1
|
Merkulov P, Latypova A, Tiurin K, Serganova M, Kirov I. DNA Methylation and Alternative Splicing Safeguard Genome and Transcriptome After a Retrotransposition Burst in Arabidopsis thaliana. Int J Mol Sci 2025; 26:4816. [PMID: 40429956 PMCID: PMC12112155 DOI: 10.3390/ijms26104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Transposable elements (TEs) are major drivers of plant genome plasticity, but the immediate molecular consequences of new TE insertions remain poorly understood. In this study, we generated a wild-type Arabidopsis thaliana population with novel insertions of ONSEN retrotransposon to investigate early epigenomic and transcriptomic changes using whole-genome and cDNA nanopore sequencing. We found that novel ONSEN insertions were distributed non-randomly, with a strong preference for genic regions, particularly in chromatin enriched for H2A.Z, H3K27me3, and H3K4me2. Most full-length ONSEN insertions within genes were rapidly recognized and spliced out as new introns (intronization), thereby mitigating potential deleterious effects on transcript isoforms. In some cases, ONSEN insertions provided alternative transcription start or termination sites, generating novel transcript isoforms. Genome-wide methylation analysis revealed that new ONSEN copies were efficiently and precisely targeted by DNA methylation. Independently on the location of the original ONSEN element, the euchromatic and heterochromatic insertions display distinct methylation signatures, reflecting the action of different epigenetic pathways. In conclusion, our results demonstrate that DNA methylation and alternative splicing are effective control mechanisms safeguarding the plant genome and transcriptome integrity after retrotransposition burst.
Collapse
Affiliation(s)
- Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Anastasiia Latypova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Kirill Tiurin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Melania Serganova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| |
Collapse
|
2
|
Wen X, Li J, Yang F, Zhang X, Li Y. Exploring the Effect of High-Energy Heavy Ion Beam on Rice Genome: Transposon Activation. Genes (Basel) 2023; 14:2178. [PMID: 38137000 PMCID: PMC10742395 DOI: 10.3390/genes14122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
High-energy heavy ion beams are a new type of physical mutagen that can produce a wide range of phenotypic variations. In order to understand the mechanism of high-energy heavy ion beams, we resequenced the whole genome of individual plants with obvious phenotypic variations in rice. The sequence alignment results revealed a large number of SNPs and InDels, as well as genetic variations related to grain type and heading date. The distribution of SNP and InDel on chromosomes is random, but they often occur in the up/downstream regions and the intergenic region. Mutagenesis can cause changes in transposons such as Dasheng, mPing, Osr13 and RIRE2, affecting the stability of the genome. This study obtained the major gene mutation types, discovered differentially active transposons, screened out gene variants related to phenotype, and explored the mechanism of high-energy heavy ion beam radiation on rice genes.
Collapse
Affiliation(s)
- Xiaoting Wen
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingpeng Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun 130299, China
| | - Fu Yang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
| | - Xin Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
| | - Yiwei Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
4
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
5
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
6
|
Su Y, Huang Q, Wang Z, Wang T. High genetic and epigenetic variation of transposable elements: Potential drivers to rapid adaptive evolution for the noxious invasive weed Mikania micrantha. Ecol Evol 2021; 11:13501-13517. [PMID: 34646486 PMCID: PMC8495827 DOI: 10.1002/ece3.8075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE-based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty-five transposon-inserted genes were sequenced and homology-based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE-associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Qiqi Huang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
7
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
8
|
Zhang Y, Liu C, Cheng H, Tian S, Liu Y, Wang S, Zhang H, Saqib M, Wei H, Wei Z. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems. BMC Genomics 2020; 21:498. [PMID: 32689934 PMCID: PMC7372836 DOI: 10.1186/s12864-020-06902-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-dependent biological processes and plays a role during development and differentiation of multicellular organisms. However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS), transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation. Results The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and ~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were statistically significant (p < 0.05). The evident differences in CG, CHG, and CHH methylation contexts among 2 kb proximal promoters, gene bodies, and 2 kb downstream regions were observed among PS, TS, and SS. Further analysis revealed a perceptible global correlation between 5mC methylation levels of gene bodies and transcript levels but failed to reveal a correlation between 5mC methylation levels of proximal promoter regions and transcript levels. We identified 653 and 858 DMGs and 4978 and 4780 DEGs in PS vs TS and TS vs SS comparisons, respectively. Only 113 genes of 653 DMGs and 4978 DEGs, and 114 genes of 858 DMGs and 4780 DEG were common. Counterparts of some of these common genes in other species, including Arabidopsis thaliana, are known to be involved in secondary cell wall biosynthesis and hormone signaling. This indicates that methylation may directly modulate wood formation genes and indirectly attune hormone signaling genes, which in turn impact wood formation. Conclusions DNA methylation only marginally affects pathway genes or regulators involved in wood formation, suggesting that further studies of wood formation should lean towards the indirect effects of methylation. The information and data we provide here will be instrumental for understanding the roles of methylation in wood formation in tree species.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
9
|
Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 2020; 112:4125-4136. [PMID: 32650100 DOI: 10.1016/j.ygeno.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
Collapse
|
10
|
Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, Kabod PN, Liu H, Muthemba S, Kariba R, Njuguna J, Maina S, Stomeo F, Djikeng A, Hendre PS, Chen X, Chen W, Li X, Sun W, Wang S, Cheng S, Muchugi A, Jamnadass R, Shapiro HY, Van Deynze A, Yang H, Wang J, Xu X, Odeny DA, Liu X. Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome. Gigascience 2019; 8:giz115. [PMID: 31574156 PMCID: PMC6771550 DOI: 10.1093/gigascience/giz115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/14/2019] [Accepted: 08/24/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. RESULTS We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both "Gilo" and "Shum" groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. CONCLUSIONS The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.
Collapse
Affiliation(s)
- Bo Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yuan Fu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | | | - Sandra Ndagire Kamenya
- Uganda Christian University, Bishop Tucker Road, Box 4, Mukono, Uganda
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | | | - Huan Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Samuel Muthemba
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Robert Kariba
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Solomon Maina
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa (BecA) – International Livestock Research Institute (ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | - Prasad S Hendre
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Xiaoli Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Wenbin Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Xiuli Li
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Wenjing Sun
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Sibo Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Shifeng Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Alice Muchugi
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Ramni Jamnadass
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
| | - Howard-Yana Shapiro
- African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya
- University of California, 1 Shields Ave, Davis, CA, USA
- Mars, Incorporated, 6885 Elm Street, McLean, VA 22101, USA
| | | | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Damaris Achieng Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) – Eastern and Southern Africa, P.O. Box 39063, Nairobi 00623, Kenya
| | - Xin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
11
|
Identification of transposons near predicted lncRNA and mRNA pools of Prunus mume using an integrative transposable element database constructed from Rosaceae plant genomes. Mol Genet Genomics 2018; 293:1301-1316. [PMID: 29804262 DOI: 10.1007/s00438-018-1449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/17/2018] [Indexed: 12/30/2022]
Abstract
This study focused on the construction of a database of transposable elements (TEs) from Rosaceae plants, the third most economically important plant family in temperate regions, and its transcriptomics applications. The evolutionary effects of TEs on gene regulation have been explored, and TE insertions can be the molecular bases of changes in gene structure and function. However, a specific Rosaceae plant TE database (RPTEdb) is lacking. The genomes of several Rosaceae plants have been sequenced, providing the opportunity to mine TE data at a whole-genome level. Therefore, we constructed the RPTEdb, a collective and comprehensive database of 19,596 annotated TEs in the genomes of Rosaceae plants using previously described identification and annotation methods and published genome sequences. The user-friendly web-based database provides access to research tools through hyperlinks, including Browse, TE tree, tools, JBrowse, and search sections, and through the inputting of sequences on the main webpage. Next, we performed one advanced application in which TEs near predicted long non-coding RNA (lncRNA) and mRNA domains within white and red petal-tissue transcriptomes of Prunus mume 'Fuban Tiaozhi' were identified, revealing 16 TEs that overlapped or were near 16 differentially expressed lncRNA domains, and 54 TEs that overlapped or were near 54 differentially expressed mRNA domains, and the TEs' possible functions were also discussed. We believe that the RPTEdb will contribute to the understanding of TE roles in the structural, functional and evolutionary dynamics of Rosaceae plant genomes.
Collapse
|
12
|
Coronel CJ, González AI, Ruiz ML, Polanco C. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. PLANT CELL REPORTS 2018; 37:137-152. [PMID: 29038910 DOI: 10.1007/s00299-017-2217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/04/2017] [Indexed: 05/14/2023]
Abstract
We provide evidence that nucleotide sequence and methylation status changes occur in the Arabidopsis genome during in vitro tissue culture at a frequency high enough to represent an important source of variation. Somaclonal variation is a general consequence of the tissue culture process that has to be analyzed specifically when regenerated plants are obtained in any plant species. Currently, there are few studies about the variability comprising sequence changes and methylation status at the DNA level, generated by the culture of A. thaliana cells and tissues. In this work, two types of highly reproducible molecular markers, modified methylation sensitive AFLP (metAFLP) and transposon methylation display (TMD) have been used for the first time in this species to analyze the nucleotide and cytosine methylation changes induced by transformation and tissue culture protocols. We found significantly higher average methylation values (7.5%) in regenerated and transgenic plants when compared to values obtained from seed derived plants (3.2%) and that the main component of the somaclonal variation present in Arabidopsis clonal plants is genetic rather than epigenetic. However, we have found that the Arabidopsis regenerated and transgenic plants had a higher number of non-fully methylated sites flanking transposable elements than the control plants, and therefore, their mobilization can be facilitated. These data provide further evidence that changes in nucleotide sequence and methylation status occur in the Arabidopsis genome during in vitro tissue culture frequently enough to be an important source of variation in this species.
Collapse
Affiliation(s)
- Carlos J Coronel
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Ana I González
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - María L Ruiz
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Carlos Polanco
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
| |
Collapse
|
13
|
Han M, Sun Q, Zhou J, Qiu H, Guo J, Lu L, Mu W, Sun J. Insertion of a solo LTR retrotransposon associates with spur mutations in 'Red Delicious' apple (Malus × domestica). PLANT CELL REPORTS 2017; 36:1375-1385. [PMID: 28577237 DOI: 10.1007/s00299-017-2160-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Insertion of a solo LTR, which possesses strong bidirectional, stem-specific promoter activities, is associated with the evolution of a dwarfing apple spur mutation. Spur mutations in apple scions revolutionized global apple production. Since long terminal repeat (LTR) retrotransposons are tightly related to natural mutations, inter-retrotransposon-amplified polymorphism technique and genome walking were used to find sequences in the apple genome based on these LTRs. In 'Red Delicious' spur mutants, a novel, 2190-bp insertion was identified as a spur-specific, solo LTR (sLTR) located at the 1038th nucleotide of another sLTR, which was 1536 bp in length. This insertion-within-an-insertion was localized within a preexisting Gypsy-50 retrotransposon at position 3,762,767 on chromosome 4. The analysis of transcriptional activity of the two sLTRs (the 2190- and 1536-bp inserts) indicated that the 2190-bp sLTR is a promoter, capable of bidirectional transcription. GUS expression in the 2190-bp-sense and 2190-bp-antisense transgenic lines was prominent in stems. In contrast, no promoter activity from either the sense or the antisense strand of the 1536-bp sLTR was detected. From ~150 kb of DNA on each side of the 2190 bp, sLTR insertion site, corresponding to 300 kb of the 'Golden Delicious' genome, 23 genes were predicted. Ten genes had predicted functions that could affect shoot development. This first report, of a sLTR insertion associated with the evolution of apple spur mutation, will facilitate apple breeding, cloning of spur-related genes, and discovery of mechanisms behind dwarf habit.
Collapse
Affiliation(s)
- Mengxue Han
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Qibao Sun
- Horticulture of Research Institute, Anhui Academy of Agriculture Science, 40 South Nongke Road, Hefei, 230031, Anhui, People's Republic of China
| | - Junyong Zhou
- Horticulture of Research Institute, Anhui Academy of Agriculture Science, 40 South Nongke Road, Hefei, 230031, Anhui, People's Republic of China
| | - Huarong Qiu
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Jing Guo
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Lijuan Lu
- Horticulture of Research Institute, Anhui Academy of Agriculture Science, 40 South Nongke Road, Hefei, 230031, Anhui, People's Republic of China
| | - Wenlei Mu
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
14
|
Abstract
LTR retrotransposons are the most abundant group of transposable elements (TEs) in plants. These elements can fall inside or close to genes, and therefore influence their expression and evolution. This review aims to examine how LTR retrotransposons, especially Ty1-copia elements, mediate gene regulation and evolution. Various stimuli, including polyploidization and biotic and abiotic elicitors, result in the transcription and movement of these retrotransposons, and can facilitate adaptation. The presence of cis-regulatory motifs in the LTRs are central to their stress-mediated responses and are shared with host stress-responsive genes, showing a complex evolutionary history in which TEs provide new regulatory units to genes. The presence of retrotransposon remnants in genes that are necessary for normal gene function, demonstrates the importance of exaptation and co-option, and is also a consequence of the abundance of these elements in plant genomes. Furthermore, insertions of LTR retrotransposons in and around genes provide potential for alternative splicing, epigenetic control, transduction, duplication and recombination. These characteristics can become an active part of the evolution of gene families as in the case of resistance genes (R-genes). The character of TEs as exclusively selfish is now being re-evaluated. Since genome-wide reprogramming via TEs is a long evolutionary process, the changes we can examine are case-specific and their fitness advantage may not be evident until TE-derived motifs and domains have been completely co-opted and fixed. Nevertheless, the presence of LTR retrotransposons inside genes and as part of gene promoter regions is consistent with their roles as engines of plant genome evolution.
Collapse
|
15
|
Parisod C. Profiling Transposable Elements and Their Epigenetic Effects in Non-model Species. Methods Mol Biol 2017; 1456:243-250. [PMID: 27770371 DOI: 10.1007/978-1-4899-7708-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Taking transposable elements into consideration in surveys of genetic and epigenetic variation remains challenging in species lacking a high-quality reference genome. Here, molecular techniques reducing genome complexity and specifically targeting restructuring and methylation changes in TE genome fractions are described. In particular, methyl-sensitive transposon display (MSTD) uses isoschizomers and PCR amplifications to assess the methylation environment of TE insertions. MSTD offers reliable insights into genome-wide epigenetic changes associated with TEs, especially when used together with similar techniques tracking random sequences.
Collapse
Affiliation(s)
- Christian Parisod
- Laboratory of Evolutionary Botany, Biology Institute, University of Neuchâtel, Rue Emile-Argand 11, 2009, Neuchâtel, Switzerland.
| |
Collapse
|
16
|
Li S, Xia Q, Wang F, Yu X, Ma J, Kou H, Lin X, Gao X, Liu B. Laser Irradiation-Induced DNA Methylation Changes Are Heritable and Accompanied with Transpositional Activation of mPing in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:363. [PMID: 28377781 PMCID: PMC5359294 DOI: 10.3389/fpls.2017.00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 05/05/2023]
Abstract
DNA methylation is an integral component of the epigenetic code in most higher eukaryotes. Exploring the extent to which DNA methylation can be altered under a specific condition and its heritability is important for elucidating the biological functions of this epigenetic modification. Here, we conducted MSAP analysis of rice plants with altered phenotypes subsequent to a low-dose Nd3+YAG laser irradiation. We found that all four methylation patterns at the 5'-CCGG sites that are analyzable by MSAP showed substantial changes in the immediately treated M0 plants. Interestingly, the frequencies of hypo- and hypermethylation were of similar extents, which largely offset each other and render the total methylation levels unchanged. Further analysis revealed that the altered methylation patterns were meiotically heritable to at least the M2 generation but accompanied with further changes in each generation. The methylation changes and their heritability of the metastable epigenetic state were verified by bisulfite sequencing of portion of the retrotranspon, Tos17, an established locus for assessing DNA methylation liability in rice. Real-time PCR assay indicated that the expression of various methylation-related chromatin genes was perturbed, and a Pearson correlation analysis showed that many of these genes, especially two AGOs (AGO4-1 and AGO4-2), were significantly correlated with the methylation pattern alterations. In addition, excisions of a MITE transposon, mPing, occurred rampantly in the laser irradiated plants and their progenies. Together, our results indicate that heritable DNA methylation changes can be readily induced by low-dose laser irradiation, and which can be accompanied by transpostional activation of transposable elements.
Collapse
Affiliation(s)
- Siyuan Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
- School of Life Sciences, Jilin Agricultural UniversityChangchun, China
| | - Qiong Xia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| | - Fang Wang
- College of Oceanology & Food Science, Quanzhou Normal UniversityQuanzhou, China
- *Correspondence: Fang Wang
| | - Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural UniversityChangchun, China
| | - Hongping Kou
- College of Agronomy, Jilin Agricultural UniversityChangchun, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural SciencesChangchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
- Xiang Gao
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| |
Collapse
|
17
|
Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions. BMC Genomics 2016; 17:1002. [PMID: 27927184 PMCID: PMC5142383 DOI: 10.1186/s12864-016-3337-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Initial characterization of the flax genome showed that Ty1-copia retrotransposons are abundant, with several members being recently inserted, and in close association with genes. Recent insertions indicate a potential for ongoing transpositional activity that can create genomic diversity among accessions, cultivars or varieties. The polymorphisms generated constitute a good source of molecular markers that may be associated with phenotype if the insertions alter gene activity. Flax, where accessions are bred mainly for seed nutritional properties or for fibers, constitutes a good model for studying the relationship of transpositional activity with diversification and breeding. In this study, we estimated copy number and used a type of transposon display known as Sequence-Specific Amplification Polymorphisms (SSAPs), to characterize six families of Ty1-copia elements across 14 flax accessions. Polymorphic insertion sites were sequenced to find insertions that could potentially alter gene expression, and a preliminary test was performed with selected genes bearing transposable element (TE) insertions. RESULTS Quantification of six families of Ty1-copia elements indicated different abundances among TE families and between flax accessions, which suggested diverse transpositional histories. SSAPs showed a high level of polymorphism in most of the evaluated retrotransposon families, with a trend towards higher levels of polymorphism in low-copy number families. Ty1-copia insertion polymorphisms among cultivars allowed a general distinction between oil and fiber types, and between spring and winter types, demonstrating their utility in diversity studies. Characterization of polymorphic insertions revealed an overwhelming association with genes, with insertions disrupting exons, introns or within 1 kb of coding regions. A preliminary test on the potential transcriptional disruption by TEs of four selected genes evaluated in three different tissues, showed one case of significant impact of the insertion on gene expression. CONCLUSIONS We demonstrated that specific Ty1-copia families have been active since breeding commenced in flax. The retrotransposon-derived polymorphism can be used to separate flax types, and the close association of many insertions with genes defines a good source of potential mutations that could be associated with phenotypic changes, resulting in diversification processes.
Collapse
|
18
|
Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum. Mol Genet Genomics 2016; 291:1871-83. [PMID: 27295958 DOI: 10.1007/s00438-016-1225-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes and their mobility impacts genome structure and function in myriad ways. Because of their abundance, activity, and repetitive nature, the characterization and analysis of TEs remain challenging, particularly from short-read sequencing projects. To overcome this difficulty, we have developed a method that estimates TE copy number from short-read sequences. To test the accuracy of our method, we first performed an in silico analysis of the reference Sorghum bicolor genome, using both reference-based and de novo approaches. The resulting TE copy number estimates were strikingly similar to the annotated numbers. We then tested our method on real short-read data by estimating TE copy numbers in several accessions of S. bicolor and its close relative S. propinquum. Both methods effectively identify and rank similar TE families from highest to lowest abundance. We found that de novo characterization was effective at capturing qualitative variation, but underestimated the abundance of some TE families, specifically families of more ancient origin. Also, interspecific reference-based mapping of S. propinquum reads to the S. bicolor database failed to fully describe TE content in S. propinquum, indicative of recent TE activity leading to changes in the respective repetitive landscapes over very short evolutionary timescales. We conclude that reference-based analyses are best suited for within-species comparisons, while de novo approaches are more reliable for evolutionarily distant comparisons.
Collapse
|
19
|
Wang Q, Ci D, Li T, Li P, Song Y, Chen J, Quan M, Zhou D, Zhang D. The Role of DNA Methylation in Xylogenesis in Different Tissues of Poplar. FRONTIERS IN PLANT SCIENCE 2016; 7:1003. [PMID: 27462332 PMCID: PMC4941658 DOI: 10.3389/fpls.2016.01003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
In trees, xylem tissues play a key role in the formation of woody tissues, which have important uses for pulp and timber production; also DNA methylation plays an important part in gene regulation during xylogenesis in trees. In our study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to analyze the role cytosine methylation plays in wood formation in the commercially important tree species Populus tomentosa. This analysis compared the methylation patterns between xylem tissues (developing xylem and mature xylem) and non-xylem tissues (cambium, shoot apex, young leaf, mature leaf, phloem, root, male catkin, and female catkin) and found 10,316 polymorphic methylation sites. MSAP identified 132 candidate genes with the same methylation patterns in xylem tissues, including seven wood-related genes. The expression of these genes differed significantly between xylem and non-xylem tissue types (P < 0.01). This indicated that the difference of expression of specific genes with unique methylation patterns, rather than relative methylation levels between the two tissue types plays a critical role in wood biosynthesis. However, 46.2% of candidate genes with the same methylation pattern in vascular tissues (cambium, phloem, and developing xylem) did not have distinct expression patterns in xylem and non-xylem tissue. Also, bisulfite sequencing and transcriptome sequencing of MYB, NAC and FASCICLIN-LIKE AGP 13 revealed that the location of cytosine methylation in the gene might affect the expression of different transcripts from the corresponding gene. The expression of different transcripts that produce distinct proteins from a single gene might play an important role in the regulation of xylogenesis.
Collapse
Affiliation(s)
- Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Tong Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Peiwen Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - YuePeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Daling Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Deqiang Zhang
| |
Collapse
|
20
|
|
21
|
Venetsky A, Levy-Zamir A, Khasdan V, Domb K, Kashkush K. Structure and extent of DNA methylation-based epigenetic variation in wild emmer wheat (T. turgidum ssp. dicoccoides) populations. BMC PLANT BIOLOGY 2015; 15:200. [PMID: 26272589 PMCID: PMC4536863 DOI: 10.1186/s12870-015-0544-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/10/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The genetic structure and differentiation of wild emmer wheat suggests that genetic diversity is eco-geographically structured. However, very little is known about the structure and extent of the heritable epigenetic variation and its influence on local adaptation in natural populations. RESULTS The structure and extent of the heritable methylation-based epigenetic variation were assessed within and among natural populations of Triticum turgidum ssp. dicoccoides. We used methylation sensitive amplified polymorphism (MSAP) and transposon methylation display (TMD) techniques, to assess the methylation status of random genomic CCGG sites and CCGG sites flanking transposable elements (TEs), respectively. Both techniques were applied to the DNA of 50 emmer accessions which were collected from five different geographically isolated regions. In order to ensure the assessment of heritable epigenetic variation, all accessions were grown under common garden conditions for two generations. In all accessions, the difference in methylation levels of CCGG sites, including CCGG sites that flanked TEs, were not statistically significant and relatively high, ranging between 46 and 76 %. The pattern of methylation was significantly different among accessions, such that clear and statistically significant population-specific methylation patterns were observed. CONCLUSION In this study, we have observed population-unique heritable methylation patterns in emmer wheat accessions originating from five geographically isolated regions. Our data indicate that methylation-based epigenetic diversity might be eco-geographically structured and might be partly determined by climatic and edaphic factors.
Collapse
Affiliation(s)
- Anna Venetsky
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Adva Levy-Zamir
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Vadim Khasdan
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Katherine Domb
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
22
|
Paz RC, Rendina González AP, Ferrer MS, Masuelli RW. Short-term hybridisation activates Tnt1 and Tto1 Copia retrotransposons in wild tuber-bearing Solanum species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:860-869. [PMID: 25556397 DOI: 10.1111/plb.12301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Interspecific hybridisation in tuber-bearing species of Solanum is a common phenomenon and represents an important source of variability, crucial for adaptation and speciation of potato species. In this regard, the effects of interspecific hybridisation on retrotransposon families present in the genomes, and their consequent effects on generation of genetic variability in wild tuber-bearing Solanum species, are poorly characterised. The aim of this study was to analyse the activity of retrotransposons in inter- and intraspecific hybrids between S. kurtzianum and S. microdontum, obtained by controlled crosses, and the effects on morphological, genetic and epigenetic variability. For genetic and epigenetic analysis, S-SAP (sequence-specific amplification polymorphism) and TMD (transposon methylation display) techniques were used, respectively, with specific primers for Tnt1 and Tto1 retrotransposon families (Order LTR, Superfamily Copia). The results indicate that at morphological level, interspecific hybrid genotypes differ from their parental species, whereas derived intraspecific hybrids do not. In both cases, we observed significant reductions in pollen grain viability, and a negative correlation with Tnt1 mobility. Both retrotransposons, Tto1 and Tnt1, were mobilised in the genotypes analysed, with mobility ranging from 0 to 7.8%. Furthermore, at the epigenetic level, demethylation was detected in the vicinity of Tnt1 and Tto1 in the hybrids compared with the parental genotypes. These patterns were positively correlated with the activity of the retrotransposons. The results suggest a possible mechanism through which hybridisation events generate genetic variability in tuber-bearing species of Solanum through retrotranposon activation.
Collapse
Affiliation(s)
- R C Paz
- Dpto. de Biología, Grupo INTERBIODES (Biological Interactions of Desert), CIGEOBIO (FCEFyN, UNSJ/CONICET), Rivadavia, San Juan, Argentina
| | - A P Rendina González
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - M S Ferrer
- Laboratorio de Biología Molecular, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - R W Masuelli
- Laboratorio de Biología Molecular, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), La Consulta, San Carlos, Mendoza, Argentina
| |
Collapse
|
23
|
Dhadi SR, Xu Z, Shaik R, Driscoll K, Ramakrishna W. Differential regulation of genes by retrotransposons in rice promoters. PLANT MOLECULAR BIOLOGY 2015; 87:603-13. [PMID: 25697955 DOI: 10.1007/s11103-015-0300-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | | | | | | | | |
Collapse
|
24
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
25
|
Hu J, Chen X, Zhang H, Ding Y. Genome-wide analysis of DNA methylation in photoperiod- and thermo-sensitive male sterile rice Peiai 64S. BMC Genomics 2015; 16:102. [PMID: 25887533 PMCID: PMC4367915 DOI: 10.1186/s12864-015-1317-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/03/2015] [Indexed: 11/29/2022] Open
Abstract
Background Epigenetic modifications play important roles in the regulation of plant development. DNA methylation is an important epigenetic modification that dynamically regulates gene expression during developmental processes. However, little studies have been reported about the methylation profiles of photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice during the fertility transition. Results In this study, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), the global DNA methylation patterns were compared in the rice PTGMS line PA64S under two different environments (different temperatures and day lengths). The profiling of the DNA methylation under two different phenotypes (sterility and fertility) revealed that hypermethylation was observed in PA64S (sterility), and 1258 differentially methylated regions (DMRs) were found between PA64S (sterility) and PA64S (fertility). Twenty differentially methylated genes of them were further validated through bisulfite sequencing, and four of these genes were analyzed by qRT-PCR. Especially, a differentially methylated gene (LOC_Os08g38210), which encoded transcription factor BIM2, is a component of brassinosteroid signaling in rice. The hypermethylated BIM2 gene may suppress some downstream genes in brassinosteroid signaling pathway, and thus affect the male fertility in PA64S. Conclusions The results presented here indicated that hypermethylation was observed in PA64S (sterility). Gene Ontology (GO) analysis and KEGG analysis revealed that flavone and flavonol biosynthrsis, circadian rhythm, photosynthesis and oxidative phosphorylation pathways were involved in sterility-fertility transition of PA64S. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1317-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Xiaojun Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Hongyuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
26
|
Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 2015; 199:1107-25. [PMID: 25653306 DOI: 10.1534/genetics.115.174714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.
Collapse
|
27
|
Anca IA, Fromentin J, Bui QT, Mhiri C, Grandbastien MA, Simon-Plas F. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1533-40. [PMID: 25128785 DOI: 10.1016/j.jplph.2014.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 05/08/2023]
Abstract
Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation.
Collapse
Affiliation(s)
- Iulia-Andra Anca
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Jérôme Fromentin
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Quynh Trang Bui
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA/AgroParisTech, INRA-Versailles, 78026 Versailles, France
| | - Corinne Mhiri
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA/AgroParisTech, INRA-Versailles, 78026 Versailles, France
| | - Marie-Angèle Grandbastien
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA/AgroParisTech, INRA-Versailles, 78026 Versailles, France
| | - Françoise Simon-Plas
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
28
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
29
|
Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y, Bai Y, Zhang Z, Lin X, Dong Y, Ou X, Xu C, Liu B. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS One 2014; 9:e96879. [PMID: 24804838 PMCID: PMC4013045 DOI: 10.1371/journal.pone.0096879] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Somaclonal variation generally occurs in plants regenerated from tissue culture. However, fundamental issues regarding molecular characteristics, mutation rates and mutation spectra of plant somatic variation as well as their phenotypic relevance have been addressed only recently. Moreover, these studies have reported highly discrepant results in different plant species and even in the same plant genotype. METHODOLOGY/PRINCIPAL FINDINGS We investigated heritable genomic variation induced by tissue culture in rice by whole genome re-sequencing of an extensively selfed somaclonal line (TC-reg-2008) and its wild type (WT) donor (cv. Hitomebore). We computed the overall mutation rate, single nucleotide polymorphisms (SNPs), small scale insertions/deletions (Indels) and mobilization of transposable elements (TEs). We assessed chromosomal distribution of the various types of genomic variations, tested correlations between SNPs and Indels, and examined concomitancy between TE activity and its cytosine methylation states. We also performed gene ontology (GO) analysis of genes containing nonsynonymous mutations and large-effect mutations, and assayed effects of the genomic variations on phenotypes under both normal growing condition and several abiotic stresses. We found that heritable somaclonal genomic variation occurred extensively in rice. The genomic variations distributed non-randomly across each of the 12 rice chromosomes, and affected a large number of functional genes. The phenotypic penetrance of the genomic variations was condition-dependent. CONCLUSIONS/SIGNIFICANCE Tissue culture is a potent means to generate heritable genetic variations in rice, which bear distinct difference at least in space (chromosomal distribution) from those occurred under natural settings. Our findings have provided new information regarding the mutation rate and spectrum as well as chromosomal distribution pattern of somaclonal variation in rice. Our data also suggest that rice possesses a strong capacity to canalize genetic variations under normal growing conditions to maintain phenotypic robustness, which however can be released by certain abiotic stresses to generate variable phenotypes.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yang Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yan Bai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
30
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
31
|
Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics 2014; 13:276-95. [PMID: 24681749 DOI: 10.1093/bfgp/elu002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.
Collapse
|
32
|
Parisod C, Salmon A, Ainouche M, Grandbastien MA. Detecting epigenetic effects of transposable elements in plants. Methods Mol Biol 2014; 1112:211-217. [PMID: 24478017 DOI: 10.1007/978-1-62703-773-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transposable elements (TE) represent a major fraction of eukaryotic genomes and play many roles in plant epigenetics. In this chapter, we describe the use of Sequence-Specific Amplified Polymorphism (SSAP) as a reliable Transposon Display technique applicable for use in many plant species. We also discuss the interpretation of SSAP data and associated risks. This technique has potential to allow rapid screening of plant populations, especially in nonmodel or wild species.
Collapse
Affiliation(s)
- Christian Parisod
- Laboratory of Evolutionary Botany, Biology Institute, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
33
|
Kujur A, Saxena MS, Bajaj D, Laxmi, Parida SK. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J Biosci 2013; 38:971-87. [DOI: 10.1007/s12038-013-9388-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Yaakov B, Meyer K, Ben-David S, Kashkush K. Copy number variation of transposable elements in Triticum-Aegilops genus suggests evolutionary and revolutionary dynamics following allopolyploidization. PLANT CELL REPORTS 2013; 32:1615-24. [PMID: 23807536 DOI: 10.1007/s00299-013-1472-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 05/02/2023]
Abstract
Here, we report on copy number variation of transposable elements and on the genome-specific proliferation in wheat. In addition, we report on revolutionary and evolutionary dynamics of transposons. Wheat is a valuable model for understanding the involvement of transposable elements (TEs) in speciation as wheat species (Triticum-Aegilops group) have diverged from a common ancestor, have undergone two events of speciation through allopolyploidy, and contain a very high fraction of TEs. However, an unbiased genome-wide examination of TE variation among these species has not been conducted. Our research utilized quantitative real time PCR to assess the relative copy numbers of 16 TE families in various Triticum and Aegilops species. We found (1) high variation and genome-specificity of TEs in wheat species, suggesting they were active throughout the evolution of wheat, (2) neither Ae. searsii nor Ae. speltoides by themselves can be the only contributors of the B genome to wheat, and (3) nonadditive changes in TE quantities in polyploid wheat. This study indicates the apparent involvement of large TEs in creating genetic variation in revolutionary and evolutionary scales following allopolyploidization events, presumably assisting in the diploidization of homeologous chromosomes.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | | | | | | |
Collapse
|
35
|
Ben-David S, Yaakov B, Kashkush K. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:201-10. [PMID: 23855320 PMCID: PMC4223381 DOI: 10.1111/tpj.12285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/04/2013] [Accepted: 07/03/2013] [Indexed: 05/02/2023]
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation.
Collapse
|
36
|
Schulman AH. Retrotransposon replication in plants. Curr Opin Virol 2013; 3:604-14. [PMID: 24035277 DOI: 10.1016/j.coviro.2013.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
Abstract
Retrotransposons comprise the bulk of large plant genomes, replicating via an RNA intermediate whereby the original, integrated element remains in place. Of the two main orders, the LTR retrotransposons considerably outnumber the LINEs. LINEs integrate into target sites simultaneously with the RNA transcript being copied into cDNA by target-primed reverse transcription. LTR retrotransposon replication is basically equivalent to the intracellular phase of retroviral life cycles. The envelope gene giving extracellular mobility to retroviruses is in fact widespread in plants and their retrotransposons. Evolutionary analyses of the retrotransposons and retroviruses suggest that both form an ancient monophyletic group. The particular adaptations of LTR retrotransposons to plant life cycles enabling their success remain to be clarified.
Collapse
Affiliation(s)
- Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland; Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen FIN-31600, Finland.
| |
Collapse
|
37
|
Ragupathy R, You FM, Cloutier S. Arguments for standardizing transposable element annotation in plant genomes. TRENDS IN PLANT SCIENCE 2013; 18:367-76. [PMID: 23618952 DOI: 10.1016/j.tplants.2013.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/26/2013] [Indexed: 05/26/2023]
Abstract
Whole genome sequence assemblies have been generated for many plants. Annotation of transposable elements (TEs), which constitute the major proportion of genomes and play a significant role in epigenome alterations under stress, has not been given equal importance to that of genes. In this opinion article, we argue that the lack of focus dedicated to the fine-scale characterization of repeat fractions and the absence of consistent methods for their annotation impede our ability to critically understand the influence of TEs on the epigenome with implications in gene expression and non-Mendelian inheritance. Major structural changes occur over an evolutionary time scale. However, epigenetic regulation mediated by TEs can happen in a single generation, thus emphasizing the need for their standardized annotation.
Collapse
Affiliation(s)
- Raja Ragupathy
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
| | | | | |
Collapse
|
38
|
Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 2013; 4:493-501. [PMID: 23794032 DOI: 10.1007/s13238-013-3037-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), particularly, long terminal repeat retrotransposons (LTR-RTs), are the most abundant DNA components in all plant species that have been investigated, and are largely responsible for plant genome size variation. Although plant genomes have experienced periodic proliferation and/or recent burst of LTR-retrotransposons, the majority of LTR-RTs are inactivated by DNA methylation and small RNA-mediated silencing mechanisms, and/or were deleted/truncated by unequal homologous recombination and illegitimate recombination, as suppression mechanisms that counteract genome expansion caused by LTR-RT amplification. LTR-RT DNA is generally enriched in pericentromeric regions of the host genomes, which appears to be the outcomes of preferential insertions of LTR-RTs in these regions and low effectiveness of selection that purges LTR-RT DNA from these regions relative to chromosomal arms. Potential functions of various TEs in their host genomes remain blurry; nevertheless, LTR-RTs have been recognized to play important roles in maintaining chromatin structures and centromere functions and regulation of gene expressions in their host genomes.
Collapse
|
39
|
Zhang X, Ge X, Shao Y, Sun G, Li Z. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. PLoS One 2013; 8:e56346. [PMID: 23468861 PMCID: PMC3585313 DOI: 10.1371/journal.pone.0056346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023] Open
Abstract
Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.
Collapse
Affiliation(s)
- Xueli Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of Education, Wuhan, People’s Republic of China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, Canada
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
40
|
Abstract
For decades, transposable elements have been known to produce a wide variety of changes in plant gene expression and function. This has led to the idea that transposable element activity has played a key part in adaptive plant evolution. This Review describes the kinds of changes that transposable elements can cause, discusses evidence that those changes have contributed to plant evolution and suggests future strategies for determining the extent to which these changes have in fact contributed to plant adaptation and evolution. Recent advances in genomics and phenomics for a range of plant species, particularly crops, have begun to allow the systematic assessment of these questions.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
41
|
Yaakov B, Kashkush K. Detection of DNA Methylation Changes Surrounding Transposable Elements. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
42
|
Yaakov B, Ben-David S, Kashkush K. Genome-wide analysis of Stowaway-like MITEs in wheat reveals high sequence conservation, gene association, and genomic diversification. PLANT PHYSIOLOGY 2013; 161:486-96. [PMID: 23104862 PMCID: PMC3532278 DOI: 10.1104/pp.112.204404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/24/2012] [Indexed: 05/18/2023]
Abstract
The diversity and evolution of wheat (Triticum-Aegilops group) genomes is determined, in part, by the activity of transposable elements that constitute a large fraction of the genome (up to 90%). In this study, we retrieved sequences from publicly available wheat databases, including a 454-pyrosequencing database, and analyzed 18,217 insertions of 18 Stowaway-like miniature inverted-repeat transposable element (MITE) families previously characterized in wheat that together account for approximately 1.3 Mb of sequence. All 18 families showed high conservation in length, sequence, and target site preference. Furthermore, approximately 55% of the elements were inserted in transcribed regions, into or near known wheat genes. Notably, we observed significant correlation between the mean length of the MITEs and their copy number. In addition, the genomic composition of nine MITE families was studied by real-time quantitative polymerase chain reaction analysis in 40 accessions of Triticum spp. and Aegilops spp., including diploids, tetraploids, and hexaploids. The quantitative polymerase chain reaction data showed massive and significant intraspecific and interspecific variation as well as genome-specific proliferation and nonadditive quantities in the polyploids. We also observed significant differences in the methylation status of the insertion sites among MITE families. Our data thus suggest a possible role for MITEs in generating genome diversification and in the establishment of nascent polyploid species in wheat.
Collapse
Affiliation(s)
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
43
|
Hébrard C, Trap-Gentil MV, Lafon-Placette C, Delaunay A, Joseph C, Lefèbvre M, Barnes S, Maury S. Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:651-63. [PMID: 23307918 DOI: 10.1093/jxb/ers363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sugar beet (Beta vulgaris altissima) is a biennial root crop with an absolute requirement for cold exposure to bolt and flower, a process called vernalization. Global DNA methylation variations have been reported during vernalization in several plants. However, few genes targeted by DNA methylation during vernalization have been described. The objectives of this study were to identify differentially methylated regions and to study their involvement in bolting induction and tolerance. Restriction landmark genome scanning was applied to DNA from shoot apical meristems of sugar beet genotypes, providing a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence. Several differentially methylated regions exhibiting variations of gene-body DNA methylation and expression during cold exposure and/or between genotypes were identified, including an AROGENATE DEHYDRATASE and two RNA METHYLCYTOSINE TRANSFERASE sequences. One RNA METHYLCYTOSINE TRANSFERASE sequence displayed gene-body hypermethylation and activation of expression, while the other was hypomethylated and inhibited by cold exposure. Global RNA methylation and phenolic compound levels changed during cold exposure in a genotype-dependent way. The use of methyl RNA immunoprecipitation of total RNA and reverse transcription-PCR analysis revealed mRNA methylation in a vernalized bolting-resistant genotype for the FLOWERING LOCUS 1 gene, a repressor of flowering. Finally, Arabidopsis mutants for RNA METHYLCYTOSINE TRANSFERASE and AROGENATE DEHYDRATASE were shown to exhibit, under different environmental conditions, early or late bolting phenotypes, respectively. Overall, the data identified functional targets of DNA methylation during vernalization in sugar beet, and it is proposed that RNA methylation and phenolic compounds play a role in the floral transition.
Collapse
Affiliation(s)
- Claire Hébrard
- Université d'Orléans, UFR/Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328 ARCHE, rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yaakov B, Kashkush K. Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. PLANT MOLECULAR BIOLOGY 2012; 80:419-27. [PMID: 22933118 DOI: 10.1007/s11103-012-9957-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/16/2012] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they can account for up to 90 % of the genome, such as in wheat. The relationship between TEs and their hosts and the role of TEs in organismal biology are poorly understood. In this study, we have applied next generation sequencing, together with a transposon display technique in order to test whether a Stowaway-like MITE, termed Minos, transposes following allopolyploidization events in wheat. We have generated a 454-pyrosequencing database of Minos-specific amplicons (transposon display products) from a newly formed wheat allohexaploid and its parental lines and retrieved hundreds of novel MITE insertions in the allohexaploid. Clear mobilization of Minos was also seen by site-specific PCR analysis and sequence validation. In addition, using real-time qPCR analysis we observed an insignificant change in the relative quantity of Minos from the expected value of merging the two parental genomes, indicating that, despite its activation, no significant burst in Minos copy number can be seen in the newly formed allohexaploid. Interestingly, we found that CCGG sites surrounding Minos underwent massive hypermethylation following the allohexaploidization process. Our data suggest that MITEs have maintained their capacity for activity throughout the evolution of wheat and might be epigenetically deregulated in the first generations following allopolyploidization.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
45
|
Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L, Mager DL. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol 2012; 13:R89. [PMID: 23034137 PMCID: PMC3491417 DOI: 10.1186/gb-2012-13-10-r89] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 11/15/2022] Open
Abstract
Background Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes. Results We found that ERVs of the ETn/MusD family show decreased DNA methylation when near transcription start sites in tissues where the nearby gene is expressed. ERVs belonging to the IAP family, however, are generally heavily methylated, regardless of the genomic environment and the tissue studied. Furthermore, we found full-length ETn and IAP copies that display differential DNA methylation between their two long terminal repeats (LTRs), suggesting that the environment surrounding gene promoters can prevent methylation of the nearby LTR. Spreading from methylated ERV copies to nearby genes was rarely observed, with the regions between the ERVs and genes apparently acting as a boundary, enriched in H3K4me3 and CTCF, which possibly protects the unmethylated gene promoter. Furthermore, the flanking regions of unmethylated ERV copies harbor H3K4me3, consistent with spreading of euchromatin from the host gene toward ERV insertions. Conclusions We have shown that spreading of DNA methylation from ERV copies toward active gene promoters is rare. We provide evidence that genes can be protected from ERV-induced heterochromatin spreading by either blocking the invasion of repressive marks or by spreading euchromatin toward the ERV copy.
Collapse
|
46
|
Van K, Kang YJ, Shim SR, Lee SH. Genome-wide scan of the soybean genome using degenerate oligonucleotide primed PCR: an example for studying large complex genome structure. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0238-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Karan R, DeLeon T, Biradar H, Subudhi PK. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 2012; 7:e40203. [PMID: 22761959 PMCID: PMC3386172 DOI: 10.1371/journal.pone.0040203] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/03/2012] [Indexed: 01/11/2023] Open
Abstract
Background Salinity is a major environmental factor limiting productivity of crop plants including rice in which wide range of natural variability exists. Although recent evidences implicate epigenetic mechanisms for modulating the gene expression in plants under environmental stresses, epigenetic changes and their functional consequences under salinity stress in rice are underexplored. DNA methylation is one of the epigenetic mechanisms regulating gene expression in plant’s responses to environmental stresses. Better understanding of epigenetic regulation of plant growth and response to environmental stresses may create novel heritable variation for crop improvement. Methodology/Principal Findings Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effect of salt stress on extent and patterns of DNA methylation in four genotypes of rice differing in the degree of salinity tolerance. Overall, the amount of DNA methylation was more in shoot compared to root and the contribution of fully methylated loci was always more than hemi-methylated loci. Sequencing of ten randomly selected MSAP fragments indicated gene-body specific DNA methylation of retrotransposons, stress responsive genes, and chromatin modification genes, distributed on different rice chromosomes. Bisulphite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied with genotypes and tissue types irrespective of the level of salinity tolerance of rice genotypes. Conclusions/Significance The gene body methylation may have an important role in regulating gene expression in organ and genotype specific manner under salinity stress. Association between salt tolerance and methylation changes observed in some cases suggested that many methylation changes are not “directed”. The natural genetic variation for salt tolerance observed in rice germplasm may be independent of the extent and pattern of DNA methylation which may have been induced by abiotic stress followed by accumulation through the natural selection process.
Collapse
Affiliation(s)
- Ratna Karan
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Teresa DeLeon
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Hanamareddy Biradar
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Baruch O, Kashkush K. Analysis of copy-number variation, insertional polymorphism, and methylation status of the tiniest class I (TRIM) and class II (MITE) transposable element families in various rice strains. PLANT CELL REPORTS 2012; 31:885-893. [PMID: 22183295 DOI: 10.1007/s00299-011-1209-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they may compose up to 90% of the genome. Many studies, both in plants and animals reported that in fact non-autonomous elements that have lost their protein-coding sequences and became miniature elements were highly associated with genes, and showed a high level of transpositional activity such as mPing family in rice. In this study, we have investigated in detail the copy number, insertional polymorphism and the methylation status of the tiniest LTR retrotransposon family, termed TRIM, in nine rice strains, in comparison with mPing. While TRIM showed similar copy numbers (average of 79 insertions) in all the nine rice strains, the copy number of mPing varied dramatically (ranging from 6 to 203 insertions) in the same strains. Site-specific PCR analysis revealed that ~58% of the TRIM elements have identical insertion sites among the nine rice strains, while none of the mPing elements (100% polymorphism) have identical insertion sites in the same strains. Finally, over 65% of the TRIM insertion sites were cytosine methylated in all nine rice strains, while the level of the methylated mPing insertion sites ranged between 43 and 81.5%. The findings of this study indicate that unlike mPing, TRIM is most probably a fossil TE family in rice. In addition, the data shows that there might be a strong correlation between TE methylation and copy number.
Collapse
Affiliation(s)
- Omer Baruch
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | | |
Collapse
|
49
|
Vining KJ, Pomraning KR, Wilhelm LJ, Priest HD, Pellegrini M, Mockler TC, Freitag M, Strauss SH. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 2012; 13:27. [PMID: 22251412 PMCID: PMC3298464 DOI: 10.1186/1471-2164-13-27] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/17/2012] [Indexed: 01/19/2023] Open
Abstract
Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.
Collapse
Affiliation(s)
- Kelly J Vining
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|