JG, Nozaki H. Anisogamy evolved with a reduced sex-determining region in volvocine green algae. Commun Biol 2018; 1:17. [PMID: 30271904 PMCID: PMC6123790 DOI: 10.1038/s42003-018-0019-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
Male and female gametes differing in size-anisogamy-emerged independently from isogamous ancestors in various eukaryotic lineages, although genetic bases of this emergence are still unknown. Volvocine green algae are a model lineage for investigating the transition from isogamy to anisogamy. Here we focus on two closely related volvocine genera that bracket this transition-isogamous Yamagishiella and anisogamous Eudorina. We generated de novo nuclear genome assemblies of both sexes of Yamagishiella and Eudorina to identify the dimorphic sex-determining chromosomal region or mating-type locus (MT) from each. In contrast to the large (>1 Mb) and complex MT of oogamous Volvox, Yamagishiella and Eudorina MT are smaller (7-268 kb) and simpler with only two sex-limited genes-the minus/male-limited MID and the plus/female-limited FUS1. No prominently dimorphic gametologs were identified in either species. Thus, the first step to anisogamy in volvocine algae presumably occurred without an increase in MT size and complexity.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Haruka Uchimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - James G Umen
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO, 63132, USA
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
29
|
Flores-Sandoval E, Romani F, Bowman JL. Co-expression and Transcriptome Analysis of Marchantia polymorpha Transcription Factors Supports Class C ARFs as Independent Actors of an Ancient Auxin Regulatory Module. FRONTIERS IN PLANT SCIENCE 2018; 9:1345. [PMID: 30327658 PMCID: PMC6174852 DOI: 10.3389/fpls.2018.01345] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 05/07/2023]
Abstract
We performed differential gene expression (DGE) and co-expression analyses with genes encoding components of hormonal signaling pathways and the ∼400 annotated transcription factors (TFs) of M. polymorpha across multiple developmental stages of the life cycle. We identify a putative auxin-related co-expression module that has significant overlap with transcripts induced in auxin-treated tissues. Consistent with phylogenetic and functional studies, the class C ARF, MpARF3, is not part of the auxin-related co-expression module and instead is associated with transcripts enriched in gamete-producing gametangiophores. We analyze the Mparf3 and MpmiR160 mutant transcriptomes in the context of coexpression to suggest that MpARF3 may antagonize the reproductive transition via activating the MpMIR11671 and MpMIR529c precursors whose encoded microRNAs target SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcripts of MpSPL1 and MpSPL2. Both MpSPL genes are part of the MpARF3 co-expression group corroborating their functional significance. We provide evidence of the independence of MpARF3 from the auxin-signaling module and provide new testable hypotheses on the role of auxin-related genes in patterning meristems and differentiation events in liverworts.
Collapse
Affiliation(s)
| | - Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Santa Fe, Argentina
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- *Correspondence: John L. Bowman,
| |
Collapse
|
30
|
Yamazaki T, Ichihara K, Suzuki R, Oshima K, Miyamura S, Kuwano K, Toyoda A, Suzuki Y, Sugano S, Hattori M, Kawano S. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita. Sci Rep 2017; 7:11679. [PMID: 28916791 PMCID: PMC5601483 DOI: 10.1038/s41598-017-11677-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt- and mt+ strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt- MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.
Collapse
Affiliation(s)
- Tomokazu Yamazaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kensuke Ichihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ryogo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenshiro Oshima
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinichi Miyamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyoshi Kuwano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
31
|
Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T, Wang MH, Shao NC, El Akkad SED, Suzuki T, Higashiyama T, Jin E, Lee JH. Gene Regulatory Networks for the Haploid-to-Diploid Transition of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2017; 175:314-332. [PMID: 28710131 PMCID: PMC5580766 DOI: 10.1104/pp.17.00731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
The sexual cycle of the unicellular Chlamydomonas reinhardtii culminates in the formation of diploid zygotes that differentiate into dormant spores that eventually undergo meiosis. Mating between gametes induces rapid cell wall shedding via the enzyme g-lysin; cell fusion is followed by heterodimerization of sex-specific homeobox transcription factors, GSM1 and GSP1, and initiation of zygote-specific gene expression. To investigate the genetic underpinnings of the zygote developmental pathway, we performed comparative transcriptome analysis of both pre- and post-fertilization samples. We identified 253 transcripts specifically enriched in early zygotes, 82% of which were not up-regulated in gsp1 null zygotes. We also found that the GSM1/GSP1 heterodimer negatively regulates the vegetative wall program at the posttranscriptional level, enabling prompt transition from vegetative wall to zygotic wall assembly. Annotation of the g-lysin-induced and early zygote genes reveals distinct vegetative and zygotic wall programs, supported by concerted up-regulation of genes encoding cell wall-modifying enzymes and proteins involved in nucleotide-sugar metabolism. The haploid-to-diploid transition in Chlamydomonas is masterfully controlled by the GSM1/GSP1 heterodimer, translating fertilization and gamete coalescence into a bona fide differentiation program. The fertilization-triggered integration of genes required to make related, but structurally and functionally distinct organelles-the vegetative versus zygote cell wall-presents a likely scenario for the evolution of complex developmental gene regulatory networks.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Evan Cronmiller
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ran Ha Hong
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Saif-El-Din El Akkad
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Takamasa Suzuki
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tetsuya Higashiyama
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Eonseon Jin
- Department Life Sciences, Research Institute for Natural Sciences, Hanyang University, 222 Wangsipri-ro, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
32
|
Sekimoto H. Sexual reproduction and sex determination in green algae. JOURNAL OF PLANT RESEARCH 2017; 130:423-431. [PMID: 28188480 DOI: 10.1007/s10265-017-0908-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt+) and mating type minus (mt-), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt+ and mt- mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
33
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Karve R, Suárez-Román F, Iyer-Pascuzzi AS. The Transcription Factor NIN-LIKE PROTEIN7 Controls Border-Like Cell Release. PLANT PHYSIOLOGY 2016; 171:2101-11. [PMID: 27221617 PMCID: PMC4936578 DOI: 10.1104/pp.16.00453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/19/2016] [Indexed: 05/21/2023]
Abstract
The root cap covers the tip of the root and functions to protect the root from environmental stress. Cells in the last layer of the root cap are known as border cells, or border-like cells (BLCs) in Arabidopsis (Arabidopsis thaliana). These cells separate from the rest of the root cap and are released from its edge as a layer of living cells. BLC release is developmentally regulated, but the mechanism is largely unknown. Here, we show that the transcription factor NIN-LIKE PROTEIN7 (NLP7) is required for the proper release of BLCs in Arabidopsis. Mutations in NLP7 lead to BLCs that are released as single cells instead of an entire layer. NLP7 is highly expressed in BLCs and is activated by exposure to low pH, a condition that causes BLCs to be released as single cells. Mutations in NLP7 lead to decreased levels of cellulose and pectin. Cell wall-loosening enzymes such as CELLULASE5 (CEL5) and a pectin lyase-like gene, as well as the root cap regulators SOMBRERO and BEARSKIN1/2, are activated in nlp7-1 seedlings. Double mutant analysis revealed that the nlp7-1 phenotype depends on the expression level of CEL5 Mutations in NLP7 lead to an increase in susceptibility to a root-infecting fungal pathogen. Together, these data suggest that NLP7 controls the release of BLCs by acting through the cell wall-loosening enzyme CEL5.
Collapse
Affiliation(s)
- Rucha Karve
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, Indiana 47907
| | - Frank Suárez-Román
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, Indiana 47907
| | - Anjali S Iyer-Pascuzzi
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, Indiana 47907
| |
Collapse
|
35
|
Rövekamp M, Bowman JL, Grossniklaus U. Marchantia MpRKD Regulates the Gametophyte-Sporophyte Transition by Keeping Egg Cells Quiescent in the Absence of Fertilization. Curr Biol 2016; 26:1782-1789. [PMID: 27345166 DOI: 10.1016/j.cub.2016.05.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Unlike in animals, the life cycle of land plants alternates between two multicellular generations, the haploid gametophyte and the diploid sporophyte [1]. Gamete differentiation initiates the transition from the gametophyte to the sporophyte generation and, upon maturation, the egg cell establishes a quiescent state that is maintained until fertilization. This quiescence represents a hallmark of the gametophyte-sporophyte transition. The underlying molecular mechanisms are complex and best characterized in the flowering plant Arabidopsis thaliana [2-4]. However, only few genes with egg cell-specific expression or defects have been identified [5-10]. Intriguingly, ectopic expression of members of a clade of RWP-RK domain (RKD)-containing transcription factors, which are absent from animal genomes [11-13], can induce an egg cell-like transcriptome in sporophytic cells of A. thaliana. Yet, to date, loss-of-function experiments have not produced phenotypes affecting the egg cell, likely due to genetic redundancy and/or cross-regulation among the five RKD genes of A. thaliana [10]. To reduce genetic complexity, we explored the genome of Marchantia polymorpha, a liverwort belonging to the basal lineage of extant land plants [14-17]. Based on sequence homology, we identified a single M. polymorpha RKD gene, MpRKD, which is orthologous to all five A. thaliana RKD genes. Analysis of the MpRKD expression pattern and characterization of lines with reduced MpRKD activity indicate that it functions as a regulator of gametophyte development and the gametophyte-sporophyte transition. In particular, MpRKD is required to establish and/or maintain the quiescent state of the egg cell in the absence of fertilization.
Collapse
Affiliation(s)
- Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland.
| |
Collapse
|
36
|
Sequence of the Gonium pectorale Mating Locus Reveals a Complex and Dynamic History of Changes in Volvocine Algal Mating Haplotypes. G3-GENES GENOMES GENETICS 2016; 6:1179-89. [PMID: 26921294 PMCID: PMC4856071 DOI: 10.1534/g3.115.026229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii. Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii. Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT–, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale–V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale. These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs.
Collapse
|
37
|
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. FRONTIERS IN PLANT SCIENCE 2015; 6:899. [PMID: 26579149 PMCID: PMC4620153 DOI: 10.3389/fpls.2015.00899] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 05/02/2023]
Abstract
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| |
Collapse
|
38
|
Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Shachar-Hill Y, Hicks LM, Gang DR. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4551-66. [PMID: 26022256 PMCID: PMC4507760 DOI: 10.1093/jxb/erv217] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.
Collapse
Affiliation(s)
- Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - F Omar Holguin
- College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, 1780 E. University Ave, Las Cruces, NM 88003, USA
| | - Min-Jeong Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Hongxia Wang
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA Current address: National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Rahul R Deshpande
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48864, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48864, USA
| | - Leslie M Hicks
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27516, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
39
|
Chardin C, Girin T, Roudier F, Meyer C, Krapp A. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5577-87. [PMID: 24987011 DOI: 10.1093/jxb/eru261] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant specific RWP-RK family of transcription factors, initially identified in legumes and Chlamydomonas, are found in all vascular plants, green algae, and slime molds. These proteins possess a characteristic RWP-RK motif, which mediates DNA binding. Based on phylogenetic and domain analyses, we classified the RWP-RK proteins of six different species in two subfamilies: the NIN-like proteins (NLPs), which carry an additional PB1 domain at their C-terminus, and the RWP-RK domain proteins (RKDs), which are divided into three subgroups. Although, the functional analysis of this family is still in its infancy, several RWP-RK proteins have a key role in regulating responses to nitrogen availability. The nodulation-specific NIN proteins are involved in nodule organogenesis and rhizobial infection under nitrogen starvation conditions. Arabidopsis NLP7 in particular is a major player in the primary nitrate response. Several RKDs act as transcription factors involved in egg cell specification and differentiation or gametogenesis in algae, the latter modulated by nitrogen availability. Further studies are required to extend the general picture of the functional role of these exciting transcription factors.
Collapse
Affiliation(s)
- Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Christian Meyer
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
40
|
Higuera JJ, Fernandez E, Galvan A. Chlamydomonas NZF1, a tandem-repeated zinc finger factor involved in nitrate signalling by controlling the regulatory gene NIT2. PLANT, CELL & ENVIRONMENT 2014; 37:2139-50. [PMID: 24548141 DOI: 10.1111/pce.12305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 05/04/2023]
Abstract
The Chlamydomonas reinhardtii NIT2 gene plays a central role in nitrate assimilation, thus, nit2 mutants are not able to sense or to use nitrate for growth. NIT2 protein is an RWP-RK-type transcriptional factor related to nodule inception (Nin, NLP) proteins from plants. NIT2 expression is down-regulated in ammonium and up-regulated under nitrogen deprivation. However, intracellular nitrate is required to activate NIT2 for subsequent expression of NIA1 and other nitrate assimilation genes. In this work, mutants defective in nitrate sensing have been studied. The identification of genomic regions affected allows proposing putative loci/genes for nitrate signalling in the alga. Among them, a CrNZF1 (Nitrate Zinc Finger 1) that encodes a tandem zinc finger protein CCCH-type. In the nzf1 mutant, the expression of the regulatory gene NIT2 is decreased and also that of nitrate assimilation genes. In this mutant, polyadenylated forms of NIT2 with different lengths could be detected, whereas in the wild type there appeared preferentially the longest forms. CrNZF1 is proposed to regulate NIT2 polyadenylation and thus nitrate signalling and nitrate-dependent growth in the alga.
Collapse
Affiliation(s)
- Jose Javier Higuera
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario (CeiA3), Edif. Severo Ochoa, 14071, Córdoba, Spain
| | | | | |
Collapse
|
41
|
Function of the male-gamete-specific fusion protein HAP2 in a seven-sexed ciliate. Curr Biol 2014; 24:2168-2173. [PMID: 25155508 DOI: 10.1016/j.cub.2014.07.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/20/2014] [Accepted: 07/23/2014] [Indexed: 01/04/2023]
Abstract
HAP2, a male-gamete-specific protein conserved across vast evolutionary distances, has garnered considerable attention as a potential membrane fusogen required for fertilization in taxa ranging from protozoa and green algae to flowering plants and invertebrate animals [1-6]. However, its presence in Tetrahymena thermophila, a ciliated protozoan with seven sexes or mating types that bypasses the production of male gametes, raises interesting questions regarding the evolutionary origins of gamete-specific functions in sexually dimorphic species. Here we show that HAP2 is expressed in all seven mating types of T. thermophila and that fertility is only blocked when the gene is deleted from both cells of a mating pair. HAP2 deletion strains of complementary mating types can recognize one another and form pairs; however, pair stability is compromised and membrane pore formation at the nuclear exchange junction is blocked. The absence of pore formation is consistent with previous studies suggesting a role for HAP2 in gamete fusion in other systems. We propose a model in which each of the several hundred membrane pores established at the conjugation junction of mating Tetrahymena represents the equivalent of a male/female interface, and that pore formation is driven on both sides of the junction by the presence of HAP2. Such a model supports the idea that many of the disparate functions of sperm and egg were shared by the "isogametes" of early eukaryotes and became partitioned to either male or female sex cells later in evolution.
Collapse
|
42
|
Geng S, De Hoff P, Umen JG. Evolution of sexes from an ancestral mating-type specification pathway. PLoS Biol 2014; 12:e1001904. [PMID: 25003332 PMCID: PMC4086717 DOI: 10.1371/journal.pbio.1001904] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/30/2014] [Indexed: 01/20/2023] Open
Abstract
Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s) to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT) gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi)-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was reprogrammed to control sexually dimorphic gamete development in a multicellular descendant.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Peter De Hoff
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James G. Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
43
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
44
|
Wase N, Black PN, Stanley BA, DiRusso CC. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 2014; 13:1373-96. [PMID: 24528286 DOI: 10.1021/pr400952z] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nitrogen starvation induces a global stress response in microalgae that results in the accumulation of lipids as a potential source of biofuel. Using GC-MS-based metabolite and iTRAQ-labeled protein profiling, we examined and correlated the metabolic and proteomic response of Chlamydomonas reinhardtii under nitrogen stress. Key amino acids and metabolites involved in nitrogen sparing pathways, methyl group transfer reactions, and energy production were decreased in abundance, whereas certain fatty acids, citric acid, methionine, citramalic acid, triethanolamine, nicotianamine, trehalose, and sorbitol were increased in abundance. Proteins involved in nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, starch, and lipid metabolism were elevated compared with nonstressed cultures. In contrast, the enzymes of the glyoxylate cycle, one carbon metabolism, pentose phosphate pathway, the Calvin cycle, photosynthetic and light harvesting complex, and ribosomes were reduced. A noteworthy observation was that citrate accumulated during nitrogen stress coordinate with alterations in the enzymes that produce or utilize this metabolite, demonstrating the value of comparing protein and metabolite profiles to understand complex patterns of metabolic flow. Thus, the current study provides unique insight into the global metabolic adjustments leading to lipid storage during N starvation for application toward advanced biofuel production technologies.
Collapse
Affiliation(s)
- Nishikant Wase
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | | | | | | |
Collapse
|
45
|
Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS. Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. THE PLANT CELL 2013; 25:4305-23. [PMID: 24280389 PMCID: PMC3875720 DOI: 10.1105/tpc.113.117580] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 05/17/2023]
Abstract
To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall-deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation-induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10(2)) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.
Collapse
Affiliation(s)
- Ian K. Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Tabea Mettler
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany 14476
| | - Sorel T. Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Sean D. Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Bensheng Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Nanette R. Boyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany 14476
| | - Shannon Johnson
- Genome Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
- Address correspondence to
| |
Collapse
|
46
|
Lin H, Miller ML, Granas DM, Dutcher SK. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii. PLoS Genet 2013; 9:e1003841. [PMID: 24086163 PMCID: PMC3784568 DOI: 10.1371/journal.pgen.1003841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle L. Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Granas
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Genomic Sciences and System Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
47
|
Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLoS Genet 2013; 9:e1003724. [PMID: 24009520 PMCID: PMC3757049 DOI: 10.1371/journal.pgen.1003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions. Sex chromosomes and mating-type loci are often atypical in their structure and evolutionary dynamics. One distinguishing feature is the absence of recombination that results in genetic isolation and promotes rapid evolution and sometimes degeneration. We investigated gene content, sex-regulated expression, and recombination of mating locus (MT) genes in the unicellular alga Chlamydomonas reinhardtii. Despite the lack of observable recombination in and around Chlamydomonas MT, genes from its two mating types are far more similar to each other than expected for a non-recombining region. This discrepancy is explained by our finding evidence of genetic exchange between the two mating types within wild populations. In addition, we observed an unexpected asymmetry in the recombination behavior of the two mating types that may have contributed to the preferential expansion of one MT haplotype over the other through insertion of new genes. Our data suggest a mechanism to explain the emergence of heteromorphic sex chromosomes in haploid organisms by asymmetric expansion rather than by loss or degeneration as occurs in some Y or W chromosomes from diploid organisms. Our observations support a revised view of recombination in sex-determining regions as a quantitative phenomenon that can significantly affect rates of evolution and sex-linked genetic diversification.
Collapse
|
48
|
Ning J, Otto TD, Pfander C, Schwach F, Brochet M, Bushell E, Goulding D, Sanders M, Lefebvre PA, Pei J, Grishin NV, Vanderlaan G, Billker O, Snell WJ. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 2013; 27:1198-215. [DOI: 10.1101/gad.212746.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Hamaji T, Ferris PJ, Nishii I, Nishimura Y, Nozaki H. Distribution of the sex-determining gene MID and molecular correspondence of mating types within the isogamous genus Gonium (Volvocales, Chlorophyta). PLoS One 2013; 8:e64385. [PMID: 23696888 PMCID: PMC3655996 DOI: 10.1371/journal.pone.0064385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isogamous organisms lack obvious cytological differences in the gametes of the two complementary mating types. Consequently, it is difficult to ascertain which of the two mating types are homologous when comparing related but sexual isolated strains or species. The colonial volvocalean algal genus Gonium consists of such isogamous organisms with heterothallic mating types designated arbitrarily as plus or minus in addition to homothallic strains. Homologous molecular markers among lineages may provide an "objective" framework to assign heterothallic mating types. METHODOLOGY/PRINCIPAL FINDINGS Using degenerate primers designed based on previously reported MID orthologs, the "master regulator" of mating types/sexes in the colonial Volvocales, MID homologs were identified and their presence/absence was examined in nine strains of four species of Gonium. Only one of the two complementary mating types in each of the four heterothallic species has a MID homolog. In addition to heterothallic strains, a homothallic strain of G. multicoccum has MID. Molecular evolutionary analysis suggests that MID of this homothallic strain retains functional constraint comparable to that of the heterothallic strains. CONCLUSION/SIGNIFICANCE We coordinated mating genotypes based on presence or absence of a MID homolog, respectively, in heterothallic species. This scheme should be applicable to heterothallic species of other isogamous colonial Volvocales including Pandorina and Yamagishiella. Homothallism emerged polyphyletically in the colonial Volvocales, although its mechanism remains unknown. Our identification of a MID homolog for a homothallic strain of G. multicoccum suggests a MID-dependent mechanism is involved in the sexual developmental program of this homothallic species.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
50
|
Mogi Y, Hamaji T, Suzuki M, Ferris P, Mori T, Kabeya Y, Miyagishima SY, Nozaki H. EVIDENCE FOR TUBULAR MATING STRUCTURES INDUCED IN EACH MATING TYPE OF HETEROTHALLIC GONIUM PECTORALE (VOLVOCALES, CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2012; 48:670-4. [PMID: 27011083 DOI: 10.1111/j.1529-8817.2012.01149.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gametes were induced separately in cultures of each mating type of the heterothallic, isogamous colonial volvocalean Gonium pectorale O. F. Müll. to examine the tubular mating structure (TMS) of both mating types plus and minus (plus and minus), referred to as "bilateral mating papillae." Addition of dibutyryl cyclic adenosine monophosphate (DcAMP or db-cAMP) and 3-isobutyl-1-methylxanthine (IBMX) to approximately 3-week-old cultures of each mating type induced immediate release of naked gametes from the cell walls. Both plus and minus gametes formed a TMS in the anterior region of the protoplasts. Accumulation of actin was visualized by antibody staining in the TMS of both mating types as occurs in the TMS (fertilization tubule) of the plus gametes of the unicellular volvocalean Chlamydomonas reinhardtii P. A. Dang. Induction of naked gametes with a TMS in each mating type will be useful for future cell biological and evolutionary studies of the isogametes of colonial volvocalean algae.
Collapse
Affiliation(s)
- Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Patrick Ferris
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukihiro Kabeya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ya Miyagishima
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, JapanDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USAWaseda Institute for Advanced Study (WIAS), Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, JapanCenter for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, JapanDepartment of Biological Sciences, Graduate school of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|