1
|
Chen J, Guo P, Li Y, He W, Chen W, Shen Z, Zhang M, Mao J, Zhang L. Cathepsin L Contributes to Reproductive Diapause by Regulating Lipid Storage and Survival of Coccinella septempunctata (Linnaeus). Int J Mol Sci 2022; 24:ijms24010611. [PMID: 36614060 PMCID: PMC9820742 DOI: 10.3390/ijms24010611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Cathepsin L protease, which belongs to the papain-like cysteine proteases family, is an important player in many physiological and pathological processes. However, little was known about the role of cathepsin L in ladybird beetles (Coccinella septempuctata Linnaeus) during diapause. Here, we analyzed the characteristics of cathepsin L (CsCatL) in the females of C. septempunctata and its role during the diapause of the ladybeetle. CsCatL was cloned and identified from beetle specimens by rapid amplification of cDNA-ends (RACE). The cDNA sequence of CsCatL was 971 bp in length, including an 843 bp open reading frame encoding a protein of 280 amino acids. It was identified as the cathepsin L group by phylogenetic analysis. Knockdown of CsCatL by RNA interference led to decreased expression levels of fatty acid synthase 2 (fas 2) genes and suppressed lipid accumulation. Furthermore, silencing the CsCatL gene distinctly reduced diapause-related features and the survival of female C. spetempunctata under diapause-inducing conditions. The results suggested that the CsCatL gene was involved in fatty acid biosynthesis and played a crucial role in the survival of adult C. septempunctata during the diapause preparation stage.
Collapse
|
2
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
3
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
4
|
Smith LB, Silva JJ, Chen C, Harrington LC, Scott JG. Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009271. [PMID: 33760828 PMCID: PMC7990171 DOI: 10.1371/journal.pntd.0009271] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is an important vector of many human diseases and a serious threat to human health due to its wide geographic distribution and preference for human hosts. A. aegypti also has evolved widespread resistance to pyrethroids due to the extensive use of this insecticide class over the past decades. Mutations that cause insecticide resistance result in fitness costs in the absence of insecticides. The fitness costs of pyrethroid resistance mutations in A. aegypti are still poorly understood despite their implications for arbovirus transmission. METHODOLOGY/PRINCIPLE FINDINGS We evaluated fitness based both on allele-competition and by measuring specific fitness components (i.e. life table and mating competition) to determine the costs of the different resistance mechanisms individually and in combination. We used four congenic A. aegypti strains: Rockefeller (ROCK) is susceptible to insecticides; KDR:ROCK (KR) contains only voltage-sensitive sodium channel (Vssc) mutations S989P+V1016G (kdr); CYP:ROCK (CR) contains only CYP-mediated resistance; and CYP+KDR:ROCK (CKR) contains both CYP-mediated resistance and kdr. The kdr allele frequency decreased over nine generations in the allele-competition study regardless of the presence of CYP-mediated resistance. Specific fitness costs were variable by strain and component measured. CR and CKR had a lower net reproductive rate (R0) than ROCK or KR, and KR was not different than ROCK. There was no correlation between the level of permethrin resistance conferred by the different mechanisms and their fitness cost ratio. We also found that CKR males had a reduced mating success relative to ROCK males when attempting to mate with ROCK females. CONCLUSIONS/SIGNIFICANCE Both kdr and CYP-mediated resistance have a fitness cost affecting different physiological aspects of the mosquito. CYP-mediated resistance negatively affected adult longevity and mating competition, whereas the specific fitness costs of kdr remains elusive. Understanding fitness costs helps us determine whether and how quickly resistance will be lost after pesticide application has ceased.
Collapse
Affiliation(s)
- Letícia B. Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Juan J. Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Connie Chen
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Laura C. Harrington
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
5
|
Adams SA, Tsutsui ND. The evolution of species recognition labels in insects. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190476. [PMID: 32420852 PMCID: PMC7331023 DOI: 10.1098/rstb.2019.0476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The evolution of pre-zygotic reproductive isolation is a key step in the process of speciation. In many organisms, particularly insects, chemical labels are used as pheromones for species-specific mate recognition. Although an enormous body of knowledge exists regarding the patterns of pheromone chemical ecology, much less is known about the evolutionary processes that underlie the origin of new mating pheromones. Here, we examine case studies that have illuminated the origins of species-specific mating pheromones and suggest future directions for productive research. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, #3114, Berkeley, CA 94720-3114, USA
| |
Collapse
|
6
|
The Desaturase Gene Nlug-desatA2 Regulates the Performance of the Brown Planthopper Nilaparvata lugens and Its Relationship with Rice. Int J Mol Sci 2020; 21:ijms21114143. [PMID: 32532001 PMCID: PMC7312190 DOI: 10.3390/ijms21114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022] Open
Abstract
Insect desaturases are known to play an important role in chemical communication between individuals. However, their roles in insect growth, development and fecundity, and in regulating interactions of insects with plants, remain largely unknown. In this study, we explored the functions of Nlug-desatA2, a desaturase gene of the brown planthopper (BPH), Nilaparvata lugens (Stål). The RNA interference-based knockdown of Nlug-desatA2 decreased the ratio of monounsaturated fatty acids to saturated fatty acids, and the level of fatty acids and triglycerides in BPH. Nlug-desatA2-knockdown also reduced the food intake, body mass and fecundity of female BPH adults, and led to abdomen atrophy and ovarian agenesis. Nlug-desatA2-knockdown suppressed the transcription of TOR (target of rapamycin), Lpp (Lipophorin) and AKHR (adipokinetic hormone receptor) in female adults. Moreover, the corrected survival rate of BPH with Nlug-desatA2-knockdown fed an artificial diet was higher than the survival rate of those fed on rice plants. Higher levels of salicylic acid in rice infested by Nlug-desatA2-knockdown female BPH adults than in rice infested by control BPH may be the reason. These findings demonstrate that Nlug-desatA2 has an essential role in lipid metabolism and is involved in the food intake, survival, development and fecundity of BPH. In addition, this gene is likely involved in regulating the responses of rice to BPH infestation.
Collapse
|
7
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Experimental Introgression To Evaluate the Impact of Sex Specific Traits on Drosophila melanogaster Incipient Speciation. G3-GENES GENOMES GENETICS 2019; 9:2561-2572. [PMID: 31167833 PMCID: PMC6686937 DOI: 10.1534/g3.119.400385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex specific traits are involved in speciation but it is difficult to determine whether their variation initiates or reinforces sexual isolation. In some insects, speciation depends of the rapid change of expression in desaturase genes coding for sex pheromones. Two closely related desaturase genes are involved in Drosophila melanogaster pheromonal communication: desat1 affects both the production and the reception of sex pheromones while desat2 is involved in their production in flies of Zimbabwe populations. There is a strong asymmetric sexual isolation between Zimbabwe populations and all other "Cosmopolitan" populations: Zimbabwe females rarely copulate with Cosmopolitan males whereas Zimbabwe males readily copulate with all females. All populations express desat1 but only Zimbabwe strains show high desat2 expression. To evaluate the impact of sex pheromones, female receptivity and desat expression on the incipient speciation process between Zimbabwe and Cosmopolitan populations, we introgressed the Zimbabwe genome into a Cosmopolitan genome labeled with the white mutation, using a multi-generation procedure. The association between these sex-specific traits was determined during the procedure. The production of pheromones was largely dissociated between the sexes. The copulation frequency (but not latency) was highly correlated with the female-but not with the male-principal pheromones. We finally obtained two stable white lines showing Zimbabwe-like sex pheromones, copulation discrimination and desat expression. Our study indicates that the variation of sex pheromones and mating discrimination depend of distinct-yet overlapping-sets of genes in each sex suggesting that their cumulated effects participate to reinforce the speciation process.
Collapse
|
9
|
Houot B, Cazalé-Debat L, Fraichard S, Everaerts C, Saxena N, Sane SP, Ferveur JF. Gene Regulation and Species-Specific Evolution of Free Flight Odor Tracking in Drosophila. Mol Biol Evol 2019; 35:3-15. [PMID: 28961885 DOI: 10.1093/molbev/msx241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The flying ability of insects has coevolved with the development of organs necessary to take-off from the ground, generate, and modulate lift during flight in complex environments. Flight orientation to the appropriate food source and mating partner depends on the perception and integration of multiple chemical signals. We used a wind tunnel-based assay to investigate the natural and molecular evolution of free flight odor tracking in Drosophila. First, the comparison of female and male flies of several populations and species revealed substantial sex-, inter-, and intra-specific variations for distinct flight features. In these flies, we compared the molecular structure of desat1, a fast-evolving gene involved in multiple aspects of Drosophila pheromonal communication. We manipulated desat1 regulation and found that both neural and nonneural tissues affect distinct flight features. Together, our data suggest that desat1 is one of the genes involved in the evolution of free-flight odor tracking behaviors in Drosophila.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nitesh Saxena
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Sanjay P Sane
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Nojima T, Chauvel I, Houot B, Bousquet F, Farine JP, Everaerts C, Yamamoto D, Ferveur JF. The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster. J Neurogenet 2019; 33:96-115. [PMID: 30724684 DOI: 10.1080/01677063.2018.1559843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,c Centre for Neural Circuits and Behaviour , University of Oxford , Oxford , United Kingdom
| | - Isabelle Chauvel
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Benjamin Houot
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,d Division of Chemical Ecology, Department of Plant Protection Biology , Swedish University of Agricultural Sciences , Alnarp , Sweden
| | - François Bousquet
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Jean-Pierre Farine
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Claude Everaerts
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Daisuke Yamamoto
- b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,e Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Nishi-Ku , Japan Kobe
| | - Jean-François Ferveur
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| |
Collapse
|
11
|
Everaerts C, Cazalé-Debat L, Louis A, Pereira E, Farine JP, Cobb M, Ferveur JF. Pre-imaginal conditioning alters adult sex pheromone response in Drosophila. PeerJ 2018; 6:e5585. [PMID: 30280017 PMCID: PMC6164551 DOI: 10.7717/peerj.5585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Pheromones are chemical signals that induce innate responses in individuals of the same species that may vary with physiological and developmental state. In Drosophila melanogaster, the most intensively studied pheromone is 11-cis-vaccenyl acetate (cVA), which is synthezised in the male ejaculatory bulb and is transferred to the female during copulation. Among other effects, cVA inhibits male courtship of mated females. We found that male courtship inhibition depends on the amount of cVA and this effect is reduced in male flies derived from eggs covered with low to zero levels of cVA. This effect is not observed if the eggs are washed, or if the eggs are laid several days after copulation. This suggests that courtship suppression involves a form of pre-imaginal conditioning, which we show occurs during the early larval stage. The conditioning effect could not be rescued by synthetic cVA, indicating that it largely depends on conditioning by cVA and other maternally-transmitted factor(s). These experiments suggest that one of the primary behavioral effects of cVA is more plastic and less stereotypical than had hitherto been realised.
Collapse
Affiliation(s)
- Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Alexis Louis
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Emilie Pereira
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
12
|
A simple computer vision pipeline reveals the effects of isolation on social interaction dynamics in Drosophila. PLoS Comput Biol 2018; 14:e1006410. [PMID: 30161262 PMCID: PMC6135522 DOI: 10.1371/journal.pcbi.1006410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 09/12/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Isolation profoundly influences social behavior in all animals. In humans, isolation has serious effects on health. Drosophila melanogaster is a powerful model to study small-scale, temporally-transient social behavior. However, longer-term analysis of large groups of flies is hampered by the lack of effective and reliable tools. We built a new imaging arena and improved the existing tracking algorithm to reliably follow a large number of flies simultaneously. Next, based on the automatic classification of touch and graph-based social network analysis, we designed an algorithm to quantify changes in the social network in response to prior social isolation. We observed that isolation significantly and swiftly enhanced individual and local social network parameters depicting near-neighbor relationships. We explored the genome-wide molecular correlates of these behavioral changes and found that whereas behavior changed throughout the six days of isolation, gene expression alterations occurred largely on day one. These changes occurred mostly in metabolic genes, and we verified the metabolic changes by showing an increase of lipid content in isolated flies. In summary, we describe a highly reliable tracking and analysis pipeline for large groups of flies that we use to unravel the behavioral, molecular and physiological impact of isolation on social network dynamics in Drosophila. Social isolation severely affects the behavior and physiology of social animals, including humans. The fruit fly is a powerful model for studying the mechanisms of development, health and disease and is also used to study social behaviors such as mating and aggression. However, these studies are limited to examining few individuals for shorts amounts of time, due to the lack of effective computational tools for the analysis of large groups over prolonged time. To overcome this hurdle, we built a new behavioral arena and developed new software that accurately tracks many flies simultaneously over long time periods. The arena is cheap and easy to build and the software works with low resolution videos. Using these improved tools, we studied social isolation in groups of male flies. We found that isolation caused flies to form stronger interactions with neighboring flies in their social network. These behavioral changes were preceded by transient changes in the expression of metabolism genes and eventually resulted in isolated flies accumulating fat, as has been previously observed in studies in mice and humans. Our study opens the door for the use of fruit flies in future studies of social isolation.
Collapse
|
13
|
Grillet M, Ferveur JF, Everaerts C. Behavioural elements and sensory cues involved in sexual isolation between Drosophila melanogaster strains. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172060. [PMID: 29892393 PMCID: PMC5990781 DOI: 10.1098/rsos.172060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Sensory cues exchanged during courtship are crucial for mate choice: if they show intraspecific divergence, this may cause or reinforce sexual isolation between strains, ultimately leading to speciation. There is a strong asymmetric sexual isolation between Drosophila melanogaster females from Zimbabwe (Z) and males from all other populations (M). While M and Z flies of both sexes show different cuticular pheromones, this variation is only partly responsible for the intraspecific isolation effect. Male acoustic signals are also partly involved in sexual isolation. We examined strain-specific courtship behaviour sequences to determine which body parts and sensory appendages may be involved in sexual isolation. Using two strains representative of the Z- and M-types, we manipulated sensory cues and the social context; we then measured the consequence of these manipulations on courtship and copulation. Our data suggest that Z females mated best with males whose sensory characteristics matched those of Z males in both quantity and quality. M females were less choosy and much less influenced by the sensory and social contexts. Differences in emission and reception of sensory signals seen between Z and M flies may lead to the concerted evolution of multiple sensory channel, thereby shaping a population-specific mate recognition system.
Collapse
Affiliation(s)
| | | | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
14
|
Ferveur JF, Cortot J, Rihani K, Cobb M, Everaerts C. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults. PeerJ 2018; 6:e4318. [PMID: 29456884 PMCID: PMC5813593 DOI: 10.7717/peerj.4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1) experimentally selected desiccation-resistant lines, (2) transgenic flies with altered desaturase expression and (3) natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.
Collapse
Affiliation(s)
- Jean-Francois Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Karen Rihani
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
15
|
Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL, Hauber ME, Scordato EC, Symes LB, Balakrishnan CN, Zonana DM, van Doorn GS. Mechanisms of Assortative Mating in Speciation with Gene Flow: Connecting Theory and Empirical Research. Am Nat 2018; 191:1-20. [DOI: 10.1086/694889] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Abed-Vieillard D, Cortot J. When Choice Makes Sense: Menthol Influence on Mating, Oviposition and Fecundity in Drosophila melanogaster. Front Integr Neurosci 2016; 10:5. [PMID: 26941622 PMCID: PMC4761970 DOI: 10.3389/fnint.2016.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
The environment to which insects have been exposed as larvae and adults can affect subsequent behaviors, such as mating, oviposition, food preference or fitness. Experience can change female preference for oviposition, particularly in phytophagous insects. In Drosophila melanogaster, females avoid laying eggs on menthol rich-food when given the choice. Exposure to menthol during larval development reduces this aversion. However, this observation was not reproduced in the following generation. Recently, we have shown that oviposition-site preference (OSP) differs between wild-type D. melanogaster lines freely or forcibly exposed to menthol. After 12 generations, menthol "forced" lines still exhibit a persistent aversion to menthol whereas 'free-choice' lines show a decreased aversion for menthol rich-food. Here, we compare courtship behavior, mating and female fecundity in "forced" and "free-choice" lines, raised either on menthol rich-food (Menthol-lines) or on menthol-free food (Plain-lines). "Forced" males did not discriminate between decapitated virgin females of the two lines. They courted and mated with intact females of both "forced" lines in a comparable rate. However "forced" M-line males did mate significantly more rapidly with "forced" M-line females. In the "free-choice" procedure, P-line males show a similar pattern as "forced" males for discrimination ability and courtship. M-line males courted significantly more M-line females. Both 'free-choice' lines males mated significantly more with females of their own line. Female fecundity was assessed during 10 days in 'free-choice' lines. Menthol-line females laid more eggs during the first 4 days than female Plain-lines and parental control-line. The total number of eggs laid during the first 10 days of female adult life is comparable in M-line and parental control line. However, Menthol-line females laid eggs earlier than both parental control and Plain-lines. Our findings show that in D. melanogaster, as for OSP, mating and fecundity are more rapidly influenced when flies have a choice between alternative resources compared to flies permanently exposed to menthol.
Collapse
Affiliation(s)
- Dehbia Abed-Vieillard
- Centre National de la Recherche Scientifique, UMR6265 Centre des Sciences du Goût et de l’AlimentationDijon, France
- Institut National de la Recherche Agronomique, UMR1324 Centre des Sciences du Goût et de l’AlimentationDijon, France
- UMR Centre des Sciences du Goût et de l’Alimentation, Université de BourgogneDijon, France
| | - Jérôme Cortot
- Centre National de la Recherche Scientifique, UMR6265 Centre des Sciences du Goût et de l’AlimentationDijon, France
- Institut National de la Recherche Agronomique, UMR1324 Centre des Sciences du Goût et de l’AlimentationDijon, France
- UMR Centre des Sciences du Goût et de l’Alimentation, Université de BourgogneDijon, France
| |
Collapse
|
17
|
Bousquet F, Chauvel I, Flaven-Pouchon J, Farine JP, Ferveur JF. Dietary rescue of altered metabolism gene reveals unexpected Drosophila mating cues. J Lipid Res 2016; 57:443-50. [PMID: 26759364 DOI: 10.1194/jlr.m064683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
To develop and reproduce, animals need long-chain MUFAs and PUFAs. Although some unsaturated FAs (UFAs) can be synthesized by the organism, others must be provided by the diet. The gene, desat1, involved in Drosophila melanogaster UFA metabolism, is necessary for both larval development and for adult sex pheromone communication. We first characterized desat1 expression in larval tissues. Then, we found that larvae in which desat1 expression was knocked down throughout development died during the larval stages when raised on standard food. By contrast pure MUFAs or PUFAs, but not saturated FAs, added to the larval diet rescued animals to adulthood with the best effect being obtained with oleic acid (C18:1). Male and female mating behavior and fertility were affected very differently by preimaginal UFA-rich diet. Adult diet also strongly influenced several aspects of reproduction: flies raised on a C18:1-rich diet showed increased mating performance compared with flies raised on standard adult diet. Therefore, both larval and adult desat1 expression control sex-specific mating signals. A similar nutrigenetics approach may be useful in other metabolic mutants to uncover cryptic effects otherwise masked by severe developmental defects.
Collapse
Affiliation(s)
- François Bousquet
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| | - Isabelle Chauvel
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| | - Justin Flaven-Pouchon
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France Centro Interdisciplinario de Neurociencia de Valparaiso, University of Valparaiso, Valparaiso, Chile
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, F-21000 Dijon, France
| |
Collapse
|
18
|
Manfredini F, Riba-Grognuz O, Wurm Y, Keller L, Shoemaker D, Grozinger CM. Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta. PLoS Genet 2013; 9:e1003633. [PMID: 23950725 PMCID: PMC3738511 DOI: 10.1371/journal.pgen.1003633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the “winner”) in pleometrotic associations survives and takes the lead of the young colony while the others (the “losers”) are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals. The characterization of the genomic basis for complex behaviors is one of the major goals of biological research. The genomic state of an individual results from the interplay between its internal condition (the “nature”) and the external environment (the “nurture”), which may include the social environment. Colony founding in the fire ant Solenopsis invicta is a complex process that serves as a useful model for investigating how the interplay between genes and social environment shapes social behavior. Unrelated, newly mated S. invicta queens may start a new colony as a group, but ultimately only one queen will survive and gain full reproductive dominance. By uncovering the genetic basis for founding behavior in fire ants we therefore provide useful insights into how cooperative behavior evolved in a context that might be considered primitively eusocial, because newly mated queens in a founding association are morphologically, physiologically and genetically very similar and display no evident division of labor. Our results suggest that social environment (founding singly or in pairs, switching dominance rank vs. maintaining rank) is a much greater driver of gene expression changes than social rank itself, suggesting that social environment, and not reproductive state, is a key regulator of gene expression, physiology and ultimately, behavior.
Collapse
Affiliation(s)
- Fabio Manfredini
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Bousquet F, Ferveur JF. desat1: A Swiss army knife for pheromonal communication and reproduction? Fly (Austin) 2012; 6:102-7. [PMID: 22634575 DOI: 10.4161/fly.19554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The desat1 gene possesses an extraordinary-maybe unique-feature in the control of sensory communication systems: it codes for the two principal and complementary aspects-the emission and the reception-of Drosophila sex pheromones. These two complex aspects depend on separate genetic control indicating that desat1 pleiotropically acts on pheromonal communication. This gene also control other characters either related to reproduction and to osmoregulation. Such a functional pleiotropy may be related to the molecular structure of desat1 gene which combines a highly conserved coding region with fast evolving regulatory regions: It produces at least five transcripts all giving rise to the ∆9-desaturase enzyme.
Collapse
Affiliation(s)
- François Bousquet
- Centre des Sciences du Goût et de l'Alimentation, UMR CNRS, UMR INRA, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
20
|
Houot B, Fraichard S, Greenspan RJ, Ferveur JF. Genes involved in sex pheromone discrimination in Drosophila melanogaster and their background-dependent effect. PLoS One 2012; 7:e30799. [PMID: 22292044 PMCID: PMC3264623 DOI: 10.1371/journal.pone.0030799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/21/2011] [Indexed: 11/18/2022] Open
Abstract
Mate choice is based on the comparison of the sensory quality of potential mating partners, and sex pheromones play an important role in this process. In Drosophila melanogaster, contact pheromones differ between male and female in their content and in their effects on male courtship, both inhibitory and stimulatory. To investigate the genetic basis of sex pheromone discrimination, we experimentally selected males showing either a higher or lower ability to discriminate sex pheromones over 20 generations. This experimental selection was carried out in parallel on two different genetic backgrounds: wild-type and desat1 mutant, in which parental males showed high and low sex pheromone discrimination ability respectively. Male perception of male and female pheromones was separately affected during the process of selection. A comparison of transcriptomic activity between high and low discrimination lines revealed genes not only that varied according to the starting genetic background, but varied reciprocally. Mutants in two of these genes, Shaker and quick-to-court, were capable of producing similar effects on discrimination on their own, in some instances mimicking the selected lines, in others not. This suggests that discrimination of sex pheromones depends on genes whose activity is sensitive to genetic context and provides a rare, genetically defined example of the phenomenon known as “allele flips,” in which interactions have reciprocal effects on different genetic backgrounds.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 Centre National de la Recherche Scientifique, Université de Bourgogne, Dijon, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 Centre National de la Recherche Scientifique, Université de Bourgogne, Dijon, France
| | - Ralph J. Greenspan
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California United States of America
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 Centre National de la Recherche Scientifique, Université de Bourgogne, Dijon, France
- * E-mail:
| |
Collapse
|
21
|
Grillet M, Everaerts C, Houot B, Ritchie MG, Cobb M, Ferveur JF. Incipient speciation in Drosophila melanogaster involves chemical signals. Sci Rep 2012; 2:224. [PMID: 22355738 PMCID: PMC3261631 DOI: 10.1038/srep00224] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/15/2011] [Indexed: 11/09/2022] Open
Abstract
The sensory and genetic bases of incipient speciation between strains of Drosophila melanogaster from Zimbabwe and those from elsewhere are unknown. We studied mating behaviour between eight strains - six from Zimbabwe, together with two cosmopolitan strains. The Zimbabwe strains showed significant sexual isolation when paired with cosmopolitan males, due to Zimbabwe females discriminating against these males. Our results show that flies' cuticular hydrocarbons (CHs) were involved in this sexual isolation, but that visual and acoustic signals were not. The mating frequency of Zimbabwe females was highly significantly negatively correlated with the male's relative amount of 7-tricosene (%7-T), while the mating of cosmopolitan females was positively correlated with %7-T. Variation in transcription levels of two hydrocarbon-determining genes, desat1 and desat2, did not correlate with the observed mating patterns. Our study represents a step forward in our understanding of the sensory processes involved in this classic case of incipient speciation.
Collapse
Affiliation(s)
- Micheline Grillet
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Agrosup Dijon, 6, Bd Gabriel, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
22
|
Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila. Proc Natl Acad Sci U S A 2011; 109:249-54. [PMID: 22114190 DOI: 10.1073/pnas.1109166108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts-all of which yielded the same desaturase protein-and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species.
Collapse
|
23
|
Inoshita T, Martin JR, Marion-Poll F, Ferveur JF. Peripheral, central and behavioral responses to the cuticular pheromone bouquet in Drosophila melanogaster males. PLoS One 2011; 6:e19770. [PMID: 21625481 PMCID: PMC3098836 DOI: 10.1371/journal.pone.0019770] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be -- mostly but not only -- detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Centre des Sciences du Goût et de l'Alimentation, Unité Mixte de Recherche-6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche-1324 Institut National de la Recherche Agronomique, Université de Bourgogne, Dijon, France
| | - Jean-René Martin
- Laboratoire de Neurobiologie and Développement, Unité Propre de Recherche 3294, Centre National de la Recherche Scientifique - Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Physiologie de l'Insecte: Signalisation et Communication, Unité Mixte de Recherche-1272 Institut National de la Recherche Agronomique/Université Pierre et Marie Curie, Versailles, France
- AgroParisTech, Département Science de la Vie et Santé, Paris, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Unité Mixte de Recherche-6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche-1324 Institut National de la Recherche Agronomique, Université de Bourgogne, Dijon, France
| |
Collapse
|