1
|
Ni Y, Han C, Liu Y, Li M, He W, Yang J, Zou J, Peng H, Wang P. Development of genome-wide insertion/deletion markers and genetic diversity in Sipunculus nudus along the Beibu Gulf of China. Front Genet 2025; 16:1542287. [PMID: 40276678 PMCID: PMC12020434 DOI: 10.3389/fgene.2025.1542287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Sipunculus nudus, a marine species of substantial medicinal and commercial importance, requires genetic enhancement to boost its production yield. However, progress in genetic research and selective breeding has been constrained by two critical limitations: the scarcity of available molecular markers and the absence of systematic genetic diversity assessments across China's Beibu Gulf. To address these challenges, our genome-wide investigation identified 168,771 InDel variations, from which we developed 25,558 primer pairs. Experimental validation showed 82 out of 85 synthesized primers (96.47%) successfully amplified target regions, with 81 demonstrating polymorphism. Sixteen high polymorphic markers were subsequently employed to analyze 153 samples collected along the Beibu Gulf coastline, revealing 142 distinct alleles. The number of alleles, effective number of alleles, observed heterozygosity, expected heterozygosity, Shannon's index and polymorphic information content ranged from 4 to 15 (mean of 8.875), 2.110 to 6.009 (mean of 4.110), 0.009 to 0.768 (mean of 0.232), 0.526 to 0.834 (mean of 0.734), 0.919 to 2.085 (mean of 1.576), and 0.440 to 0.816 (mean of 0.692), respectively. Population structure analysis revealed four genetically distinct subpopulations within the Beibu Gulf population. This delineation of population substructure provides critical insights for optimizing selective breeding programs and formulating germplasm conservation strategies in S. nudus.
Collapse
Affiliation(s)
- Yuzhu Ni
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Chunli Han
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yating Liu
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Manman Li
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Weijie He
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Jialin Yang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Jie Zou
- Guangxi Institute of Oceanology, Beihai, China
| | | | - Pengliang Wang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
2
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Yuan Y, Zhang H, Yi G, You Z, Zhao C, Yuan H, Wang K, Li J, Yang N, Lian L. Genetic Diversity of MHC B-F/B-L Region in 21 Chicken Populations. Front Genet 2021; 12:710770. [PMID: 34484301 PMCID: PMC8414643 DOI: 10.3389/fgene.2021.710770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
The chicken major histocompatibility complex (MHC) on chromosome 16 is the most polymorphic region across the whole genome, and also an ideal model for genetic diversity investigation. The MHC B-F/B-L region is 92 kb in length with high GC content consisting of 18 genes and one pseudogene (Blec4), which plays important roles in immune response. To evaluate polymorphism of the Chinese indigenous chickens as well as to analyze the effect of selection to genetic diversity, we used WaferGen platform to identify sequence variants of the B-F/B-L region in 21 chicken populations, including the Red Jungle Fowl (RJF), Cornish (CS), White Leghorns (WLs), 16 Chinese domestic breeds, and two well-known inbred lines 63 and 72. A total of 3,319 single nucleotide polymorphism (SNPs) and 181 INDELs in the B-F/B-L region were identified among 21 populations, of which 2,057 SNPs (62%) and 159 INDELs (88%) were novel. Most of the variants were within the intron and the flanking regions. The average variation density was 36 SNPs and 2 INDELs per kb, indicating dramatical high diversity of this region. Furthermore, BF2 was identified as the hypervariable genes with 67 SNPs per kb. Chinese domestic populations showed higher diversity than the WLs and CS. The indigenous breeds, Nandan Yao (NY), Xishuangbanna Game (XG), Gushi (GS), and Xiayan (XY) chickens, were the top four with the highest density of SNPs and INDELs. The highly inbred lines 63 and 72 have the lowest diversity, which might be resulted from a long-term intense selection for decades. Collectively, we refined the genetic map of chicken MHC B-F/B-L region, and illustrated genetic diversity of 21 chicken populations. Abundant genetic variants were identified, which not only strikingly expanded the current Ensembl SNP database, but also provided comprehensive data for researchers to further investigate association between variants in MHC and immune traits.
Collapse
Affiliation(s)
- Yiming Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhen You
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunfang Zhao
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haixu Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Barton HJ, Zeng K. The Impact of Natural Selection on Short Insertion and Deletion Variation in the Great Tit Genome. Genome Biol Evol 2019; 11:1514-1524. [PMID: 30924871 PMCID: PMC6543879 DOI: 10.1093/gbe/evz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Insertions and deletions (INDELs) remain understudied, despite being the most common form of genetic variation after single nucleotide polymorphisms. This stems partly from the challenge of correctly identifying the ancestral state of an INDEL and thus identifying it as an insertion or a deletion. Erroneously assigned ancestral states can skew the site frequency spectrum, leading to artificial signals of selection. Consequently, the selective pressures acting on INDELs are, at present, poorly resolved. To tackle this issue, we have recently published a maximum likelihood approach to estimate the mutation rate and the distribution of fitness effects for INDELs. Our approach estimates and controls for the rate of ancestral state misidentification, overcoming issues plaguing previous INDEL studies. Here, we apply the method to INDEL polymorphism data from ten high coverage (∼44×) European great tit (Parus major) genomes. We demonstrate that coding INDELs are under strong purifying selection with a small proportion making it into the population (∼4%). However, among fixed coding INDELs, 71% of insertions and 86% of deletions are fixed by positive selection. In noncoding regions, we estimate ∼80% of insertions and ∼52% of deletions are effectively neutral, the remainder show signatures of purifying selection. Additionally, we see evidence of linked selection reducing INDEL diversity below background levels, both in proximity to exons and in areas of low recombination.
Collapse
Affiliation(s)
- Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| |
Collapse
|
5
|
O’Hare EA, Antin PB, Delany ME. Two Proximally Close Priority Candidate Genes for diplopodia-1, an Autosomal Inherited Craniofacial-Limb Syndrome in the Chicken: MRE11 and GPR83. J Hered 2019; 110:194-210. [PMID: 30597046 PMCID: PMC6399517 DOI: 10.1093/jhered/esy071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/29/2018] [Indexed: 11/12/2022] Open
Abstract
Next-generation sequencing (NGS) and expression technologies were utilized to investigate the genes and sequence elements in a 586 kb region of chicken chromosome 1 associated with the autosomal recessive diplopodia-1 (dp-1) mutation. This mutation shows a syndromic phenotype similar to known human developmental abnormalities (e.g., cleft palate, polydactyly, omphalocele [exposed viscera]). Toward our goal to ascertain the variant responsible, the entire 586 kb region was sequenced following utilization of a specifically designed capture array and to confirm/validate fine-mapping results. Bioinformatic analyses identified a total of 6142 sequence variants, which included SNPs, indels, and gaps. Of these, 778 SNPs, 146 micro-indels, and 581 gaps were unique to the UCD-Dp-1.003 inbred congenic line; those found within exons and splice sites were studied for contribution to the mutant phenotype. Upon further validation with additional mutant samples, a smaller subset (of variants [51]) remains linked to the mutation. Additionally, utilization of specific samples in the NGS technology was advantageous in that fine-mapping methodologies eliminated an additional 326 kb of sequence information on chromosome 1. Predicted and confirmed protein-coding genes within the smaller 260 kb region were assessed for their developmental expression patterns over several stages of early embryogenesis in regions/tissues of interest (e.g., digits, craniofacial region). Based on these results and known function in other vertebrates, 2 genes within 5 kb of each other, MRE11 and GPR83, are proposed as high-priority candidates for the dp-1 mutation.
Collapse
Affiliation(s)
- Elizabeth A O’Hare
- Department of Animal Science, University of California, Davis, CA
- Elizabeth A. O’Hare is now at the Department of Biological Sciences, Towson University, Towson, MD
| | - Parker B Antin
- Department of Molecular and Cellular Medicine, University of Arizona, Tucson, AZ
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
6
|
Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era. BMC Genomics 2016; 17:408. [PMID: 27229151 PMCID: PMC4882841 DOI: 10.1186/s12864-016-2734-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Results Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. Conclusion This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2734-y) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Memon S, Jia X, Gu L, Zhang X. Genomic variations and distinct evolutionary rate of rare alleles in Arabidopsis thaliana. BMC Evol Biol 2016; 16:25. [PMID: 26817829 PMCID: PMC4728917 DOI: 10.1186/s12862-016-0590-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/12/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The variation rate in genomic regions associated with different alleles, impacts to distinct evolutionary patterns involving rare alleles. The rare alleles bias towards genome-wide association studies (GWASs), aim to detect different variants at genomic loci associated with single-nucleotide polymorphisms (SNPs) inclined to produce different haplotypes. Here, we sequenced Arabidopsis thaliana and compared its coding and non-coding genomic regions with its closest outgroup relative, Arabidopsis lyrta, which accounted for the ancestral misinference. The use of genome-wide SNPs interpret the genetic architecture of rare alleles in Arabidopsis thaliana, elucidating a significant departure from a neutral evolutionary model and the pattern of polymorphisms around a selected locus will exclusively influence natural selection. RESULTS We found 23.4% of the rare alleles existing randomly in the genome. Notably, in our results significant differences (P < 0.01) were estimated in the relative rates between rare versus intermediate alleles, between fixed versus non-fixed mutations, and between type I versus type II rare-mutations by using the χ (2)-test. However, the rare alleles generating negative values of Tajima's D suggest that they generated under selective sweeps. Relative to polymorphic sites including SNPs, 67.5% of the fixed mutations were attributed, indicating major contributors to speciation. Substantially, an evolution occurred in the rare allele that was 1.42-times faster than that in a major haplotype. CONCLUSION Our results interpret that rare alleles fits a random occurrence model, indicating that rare alleles occur at any locus in a genome and in any accession in a species. Based on the higher relative rate of derived to ancient mutations and higher average D xy, we conclude that rare alleles evolve faster than the higher frequency alleles. The rapid evolution of rare alleles indicates that they must have been newly generated with fixed mutations, compared with the other alleles. Eventually, PCR and sequencing results, in the flanking regions of rare allele loci confirm that they are of short extension, indicating the absence of a genome-wide pattern for a rare haplotype. The indel-associated model for rare alleles assumes that indel-associated mutations only occur in an indel heterozygote.
Collapse
Affiliation(s)
- Shabana Memon
- School of life Sciences, Nanjing University, Nanjing, 210093, China. .,Lecturer, Department of Plant Breeding and Genetics, Sindh Agriculture University, Tando Jam, Hyderabad, 70060, Pakistan.
| | - Xianqing Jia
- School of life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Longjiang Gu
- School of life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Xiaohui Zhang
- School of life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Abe H, Gemmell NJ. Evolutionary Footprints of Short Tandem Repeats in Avian Promoters. Sci Rep 2016; 6:19421. [PMID: 26766026 PMCID: PMC4725869 DOI: 10.1038/srep19421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Short tandem repeats (STRs) or microsatellites are well-known sequence elements that may change the spacing between transcription factor binding sites (TFBSs) in promoter regions by expansion or contraction of repetitive units. Some of these mutations have the potential to contribute to phenotypic diversity by altering patterns of gene expression. To explore how repetitive sequence motifs within promoters have evolved in avian lineages under mutation-selection balance, more than 400 evolutionary conserved STRs (ecSTRs) were identified in this study by comparing the 2 kb upstream promoter sequences of chicken against those of other birds (turkey, duck, zebra finch, and flycatcher). The rate of conservation was significantly higher in AG dinucleotide repeats than in AC or AT repeats, with the expansion of AG motifs being noticeably constrained in passerines. Analysis of the relative distance between ecSTRs and TFBSs revealed a significantly higher rate of conserved TFBSs in the vicinity of ecSTRs in both chicken-duck and chicken-passerine comparisons. Our comparative study provides a novel insight into which intrinsic factors have influenced the degree of constraint on repeat expansion/contraction during avian promoter evolution.
Collapse
Affiliation(s)
- Hideaki Abe
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand.,Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Tuğrul M, Paixão T, Barton NH, Tkačik G. Dynamics of Transcription Factor Binding Site Evolution. PLoS Genet 2015; 11:e1005639. [PMID: 26545200 PMCID: PMC4636380 DOI: 10.1371/journal.pgen.1005639] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/09/2015] [Indexed: 11/19/2022] Open
Abstract
Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. Evolution has produced a remarkable diversity of living forms that manifests in qualitative differences as well as quantitative traits. An essential factor that underlies this variability is transcription factor binding sites, short pieces of DNA that control gene expression levels. Nevertheless, we lack a thorough theoretical understanding of the evolutionary times required for the appearance and disappearance of these sites. By combining a biophysically realistic model for how cells read out information in transcription factor binding sites with model for DNA sequence evolution, we explore these timescales and ask what factors crucially affect them. We find that the emergence of binding sites from a random sequence is generically slow under point and insertion/deletion mutational mechanisms. Strong selection, sufficient genomic sequence in which the sites can evolve, the existence of partially decayed old binding sites in the sequence, as well as certain biophysical mechanisms such as cooperativity, can accelerate the binding site gain times and make them consistent with the timescales suggested by comparative analyses of genomic data.
Collapse
Affiliation(s)
- Murat Tuğrul
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| | - Tiago Paixão
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
10
|
Kang H, Wang H, Fan Z, Zhao P, Khan A, Yin Z, Wang J, Bao W, Wang A, Zhang Q, Liu JF. Resequencing diverse Chinese indigenous breeds to enrich the map of genomic variations in swine. Genomics 2015; 106:286-94. [PMID: 26296457 DOI: 10.1016/j.ygeno.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
To enrich the map of genomic variations in swine, we randomly sequenced 13 domestic and wild individuals from China and Europe. We detected approximately 28.1 million single nucleotide variants (SNVs) and 3.6 million short insertions and deletions (INDELs), of which 2,530,248 SNVs and 3,456,626 INDELs were firstly identified compared with dbSNP 143. Moreover, 208,687 SNVs and 24,161 INDELs were uniquely observed in Chinese pigs, potentially accounting for phenotypic differences between Chinese and European pigs. Furthermore, significantly high correlation between SNV and INDEL was witnessed, which indicated that these two distinct variants may share similar etiologies. We also predicted loss of function genes and found that they were under weaker evolutionary constraints. This study gives interesting insights into the genomic features of the Chinese pig breeds. These data would be useful in the establishment of high-density SNP map and would lay a foundation for facilitating pig functional genomics study.
Collapse
Affiliation(s)
- Huimin Kang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haifei Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ziyao Fan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Amjad Khan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Jiafu Wang
- School of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Aiguo Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Boschiero C, Gheyas AA, Ralph HK, Eory L, Paton B, Kuo R, Fulton J, Preisinger R, Kaiser P, Burt DW. Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes. BMC Genomics 2015; 16:562. [PMID: 26227840 PMCID: PMC4563830 DOI: 10.1186/s12864-015-1711-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/22/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small insertions and deletions (InDels) constitute the second most abundant class of genetic variants and have been found to be associated with many traits and diseases. The present study reports on the detection and characterisation of about 883 K high quality InDels from the whole-genome analysis of several modern layer chicken lines from diverse breeds. RESULTS To reduce the error rates seen in InDel detection, this study used the consensus set from two InDel-calling packages: SAMtools and Dindel, as well as stringent post-filtering criteria. By analysing sequence data from 163 chickens from 11 commercial and 5 experimental layer lines, this study detected about 883 K high quality consensus InDels with 93% validation rate and an average density of 0.78 InDels/kb over the genome. Certain chromosomes, viz, GGAZ, 16, 22 and 25 showed very low densities of InDels whereas the highest rate was observed on GGA6. In spite of the higher recombination rates on microchromosomes, the InDel density on these chromosomes was generally lower relative to macrochromosomes possibly due to their higher gene density. About 43-87% of the InDels were found to be fixed within each line. The majority of detected InDels (86%) were 1-5 bases and about 63% were non-repetitive in nature while the rest were tandem repeats of various motif types. Functional annotation identified 613 frameshift, 465 non-frameshift and 10 stop-gain/loss InDels. Apart from the frameshift and stopgain/loss InDels that are expected to affect the translation of protein sequences and their biological activity, 33% of the non-frameshift were predicted as evolutionary intolerant with potential impact on protein functions. Moreover, about 2.5% of the InDels coincided with the most-conserved elements previously mapped on the chicken genome and are likely to define functional elements. InDels potentially affecting protein function were found to be enriched for certain gene-classes e.g. those associated with cell proliferation, chromosome and Golgi organization, spermatogenesis, and muscle contraction. CONCLUSIONS The large catalogue of InDels presented in this study along with their associated information such as functional annotation, estimated allele frequency, etc. are expected to serve as a rich resource for application in future research and breeding in the chicken.
Collapse
Affiliation(s)
- Clarissa Boschiero
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK. .,Current Address: Departamento de Zootecnia, University of Sao Paulo/ESALQ, Piracicaba, SP, 13418-900, Brazil.
| | - Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Hannah K Ralph
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Bob Paton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | | | | | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
12
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Godoy TF, Moreira GCM, Boschiero C, Gheyas AA, Gasparin G, Paduan M, Andrade SCS, Montenegro H, Burt DW, Ledur MC, Coutinho LL. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Anim Genet 2015; 46:158-63. [PMID: 25690762 DOI: 10.1111/age.12271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
Genetic improvement is important for the poultry industry, contributing to increased efficiency of meat production and quality. Because breast muscle is the most valuable part of the chicken carcass, knowledge of polymorphisms influencing this trait can help breeding programs. Therefore, the complete genome of 18 chickens from two different experimental lines (broiler and layer) from EMBRAPA was sequenced, and SNPs and INDELs were detected in a QTL region for breast muscle deposition on chicken chromosome 2 between microsatellite markers MCW0185 and MCW0264 (105,849-112,649 kb). Initially, 94,674 unique SNPs and 10,448 unique INDELs were identified in the target region. After quality filtration, 77% of the SNPs (85,765) and 60% of the INDELs (7828) were retained. The studied region contains 66 genes, and functional annotation of the filtered variants identified 517 SNPs and three INDELs in exonic regions. Of these, 357 SNPs were classified as synonymous, 153 as non-synonymous, three as stopgain, four INDELs as frameshift and three INDELs as non-frameshift. These exonic mutations were identified in 37 of the 66 genes from the target region, three of which are related to muscle development (DTNA, RB1CC1 and MOS). Fifteen non-tolerated SNPs were detected in several genes (MEP1B, PRKDC, NSMAF, TRAPPC8, SDR16C5, CHD7, ST18 and RB1CC1). These loss-of-function and exonic variants present in genes related to muscle development can be considered candidate variants for further studies in chickens. Further association studies should be performed with these candidate mutations as should validation in commercial populations to allow a better explanation of QTL effects.
Collapse
Affiliation(s)
- T F Godoy
- Departamento de Zootecnia, ESALQ/USP, Av. Pádua Dias 11, Piracicaba, São Paulo, 13419-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Moreira GCM, Godoy TF, Boschiero C, Gheyas A, Gasparin G, Andrade SCS, Paduan M, Montenegro H, Burt DW, Ledur MC, Coutinho LL. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Anim Genet 2015; 46:141-7. [PMID: 25643900 DOI: 10.1111/age.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/17/2022]
Abstract
Abdominal fat content is an economically important trait in commercially bred chickens. Although many quantitative trait loci (QTL) related to fat deposition have been detected, the resolution for these regions is low and functional variants are still unknown. The current study was conducted aiming at increasing resolution for a region previously shown to have a QTL associated with fat deposition, to detect novel variants from this region and to annotate those variants to delineate potentially functional ones as candidates for future studies. To achieve this, 18 chickens from a parental generation used in a reciprocal cross between broiler and layer lines were sequenced using the Illumina next-generation platform with an initial coverage of 18X/chicken. The discovery of genetic variants was performed in a QTL region located on chromosome 3 between microsatellite markers LEI0161 and ADL0371 (33,595,706-42,632,651 bp). A total of 136,054 unique SNPs and 15,496 unique INDELs were detected in this region, and after quality filtering, 123,985 SNPs and 11,298 INDELs were retained. Of these variants, 386 SNPs and 15 INDELs were located in coding regions of genes related to important metabolic pathways. Loss-of-function variants were identified in several genes, and six of those, namely LOC771163, EGLN1, GNPAT, FAM120B, THBS2 and GGPS1, were related to fat deposition. Therefore, these loss-of-function variants are candidate mutations for conducting further studies on this important trait in chickens.
Collapse
Affiliation(s)
- G C M Moreira
- Departamento de Zootecnia, USP/ESALQ, Piracicaba, SP, 13418-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One 2015; 10:e0116528. [PMID: 25602379 PMCID: PMC4300219 DOI: 10.1371/journal.pone.0116528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
- * E-mail:
| | - Veeramuthu Dharanishanthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
| | - Ishangi Agarwal
- Genotypic Technology Private Limited, #2/13, Balaji Complex, Poojari Layout, 80, Feet Road, R. M. V. 2nd Stage, Bangalore-560094, India
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Büsgen Institute, Georg August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, United States of America
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
16
|
Seo DW, Oh JD, Jin S, Song KD, Park HB, Heo KN, Shin Y, Jung M, Park J, Jo C, Lee HK, Lee JH. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data. Mol Biol Rep 2014; 42:471-7. [PMID: 25304812 DOI: 10.1007/s11033-014-3790-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.
Collapse
Affiliation(s)
- Dong-Won Seo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yan Y, Yi G, Sun C, Qu L, Yang N. Genome-wide characterization of insertion and deletion variation in chicken using next generation sequencing. PLoS One 2014; 9:e104652. [PMID: 25133774 PMCID: PMC4136736 DOI: 10.1371/journal.pone.0104652] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022] Open
Abstract
Insertion and deletion (INDEL) is one of the main events contributing to genetic and phenotypic diversity, which receives less attention than SNP and large structural variation. To gain a better knowledge of INDEL variation in chicken genome, we applied next generation sequencing on 12 diverse chicken breeds at an average effective depth of 8.6. Over 1.3 million non-redundant short INDELs (1-49 bp) were obtained, the vast majority (92.48%) of which were novel. Follow-up validation assays confirmed that most (88.00%) of the randomly selected INDELs represent true variations. The majority (95.76%) of INDELs were less than 10 bp. Both the detected number and affected bases were larger for deletions than insertions. In total, INDELs covered 3.8 Mbp, corresponding to 0.36% of the chicken genome. The average genomic INDEL density was estimated as 0.49 per kb. INDELs were ubiquitous and distributed in a non-uniform fashion across chromosomes, with lower INDEL density in micro-chromosomes than in others, and some functional regions like exons and UTRs were prone to less INDELs than introns and intergenic regions. Nearly 620,253 INDELs fell in genic regions, 1,765 (0.28%) of which located in exons, spanning 1,358 (7.56%) unique Ensembl genes. Many of them are associated with economically important traits and some are the homologues of human disease-related genes. We demonstrate that sequencing multiple individuals at a medium depth offers a promising way for reliable identification of INDELs. The coding INDELs are valuable candidates for further elucidation of the association between genotypes and phenotypes. The chicken INDELs revealed by our study can be useful for future studies, including development of INDEL markers, construction of high density linkage map, INDEL arrays design, and hopefully, molecular breeding programs in chicken.
Collapse
Affiliation(s)
- Yiyuan Yan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoqiang Yi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Maw AA, Shimogiri T, Riztyan, Kawabe K, Kawamoto Y, Okamoto S. Genetic diversity of myanmar and indonesia native chickens together with two jungle fowl species by using 102 indels polymorphisms. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:927-34. [PMID: 25049646 PMCID: PMC4092976 DOI: 10.5713/ajas.2011.11511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 04/03/2012] [Accepted: 03/15/2012] [Indexed: 11/27/2022]
Abstract
The efficiency of insertion and/or deletion (indels) polymorphisms as genetic markers was evaluated by genotyping 102 indels loci in native chicken populations from Myanmar and Indonesia as well as Red jungle fowls and Green jungle fowls from Java Island. Out of the 102 indel markers, 97 were polymorphic. The average observed and expected heterozygosities were 0.206 to 0.268 and 0.229 to 0.284 in native chicken populations and 0.003 to 0.101 and 0.012 to 0.078 in jungle fowl populations. The coefficients of genetic differentiation (Gst) of the native chicken populations from Myanmar and Indonesia were 0.041 and 0.098 respectively. The genetic variability is higher among native chicken populations than jungle fowl populations. The high Gst value was found between native chicken populations and jungle fowl populations. Neighbor-joining tree using genetic distance revealed that the native chickens from two countries were genetically close to each other and remote from Red and Green jungle fowls of Java Island.
Collapse
Affiliation(s)
- Aye Aye Maw
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takeshi Shimogiri
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Riztyan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kotaro Kawabe
- Frontier Science Research Centre, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Shin Okamoto
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
19
|
Rosenbloom DIS, Allen B. Frequency-dependent selection can lead to evolution of high mutation rates. Am Nat 2014; 183:E131-53. [PMID: 24739203 DOI: 10.1086/675505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Theoretical and experimental studies have shown that high mutation rates can be advantageous, especially in novel or fluctuating environments. Here we examine how frequency-dependent competition may lead to fluctuations in trait frequencies that exert upward selective pressure on mutation rates. We use a mathematical model to show that cyclical trait dynamics generated by "rock-paper-scissors" competition can cause the mutation rate in a population to converge to a high evolutionarily stable mutation rate, reflecting a trade-off between generating novelty and reproducing past success. Introducing recombination lowers the evolutionarily stable mutation rate but allows stable coexistence between mutation rates above and below the evolutionarily stable rate. Even considering strong mutational load and ignoring the costs of faithful replication, evolution favors positive mutation rates if the selective advantage of prevailing in competition exceeds the ratio of recombining to nonrecombining offspring. We discuss a number of genomic mechanisms that may meet our theoretical requirements for the adaptive evolution of mutation. Overall, our results suggest that local mutation rates may be higher on genes influencing cyclical competition and that global mutation rates in asexual species may be higher in populations subject to strong cyclical competition.
Collapse
Affiliation(s)
- Daniel I S Rosenbloom
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
20
|
Abstract
The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter), CENPH (a centromere protein), and CDK7 (a cyclin-dependent kinase), are differentially expressed (compared to normal embryos) at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH) are considered high-priority candidate based upon studies in other vertebrate model systems.
Collapse
Affiliation(s)
- Elizabeth A. Robb
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Parker B. Antin
- Department of Molecular and Cellular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Mary E. Delany
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Henriques G, Martinelli A, Rodrigues L, Modrzynska K, Fawcett R, Houston DR, Borges ST, d'Alessandro U, Tinto H, Karema C, Hunt P, Cravo P. Artemisinin resistance in rodent malaria--mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking. Malar J 2013; 12:118. [PMID: 23561245 PMCID: PMC3655824 DOI: 10.1186/1475-2875-12-118] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that artemisinin resistance has already appeared in natural infections. Understanding the mechanisms of resistance would help to prolong the effective lifetime of these drugs. Genetic markers of resistance are therefore required urgently. Previously, a mutation in a de-ubiquitinating enzyme was shown to confer artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi. METHODS Here, for a mutant P. chabaudi malaria parasite and its immediate progenitor, the in vivo artemisinin resistance phenotypes and the mutations arising using Illumina whole-genome re-sequencing were compared. RESULTS An increased artemisinin resistance phenotype is accompanied by one non-synonymous substitution. The mutated gene encodes the μ-chain of the AP2 adaptor complex, a component of the endocytic machinery. Homology models indicate that the mutated residue interacts with a cargo recognition sequence. In natural infections of the human malaria parasite P. falciparum, 12 polymorphisms (nine SNPs and three indels) were identified in the orthologous gene. CONCLUSION An increased artemisinin-resistant phenotype occurs along with a mutation in a functional element of the AP2 adaptor protein complex. This suggests that endocytosis and trafficking of membrane proteins may be involved, generating new insights into possible mechanisms of resistance. The genotypes of this adaptor protein can be evaluated for its role in artemisinin responses in human infections of P. falciparum.
Collapse
Affiliation(s)
- Gisela Henriques
- Centro de Malaria & Doenças Tropicais,LA/IHMT/Universidade Nova de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rolfe PA, Bernstein DA, Grisafi P, Fink GR, Gifford DK. Ruler arrays reveal haploid genomic structural variation. PLoS One 2012; 7:e43210. [PMID: 22952647 PMCID: PMC3428316 DOI: 10.1371/journal.pone.0043210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Despite the known relevance of genomic structural variants to pathogen behavior, cancer, development, and evolution, certain repeat based structural variants may evade detection by existing high-throughput techniques. Here, we present ruler arrays, a technique to detect genomic structural variants including insertions and deletions (indels), duplications, and translocations. A ruler array exploits DNA polymerase’s processivity to detect physical distances between defined genomic sequences regardless of the intervening sequence. The method combines a sample preparation protocol, tiling genomic microarrays, and a new computational analysis. The analysis of ruler array data from two genomic samples enables the identification of structural variation between the samples. In an empirical test between two closely related haploid strains of yeast ruler arrays detected 78% of the structural variants larger than 100 bp.
Collapse
Affiliation(s)
- P. Alexander Rolfe
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Douglas A. Bernstein
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Paula Grisafi
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gerald R. Fink
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail: (DKG); (GRF)
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (DKG); (GRF)
| |
Collapse
|
23
|
Allen B, Rosenbloom DIS. Mutation Rate Evolution in Replicator Dynamics. Bull Math Biol 2012; 74:2650-75. [DOI: 10.1007/s11538-012-9771-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 08/16/2012] [Indexed: 12/21/2022]
|
24
|
Leushkin EV, Bazykin GA, Kondrashov AS. Insertions and deletions trigger adaptive walks in Drosophila proteins. Proc Biol Sci 2012; 279:3075-82. [PMID: 22456880 PMCID: PMC3385466 DOI: 10.1098/rspb.2011.2571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Maps that relate all possible genotypes or phenotypes to fitness—fitness landscapes—are central to the evolution of life, but remain poorly known. An insertion or a deletion (indel) of one or several amino acids constitutes a substantial leap of a protein within the space of amino acid sequences, and it is unlikely that after such a leap the new sequence corresponds precisely to a fitness peak. Thus, one can expect an indel in the protein-coding sequence that gets fixed in a population to be followed by some number of adaptive amino acid substitutions, which move the new sequence towards a nearby fitness peak. Here, we study substitutions that occur after a frame-preserving indel in evolving proteins of Drosophila. An insertion triggers 1.03 ± 0.75 amino acid substitutions within the protein region centred at the site of insertion, and a deletion triggers 4.77 ± 1.03 substitutions within such a region. The difference between these values is probably owing to a higher fraction of effectively neutral insertions. Almost all of the triggered amino acid substitutions can be attributed to positive selection, and most of them occur relatively soon after the triggering indel and take place upstream of its site. A high fraction of substitutions that follow an indel occur at previously conserved sites, suggesting that an indel substantially changes selection that shapes the protein region around it. Thus, an indel is often followed by an adaptive walk of length that is in agreement with the theory of molecular adaptation.
Collapse
Affiliation(s)
- Evgeny V Leushkin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskye Gory 1-73, Moscow 119991, Russia.
| | | | | |
Collapse
|
25
|
Evolutionary Genomics of Colias Phosphoglucose Isomerase (PGI) Introns. J Mol Evol 2012; 74:96-111. [DOI: 10.1007/s00239-012-9492-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
26
|
Paśko Ł, Ericson PGP, Elzanowski A. Phylogenetic utility and evolution of indels: a study in neognathous birds. Mol Phylogenet Evol 2011; 61:760-71. [PMID: 21843647 DOI: 10.1016/j.ympev.2011.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 11/25/2022]
Abstract
Indels are increasingly used in phylogenetics and play a major role in genome size evolution, and yet both the phylogenetic information content of indels and their evolutionary significance remain to be better assessed. Using three presumably independently evolving nuclear gene fragments (28S rDNA, β-fibrinogen, ornithine decarboxylase) from 29 families of neognathous birds, we have obtained a topology that is in general agreement with the current molecular consensus tree, supports the monophyly of Metaves, and provides evidence for the unresolved relationships within the Charadriiformes. Based on the retrieved topology, we assess the relative impact of indels and nucleotide substitutions and demonstrate that the superposition of the two kinds of data yields a topology that could not be obtained from either data set alone. Although only two out of three gene fragments reveal the deletion bias, the combined nucleotide insertion-to-deletion ratio is 0.22, indicating a rapid decrease of intron length. The average indel fixation rate in the neognaths is 2.5 times faster than that in therian (placental) mammals of similar geologic age. As in mammals, there is a considerable variation of indel fixation rate that is 1.5 times higher in Galloanseres compared to Neoaves, and 2.4 times higher in the Rallidae compared to the average for Neoaves (8.2 times higher compared to the related Gruidae). Our results add to the evidence that indel fixation rates correlate with lineage-specific evolutionary rates.
Collapse
Affiliation(s)
- Łukasz Paśko
- Institute of Zoology, University of Wrocław, 21 Sienkiewicz Street, PL-50-335 Wrocław, Poland
| | | | | |
Collapse
|
27
|
van Asch B, Silva Santos L, Carneiro J, Pereira F, Amorim A. Identification of mtDNA lineages of Sus scrofa by multiplex single base extension for the authentication of processed food products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6920-6926. [PMID: 21688854 DOI: 10.1021/jf201283r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A genetic method to identify the breed of origin could serve as a useful tool for inspecting the authenticity of the increasing number of monobreed foodstuffs, such as those derived from small local European pig breeds. Mitochondrial DNA (mtDNA) is practically the only reliable genomic target for PCR in processed products, and its haploid nature and strict maternal inheritance greatly facilitate genetic analysis. As a result of strategies that sought to improve the production traits of European pigs, most industrial breeds presently show a high frequency of Asian alleles, while the absence or low frequency of such Asian alleles has been observed in small rustic breeds from which highly prized dry-cured and other traditional products are derived. Therefore, the detection of Asian ancestry would indicate nonconformity in Protected Denomination of Origin products. This study presents a single base extension assay based on 15 diagnostic mtDNA single nucleotide polymorphisms to discriminate between Asian and European Sus scrofa lineages. The test was robust, sensitive and accurate in a wide range of processed foodstuffs and allowed accurate detection of pig genetic material and identification of maternal ancestry. A market survey suggested that nonconformity of products derived from Portuguese breeds is an unusual event at present, but regular surveys both in the local populations and in commercial products would be advisible. Taking into consideration the limitations presented by other methodologies, this mtDNA-based test probably attains the highest resolution for the direct genetic test for population of origin in Sus scrofa food products.
Collapse
Affiliation(s)
- Barbara van Asch
- Instituto de Patologia e Imunologia da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, Portugal.
| | | | | | | | | |
Collapse
|
28
|
Davis JK, Mittel LB, Lowman JJ, Thomas PJ, Maney DL, Martin CL, Thomas JW. Haplotype-based genomic sequencing of a chromosomal polymorphism in the white-throated sparrow (Zonotrichia albicollis). J Hered 2011; 102:380-90. [PMID: 21613376 DOI: 10.1093/jhered/esr043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inversion polymorphisms have been linked to a variety of fundamental biological and evolutionary processes. Yet few studies have used large-scale genomic sequencing to directly compare the haplotypes associated with the standard and inverted chromosome arrangements. Here we describe the targeted genomic sequencing and comparison of haplotypes representing alternative arrangements of a common inversion polymorphism linked to a suite of phenotypes in the white-throated sparrow (Zonotrichia albicollis). More than 7.4 Mb of genomic sequence was generated and assembled from both the standard (ZAL2) and inverted (ZAL2(m)) arrangements. Sequencing of a pair of inversion breakpoints led to the identification of a ZAL2-specific segmental duplication, as well as evidence of breakpoint reusage. Comparison of the haplotype-based sequence assemblies revealed low genetic differentiation outside versus inside the inversion indicative of historical patterns of gene flow and suppressed recombination between ZAL2 and ZAL2(m). Finally, despite ZAL2(m) being maintained in a near constant state of heterozygosity, no signatures of genetic degeneration were detected on this chromosome. Overall, these results provide important insights into the genomic attributes of an inversion polymorphism linked to mate choice and variation in social behavior.
Collapse
Affiliation(s)
- Jamie K Davis
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Suite 301, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kamneva OK, Liberles DA, Ward NL. Genome-wide influence of indel Substitutions on evolution of bacteria of the PVC superphylum, revealed using a novel computational method. Genome Biol Evol 2010; 2:870-86. [PMID: 21048002 PMCID: PMC3000692 DOI: 10.1093/gbe/evq071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Whole-genome scans for positive Darwinian selection are widely used to detect evolution of genome novelty. Most approaches are based on evaluation of nonsynonymous to synonymous substitution rate ratio across evolutionary lineages. These methods are sensitive to saturation of synonymous sites and thus cannot be used to study evolution of distantly related organisms. In contrast, indels occur less frequently than amino acid replacements, accumulate more slowly, and can be employed to characterize evolution of diverged organisms. As indels are also subject to the forces of natural selection, they can generate functional changes through positive selection. Here, we present a new computational approach to detect selective constraints on indel substitutions at the whole-genome level for distantly related organisms. Our method is based on ancestral sequence reconstruction, takes into account the varying susceptibility of different types of secondary structure to indels, and according to simulation studies is conservative. We applied this newly developed framework to characterize the evolution of organisms of the Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) bacterial superphylum. The superphylum contains organisms with unique cell biology, physiology, and diverse lifestyles. It includes bacteria with simple cell organization and more complex eukaryote-like compartmentalization. Lifestyles range from free-living organisms to obligate pathogens. In this study, we conduct a whole-genome level analysis of indel substitutions specific to evolutionary lineages of the PVC superphylum and found that indels evolved under positive selection on up to 12% of gene tree branches. We also analyzed possible functional consequences for several case studies of predicted indel events.
Collapse
Affiliation(s)
| | | | - Naomi L. Ward
- Department of Molecular Biology, University of Wyoming
- Department of Botany, University of Wyoming
- Program in Ecology, University of Wyoming
- Corresponding author: E-mail:
| |
Collapse
|
30
|
Meader S, Ponting CP, Lunter G. Massive turnover of functional sequence in human and other mammalian genomes. Genome Res 2010; 20:1335-43. [PMID: 20693480 PMCID: PMC2945182 DOI: 10.1101/gr.108795.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023]
Abstract
Despite the availability of dozens of animal genome sequences, two key questions remain unanswered: First, what fraction of any species' genome confers biological function, and second, are apparent differences in organismal complexity reflected in an objective measure of genomic complexity? Here, we address both questions by applying, across the mammalian phylogeny, an evolutionary model that estimates the amount of functional DNA that is shared between two species' genomes. Our main findings are, first, that as the divergence between mammalian species increases, the predicted amount of pairwise shared functional sequence drops off dramatically. We show by simulations that this is not an artifact of the method, but rather indicates that functional (and mostly noncoding) sequence is turning over at a very high rate. We estimate that between 200 and 300 Mb (∼6.5%-10%) of the human genome is under functional constraint, which includes five to eight times as many constrained noncoding bases than bases that code for protein. In contrast, in D. melanogaster we estimate only 56-66 Mb to be constrained, implying a ratio of noncoding to coding constrained bases of about 2. This suggests that, rather than genome size or protein-coding gene complement, it is the number of functional bases that might best mirror our naïve preconceptions of organismal complexity.
Collapse
Affiliation(s)
- Stephen Meader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Gerton Lunter
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- The Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
31
|
Rao YS, Wang ZF, Chai XW, Wu GZ, Nie QH, Zhang XQ. Indel segregating within introns in the chicken genome are positively correlated with the recombination rates. Hereditas 2010. [DOI: 10.1111/j.1601-5223.2009.2141.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Vasemägi A, Gross R, Palm D, Paaver T, Primmer CR. Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics 2010; 11:156. [PMID: 20210987 PMCID: PMC2838853 DOI: 10.1186/1471-2164-11-156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 03/08/2010] [Indexed: 01/17/2023] Open
Abstract
Background For decades, linkage mapping has been one of the most powerful and widely used approaches for elucidating the genetic architecture of phenotypic traits of medical, agricultural and evolutionary importance. However, successful mapping of Mendelian and quantitative phenotypic traits depends critically on the availability of fast and preferably high-throughput genotyping platforms. Several array-based single nucleotide polymorphism (SNP) genotyping platforms have been developed for genetic model organisms during recent years but most of these methods become prohibitively expensive for screening large numbers of individuals. Therefore, inexpensive, simple and flexible genotyping solutions that enable rapid screening of intermediate numbers of loci (~75-300) in hundreds to thousands of individuals are still needed for QTL mapping applications in a broad range of organisms. Results Here we describe the discovery of and application of insertion-deletion (INDEL) polymorphisms for cost-efficient medium throughput genotyping that enables analysis of >75 loci in a single automated sequencer electrophoresis column with standard laboratory equipment. Genotyping of INDELs requires low start-up costs, includes few standard sample handling steps and is applicable to a broad range of species for which expressed sequence tag (EST) collections are available. As a proof of principle, we generated a partial INDEL linkage map in Atlantic salmon (Salmo salar) and rapidly identified a number of quantitative trait loci (QTLs) affecting early life-history traits that are expected to have important fitness consequences in the natural environment. Conclusions The INDEL genotyping enabled fast coarse-mapping of chromosomal regions containing QTL, thus providing an efficient means for characterization of genetic architecture in multiple crosses and large pedigrees. This enables not only the discovery of larger number of QTLs with relatively smaller phenotypic effect but also provides a cost-effective means for evaluation of the frequency of segregating QTLs in outbred populations which is important for further understanding how genetic variation underlying phenotypic traits is maintained in the wild.
Collapse
Affiliation(s)
- Anti Vasemägi
- Department of Biology, 20014, University of Turku, Finland.
| | | | | | | | | |
Collapse
|
33
|
Minetti CASA, Remeta DP, Dickstein R, Breslauer KJ. Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res 2010; 38:97-116. [PMID: 19946018 PMCID: PMC2800203 DOI: 10.1093/nar/gkp1036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/24/2022] Open
Abstract
DNA bulges are biologically consequential defects that can arise from template-primer misalignments during replication and pose challenges to the cellular DNA repair machinery. Calorimetric and spectroscopic characterizations of defect-containing duplexes reveal systematic patterns of sequence-context dependent bulge-induced destabilizations. These distinguishing energetic signatures are manifest in three coupled characteristics, namely: the magnitude of the bulge-induced duplex destabilization (DeltaDeltaG(Bulge)); the thermodynamic origins of DeltaDeltaG(Bulge) (i.e. enthalpic versus entropic); and, the cooperativity of the duplex melting transition (i.e. two-state versus non-two state). We find moderately destabilized duplexes undergo two-state dissociation and exhibit DeltaDeltaG(Bulge) values consistent with localized, nearest neighbor perturbations arising from unfavorable entropic contributions. Conversely, strongly destabilized duplexes melt in a non-two-state manner and exhibit DeltaDeltaG(Bulge) values consistent with perturbations exceeding nearest-neighbor expectations that are enthalpic in origin. Significantly, our data reveal an intriguing correlation in which the energetic impact of a single bulge base centered in one strand portends the impact of the corresponding complementary bulge base embedded in the opposite strand. We discuss potential correlations between these bulge-specific differential energetic profiles and their overall biological implications in terms of DNA recognition, repair and replication.
Collapse
Affiliation(s)
| | | | | | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers – The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
34
|
An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. J Mol Evol 2009; 68:475-89. [PMID: 19357801 DOI: 10.1007/s00239-009-9214-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 02/05/2009] [Accepted: 02/16/2009] [Indexed: 10/25/2022]
Abstract
Class A G-protein-coupled receptors (GPCRs) constitute a large family of transmembrane receptors. Helical distortions play a major role in the overall fold of these receptors. Most are related to conserved proline residues. However, in transmembrane helix 2, the proline pattern is not conserved, and when present, proline may be located at position 2.58, 2.59, or 2.60. Sequence analysis, three-dimensional data mining, and molecular modeling were undertaken to investigate the origin of this unusual pattern. Taken together, the data strongly support the assumption that an indel led to two structural motifs for helix 2: a bulged structure in P2.59 and P2.60 receptors and a "typical" proline kink in P2.58 receptors. The proline pattern of helix 2 can be used as an evolutionary marker and helps to trace the molecular evolution of class A GPCRs. Two indel events yielding functional receptors occurred independently. One indel arose very early in GPCR evolution, in a bilaterian ancestor, before the protostome-deuterostome divergence. This indel led to the split between the P2.58 somatostatin/opioid receptors and other peptide receptors with the P2.59 pattern. A second indel also occurred in insect opsins and corresponds to a deletion. Subfamilies with proline at position 2.59 or no proline expanded earlier, whereas P2.60 receptors remained marginal throughout evolution. P2.58 receptors underwent rapid expansion in vertebrates with the development of the chemokine and purinergic receptor subfamilies from somatostatin/opioid-related ancestors.
Collapse
|
35
|
Belair M, Dovat M, Foley B, Mayerat C, Pantaleo G, Graziosi C. The polymorphic nature of HIV type 1 env V4 affects the patterns of potential N-glycosylation sites in proviral DNA at the intrahost level. AIDS Res Hum Retroviruses 2009; 25:199-206. [PMID: 19239359 DOI: 10.1089/aid.2008.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that env V4 from HIV-1 plasma RNA is highly heterogeneous within a single patient, due to indel-associated polymorphism. In this study, we have analyzed the variability of V4 in proviral DNA from unfractionated PBMC and sorted T and non-T cell populations within individual patients. Our data show that the degree of sequence variability and length polymorphism in V4 from HIV provirus is even higher than we previously reported in plasma. The data also show that the sequence of V4 depends largely on the experimental approach chosen. We could observe no clear trend for compartmentalization of V4 variants in specific cell types. Of interest is the fact that some variants that had been found to be predominant in plasma were not detected in any of the cell subsets analyzed. Consistently with our observations in plasma, V3 was found to be relatively conserved at both interpatient and intrapatient level. Our data show that V4 polymorphism involving insertions and deletions in addition to point mutations results in changes in the patterns of sequons in HIV-1 proviral DNA as well as in plasma RNA. These rearrangements may result in the coexistence, within the same individual, of a swarm of different V4 regions, each characterized by a different carbohydrate surface shield. Further studies are needed to investigate the mechanism responsible for the variability observed in V4 and its role in HIV pathogenesis.
Collapse
Affiliation(s)
| | - Magali Dovat
- Institut Universitaire de Médecine Légale, CHUV, Lausanne, Switzerland
| | - Brian Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratories, Los Alamos, New Mexico 87544
| | - Claude Mayerat
- Laboratory of AIDS Immunopathogenesis, CHUV, Lausanne, Switzerland
| | | | - Cecilia Graziosi
- Laboratory of AIDS Immunopathogenesis, CHUV, Lausanne, Switzerland
| |
Collapse
|
36
|
Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 2008; 135:439-55. [DOI: 10.1007/s10709-008-9293-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
|
37
|
Brandström M, Ellegren H. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res 2008; 18:881-7. [PMID: 18356314 DOI: 10.1101/gr.075242.107] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Studies of microsatellites evolution based on marker data almost inherently suffer from an ascertainment bias because there is selection for the most mutable and polymorphic loci during marker development. To circumvent this bias we took advantage of whole-genome shotgun sequence data from three unrelated chicken individuals that, when aligned to the genome reference sequence, give sequence information on two chromosomes from about one-fourth (375,000) of all microsatellite loci containing di- through pentanucleotide repeat motifs in the chicken genome. Polymorphism is seen at loci with as few as five repeat units, and the proportion of dimorphic loci then increases to 50% for sequences with approximately 10 repeat units, to reach a maximum of 75%-80% for sequences with 15 or more repeat units. For any given repeat length, polymorphism increases with decreasing GC content of repeat motifs for dinucleotides, nonhairpin-forming trinucleotides, and tetranucleotides. For trinucleotide repeats which are likely to form hairpin structures, polymorphism increases with increasing GC content, indicating that the relative stability of hairpins affects the rate of replication slippage. For any given repeat length, polymorphism is significantly lower for imperfect compared to perfect repeats and repeat interruptions occur in >15% of loci. However, interruptions are not randomly distributed within repeat arrays but are preferentially located toward the ends. There is negative correlation between microsatellite abundance and single nucleotide polymorphism (SNP) density, providing large-scale genomic support for the hypothesis that equilibrium microsatellite distributions are governed by a balance between rate of replication slippage and rate of point mutation.
Collapse
Affiliation(s)
- Mikael Brandström
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | | |
Collapse
|
38
|
Väli U, Brandström M, Johansson M, Ellegren H. Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet 2008; 9:8. [PMID: 18211670 PMCID: PMC2266919 DOI: 10.1186/1471-2156-9-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 01/22/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND We introduce the use of short insertion-deletion polymorphisms (indels) for genetic analysis of natural populations. RESULTS Sequence reads from light shot-gun sequencing efforts of different dog breeds were aligned to the dog genome reference sequence and gaps corresponding to indels were identified. One hundred candidate markers (4-bp indels) were selected and genotyped in unrelated dogs (n = 7) and wolves (n = 18). Eighty-one and 76 out of 94 could be validated as polymorphic loci in the respective sample. Mean indel heterozygosity in a diverse set of wolves was 19%, and 74% of the loci had a minor allele frequency of >10%. Indels found to be polymorphic in wolves were subsequently genotyped in a highly bottlenecked Scandinavian wolf population. Fifty-one loci turned out to be polymorphic, showing their utility even in a population with low genetic diversity. In this population, individual heterozygosity measured at indel and microsatellite loci were highly correlated. CONCLUSION With an increasing amount of sequence information gathered from non-model organisms, we suggest that indels will come to form an important source of genetic markers, easy and cheap to genotype, for studies of natural populations.
Collapse
Affiliation(s)
- Ulo Väli
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|